Bellman equation:

$$V(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0$.

Value function iteration:

$$T(V)(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0$.

Start with a simple guess for V, for example, V_0 such that

$$V_0(k) = 0$$
 for all $k \in K$.

Let $V_1 = T(V_0)$ and continue to iterate $V_{n+1} = T(V_n)$. We will prove that the sequence $V_0, V_1, V_2, ...$ converges to a function \hat{V} such that $\hat{V} = T(\hat{V})$. Consequently, \hat{V} satisfies the Bellman equation.

Let K be the space of possible capital stocks, and let C(K) be the space of continuous, bonded functions defined on K.

For $V, W \in C(K)$, let

$$d(V,W) = ||V-W|| = \sup_{k \in K} |V(k)-W(k)|.$$

With this definition of a metric, C(K) is a Banach space, a complete normed vector space.

Let

$$T: C(K) \rightarrow C(K)$$
.

Suppose that for any $V, W \in C(K)$,

$$||T(V) - T(W)|| \le \gamma ||V - W||$$

for some fixed γ , $1 > \gamma > 0$.

Then we call T a contraction mapping with modulus γ .

We want to show that mapping T defined by

$$T(V)(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0$

maps continuous bounded functions into continuous bounded functions, that is,

$$T:C(K) \to C(K)$$

and that T is a contraction mapping with modulus β .

Then

$$||V_{n+2} - V_{n+1}|| = ||T(V_{n+1}) - T(V_n)|| \le \beta ||V_{n+1} - V_n||$$
$$||V_{n+2} - V_{n+1}|| \le \beta^{n+1} ||V_1 - V_0||.$$