EQUILIBRIUM AND PARETO EFFICIENCY

Environment:

Pure exchange economy with two infinitely lived consumers and one good per period.

Utility:
$$\sum_{t=0}^{\infty} \beta_i^t \log c_t^i$$
 where $0 < \beta_i < 1$, $i = 1, 2$.

Endowments:
$$(w_0^i, w_1^i, w_2^i, ...)$$
 where $w_t^i > 0$, $i = 1, 2$, $t = 0, 1, 2, ...$

Market structure:

With an Arrow-Debreu markets structure, futures markets for goods are open in period 0. Consumers trade futures contracts among themselves.

Equilibrium:

An **Arrow-Debreu equilibrium** is a sequence of prices $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$ and an allocation $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$ such that

• Given $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$, consumer i, i = 1, 2, chooses $\hat{c}_0^i, \hat{c}_1^i, \hat{c}_2^i, \ldots$ to solve

$$\max \sum_{t=0}^{\infty} \beta_{i}^{t} \log c_{t}^{i}$$
s.t.
$$\sum_{t=0}^{\infty} \hat{p}_{t} c_{t}^{i} \leq \sum_{t=0}^{\infty} \hat{p}_{t} w_{t}^{i}$$

$$c_{t}^{i} \geq 0.$$

•
$$\hat{c}_t^1 + \hat{c}_t^2 \le w_t^1 + w_t^2$$
, = if $\hat{p}_t > 0$, $t = 0, 1, 2, \dots$

Characterization of equilibrium using calculus:

The Kuhn-Tucker theorem says that $\hat{c}_0^i, \hat{c}_1^i, \hat{c}_2^i, \dots$ solves the consumer's maximization problem if and only if there exists a Lagrange multiplier $\hat{\lambda}_i \geq 0$ such that

$$\beta_i^t \frac{1}{\hat{c}_t^i} - \hat{\lambda}_i \hat{p}_t \le 0, = 0 \text{ if } \hat{c}_t^i > 0$$

$$\sum\nolimits_{t = 0}^\infty {{\hat p_t}{w_t^i}} - \sum\nolimits_{t = 0}^\infty {{\hat p_t}{c_t^i}} \ge 0\,,\, = 0\;\;{\rm{if}}\;\;{\hat {\mathcal{A}}^i} > 0\,.$$

For any t, $t=0,1,2,\ldots$, $\lim_{c\to 0}\beta_i^t\frac{1}{c}=\infty$ implies that $\hat{c}_t^i>0$, which implies that $\hat{\lambda}_i>0$. It also implies that $\hat{p}_t>0$, $t=0,1,2,\ldots$. Consequently, $\hat{p}_0,\hat{p}_1,\hat{p}_2,\ldots$; $\hat{c}_0^1,\hat{c}_1^1,\hat{c}_2^1,\ldots$; $\hat{c}_0^2,\hat{c}_1^2,\hat{c}_2^2,\ldots$ is an equilibrium if and only if there exist Lagrange multipliers $\hat{\lambda}^1,\hat{\lambda}^2$, $\hat{\lambda}^i>0$, such that

•
$$\beta_i^t \frac{1}{\hat{c}_i^i} = \hat{\lambda}_i \hat{p}_t$$
, $i = 1, 2$, $t = 0, 1, 2, ...$

•
$$\sum_{t=0}^{\infty} \hat{p}_t c_t^i = \sum_{t=0}^{\infty} \hat{p}_t w_t^i$$
, $i = 1, 2$

•
$$\hat{c}_{t}^{1} + \hat{c}_{t}^{2} = w_{t}^{1} + w_{t}^{2}$$
, $t = 0, 1, 2, \dots$

Pareto efficiency:

An allocation $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, ...; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, ...$ is **Pareto efficient** if it is feasible,

$$\hat{c}_t^1 + \hat{c}_t^2 \le w_t^1 + w_t^2, \ t = 0, 1, 2, \dots,$$

and there exists no other allocation, $\overline{c}_0^1, \overline{c}_1^1, \overline{c}_2^1, \dots; \overline{c}_0^2, \overline{c}_1^2, \overline{c}_2^2, \dots$ that is also feasible and is such that

$$\sum\nolimits_{t=0}^{\infty}\beta_{i}^{t}\log\overline{c}_{t}^{i}>\sum\nolimits_{t=0}^{\infty}\beta_{i}^{t}\log\hat{c}_{t}^{i}\text{, some }i,\ i=1,2\text{, and}$$

$$\sum\nolimits_{t=0}^{\infty}\beta_{i}^{t}\log\overline{c}_{i}^{i}\geq\sum\nolimits_{t=0}^{\infty}\beta_{i}^{t}\log\hat{c}_{i}^{i}\text{ , all }i,\ i=1,2.$$

Alternatively,

An allocation $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots$ is **Pareto efficient** if and only if there exist numbers $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_i \ge 0$ and not both 0, such that $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots$ solves

$$\max \hat{\alpha}_{1} \sum_{t=0}^{\infty} \beta_{1}^{t} \log c_{t}^{1} + \hat{\alpha}_{2} \sum_{t=0}^{\infty} \beta_{2}^{t} \log c_{t}^{2}$$
s.t $c_{t}^{1} + c_{t}^{2} \leq w_{t}^{1} + w_{t}^{2}$, $t = 0, 1, 2, ...$

$$c_{t}^{i} \geq 0$$
.

(Note: It is easy to show that, if an allocation solves the above social planner's problem, it satisfies the first definition of Pareto efficiency. It is a little more difficult to show that, if an allocation satisfies the first definition of Pareto efficiency, there exist welfare weights $\hat{\alpha}_1$, $\hat{\alpha}_2$ such that the allocation solves the social planner's problem.)

Characterization of Pareto efficiency using calculus:

The Kuhn-Tucker theorem says that $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots$ solves the social planner's problem if and only if there exists a Lagrange multipliers $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2, \dots, \hat{\pi}_t \geq 0$, such that

$$\hat{\alpha}_{i} \beta_{i}^{t} \frac{1}{\hat{c}_{t}^{i}} - \hat{\pi}_{t} \le 0, = 0 \text{ if } \hat{c}_{t}^{i} > 0$$

$$w_{t}^{1} + w_{t}^{2} - \hat{c}_{t}^{1} + \hat{c}_{t}^{2} \ge 0, = 0 \text{ if } \hat{\pi}_{t} > 0.$$

For any t, t = 0,1,2,..., $\lim_{c \to 0} \beta_i^t \frac{1}{c} = \infty$ implies that $\hat{c}_t^i > 0$, which implies that $\hat{\pi}_t > 0$. Consequently, $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1,...$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2,...$ is a Pareto efficient allocation if and only if there exist Lagrange multipliers $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2,...$, $\hat{\pi}_t > 0$, such that

•
$$\hat{\alpha}_i \beta_i^t \frac{1}{\hat{c}_i^i} = \hat{\pi}_t$$
, $i = 1, 2$, $t = 0, 1, 2, ...$

•
$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2$$
, $t = 0, 1, 2, \dots$

(Note: Since $\hat{\alpha}_i > 0$ for at least one i, i = 1, 2, we know that, for that consumer i, $\hat{c}_t^i > 0$ for all t, $t = 0, 1, 2, \ldots$, and, consequently, that $\hat{\pi}_t > 0$. If one of the welfare weights $\hat{\alpha}_i$ equals 0, then $\hat{c}_t^i = 0$. We can imagine the first order conditions for that consumer i as being satisfied in the limit or we can simply ignore them. In what follows, we avoid the case where one of the welfare weights equals 0.)

First welfare theorem:

Suppose that $\hat{p}_0, \hat{p}_1, \hat{p}_2, ...; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, ...; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, ...$ is an equilibrium. Then the allocation $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, ...; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, ...$ is Pareto efficient.

Proof:

Since $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$ is an equilibrium, we know that there exist Lagrange multipliers $\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_i > 0$, such that

$$\beta_i^t \frac{1}{\hat{c}_t^i} = \hat{\lambda}_i \hat{p}_t$$

$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2$$

We also know that, if there exist welfare weights $\hat{\alpha}_1, \hat{\alpha}_2, \ \hat{\alpha}_i > 0$, and Lagrange multipliers $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2, \ldots, \ \hat{\pi}_t > 0$, such that

$$\hat{\alpha}_i \beta_i^t \frac{1}{\hat{c}_t^i} = \hat{\pi}_t$$

$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2 \,,$$

then $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$ is a Pareto efficient allocation. (In other words, we are given $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$; $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$ and $\hat{\lambda}^1, \hat{\lambda}^2$ that satisfy certain properties, and we want to construct $\hat{\alpha}_1, \hat{\alpha}_2$ and $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2, \ldots$ that, together with $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$, satisfy certain other properties.) To prove the theorem, we set

$$\hat{\alpha}_i = \frac{1}{\hat{\lambda}_i}$$

$$\hat{\pi}_{t} = \hat{p}_{t}.$$

Equilibrium with transfers:

An **Arrow-Debreu equilibrium with transfers** is a sequence of prices $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$, an allocation $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$, and transfers \hat{t}_1, \hat{t}_2 such that

• Given $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$, consumer i, i = 1, 2, chooses $\hat{c}_0^i, \hat{c}_1^i, \hat{c}_2^i, \ldots$ to solve

$$\max \sum_{t=0}^{\infty} \beta_i^t \log c_t^i$$
s.t.
$$\sum_{t=0}^{\infty} \hat{p}_t c_t^i \leq \sum_{t=0}^{\infty} \hat{p}_t w_t^i + \hat{t}_i$$

$$c_t^i \geq 0.$$

• $\hat{c}_t^1 + \hat{c}_t^2 \le w_t^1 + w_t^2$, = if $\hat{p}_t > 0$, t = 0, 1, 2, ...

Characterization of equilibrium with transfers using calculus:

Once again, we use the Kuhn-Tucker theorem to show that $\hat{p}_0, \hat{p}_1, \hat{p}_2, \dots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots; \hat{t}_1, \hat{t}_2$ is an equilibrium with transfers if and only if there exist Lagrange multipliers $\hat{\lambda}^1, \hat{\lambda}^2, \hat{\lambda}^i > 0$, such that

•
$$\beta_i^t \frac{1}{\hat{c}_i^t} = \hat{\lambda}_i \hat{p}_t$$
, $i = 1, 2$, $t = 0, 1, 2, ...$

•
$$\sum_{t=0}^{\infty} \hat{p}_t c_t^i = \sum_{t=0}^{\infty} \hat{p}_t w_t^i + \hat{t}_i, i = 1, 2$$

•
$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2$$
, $t = 0, 1, 2, \dots$

Second welfare theorem:

Suppose that $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots$ is a Pareto efficient allocation where each consumer receives strictly positive consumption. Then there exist prices $\hat{p}_0, \hat{p}_1, \hat{p}_2, \dots$ and transfers \hat{t}_1, \hat{t}_2 such that $\hat{p}_0, \hat{p}_1, \hat{p}_2, \dots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \dots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \dots; \hat{t}_1, \hat{t}_2$ is an equilibrium.

Proof:

Since $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$ is a Pareto efficient allocation equilibrium, we know that there exist welfare weights $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_i \geq 0$, and Lagrange multipliers $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2, \ldots$, $\hat{\pi}_t > 0$, such that

$$\hat{\alpha}_i \beta_i^t \frac{1}{\hat{c}_t^i} = \hat{\pi}_t$$

$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2 .$$

Since $\hat{c}_t^i > 0$, we know that $\hat{\alpha}_i > 0$, i = 1, 2. We also know that, if there exist prices $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$, transfers \hat{t}_1, \hat{t}_2 , and Lagrange multipliers $\hat{\lambda}_1, \hat{\lambda}_2$, $\hat{\lambda}_i > 0$, such that

$$\beta_i^t \frac{1}{\hat{c}_t^i} = \hat{\lambda}_i \hat{p}_t$$

$$\sum\nolimits_{t = 0}^\infty {\hat p_t c_t^i} = \sum\nolimits_{t = 0}^\infty {\hat p_t w_t^i} + \hat t_i$$

$$\hat{c}_t^1 + \hat{c}_t^2 = w_t^1 + w_t^2$$

then $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$; $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$; \hat{t}_1, \hat{t}_2 is an equilibrium with transfers. (In other words, we are given $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$; $\hat{\alpha}_1, \hat{\alpha}_2$; and $\hat{\pi}_0, \hat{\pi}_1, \hat{\pi}_2, \ldots$ that satisfy certain properties, and we want to construct $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$; \hat{t}_1, \hat{t}_2 ; and $\hat{\lambda}_1, \hat{\lambda}_2$ that, together with $\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots$; $\hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots$, satisfy certain other properties.) To prove the theorem, we set

$$\hat{p}_{\scriptscriptstyle t} = \hat{\pi}_{\scriptscriptstyle t}$$

$$\hat{\lambda}_i = \frac{1}{\hat{\alpha}_i}$$

$$\hat{t}_i = \sum\nolimits_{t = 0}^\infty {\hat p_t c_t^i} - \sum\nolimits_{t = 0}^\infty {\hat p_t w_t^i} \;. \label{eq:ttotal_transform}$$