MULTIPLICITY OF EQUILIBRIA AND COMPARATIVE
STATICS*

TiMOTHY J. KEHOE

Conditions that guarantee the uniqueness of equilibriurm in models of eco-
nomic competition are erucial to applications of these models in exercises of com-
parative statics. Until now, most of the attention given to the uniqueness question
has been focused on pure exchange economies. In this paper we use a topological
index thearem to derive necessary and sufficient conditions for the uniqueness of
equilibrium in econornies with production. Unfortunately, conditiens that imply
uniqueness appear to be too restrictive to have much applicability. We argue, for
example, that the only economically interpretable restrictions that imply unique-
ness are either that the demand side of an economy behaves like a single consumer
or that the supply side is an input-output system. Qur results suggest a need for
reformulation of the comparative statics method.

I. INTRODUCTION

Conditions that guarantee the uniqueness of equilibrium in
models of economic competition are crucial to applications of these
models in exercises of comparative statics. The fundamental hy-
pothesis underlying this type of analysis is that the state of the
economic system can be completely specified by the solution to a
mathematical model, which is the equilibrium of the system. If,
for a given vector of parameters, there is more than one solution
to the model, then the comparative statics method breaks down.
Lacking conditions that guarantee uniqueness, we must resort to
considerations of historical conditions and dynamic stability, which
greatly complicate the analysis.

Because of the importance of this issue, there have been many
approaches to answering the question of when an equilibrium is
unique (see Arrow and Hahn {1971, Ch. 9] for a survey). Until
recently, however, these approaches have been marked by two
shortcomings: they have considered sufficient rather than nec-
essary conditions; and they have focused on pure exchange econ-
omies rather than economies that allow production. The devel-
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opment of a topological index theorem for pure exchange economies
by Dierker (19721 and Varian [1974] and its extension to econ-
omies with production by Mas-Colell [1978] and Kehoe [1980]
have provided us with tools mere powerful than any previously
available for examining the uniqueness question.

In this paper we explore the question of when an economy
with production has a unique equilibrium. We begin by dealing
with economies with activity analysis production technologies.
Later we indicate how our results can be extended to more general
technologies, including those that exhibit decreasing returns, Our
approach emplays the index theorem developed by Kehoe [1980],
who utilizes a single-valued, continuous function whose fixed points
are equivalent to equilibria of the model. Each fixed peint of this
function is associated with an index that is an integer determined
by the local properties of this function at that point. The index
theorem makes a statement about the sum of all the indices of
equilibria that allows us to establish conditions sufficient for
uniqueness. Furthermore, the mathematical conditions sufficient
for uniqueness are necessary in almost all econemies.

The index theorem can be easily motivated by the same dia-
gram that is typically used to motivate Brouwer's fixed point
theorem. Suppose that g(«} is a continuous function from the unit
interval into itself; that iz, 0 = g{n) < 1 for any 0 < = =< 1. Brou-
wer's fixed point theorem says that g has a fixed point # = g{#),
in other words, that the graph of g must cross the diagonal as
Figure I illustrates. Notice, however, that more can be said: sup-
pose that all fixed points lie in the interior of the interval. Then
the graph of g must cross the diagenal once from above. After
that, in general, it crosses once from above for every time it crosses
from below. Let us associate an index + 1 with a fixed point # if
the graph of g crosses the diagonal from above at 4, and an index
— 1 if it erosses from below. In the case where g is continuously
differentiable, index{(#} can be computed simply by finding the
sign of the expression 1 — dg/dw(#). The index theorem says that
the sum of the indexes of all the equilibria is + 1. Consequently,
there are an odd number of equilibria, and if index(#} = + 1 at
every equilibrium, there is only one equilibrium. Furthermore,
ifindex(#) = — 1 atany equilibrium, then there must be multiple
equilibria.

Unfortunately, the conditions required for uniqueness of
equilibrium in production economies appear to be more restrictive
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than those in pure exchange economies. For example, it is well-
known that, if either the weak axiom of revealed preference or
gross substitutability is satisfied by the consumer excess demand
function, then a pure exchange economy has a unique equilib-
rium. This is not the case for an economy with production. In fact,
if the production technology is arbitrary, although the weak ax-
iom is both necessary and sufficient for uniqueness, gross sub-
stitutability is neither. Since the weak axiom is an extremely
restrictive assumption to impose on the aggregate excess demand
function of consumers, this observation suggests that non-unique-
ness of equilibrium is a less pathological situation than semetimes
thought. A more subtle and far-reaching suggestion of our results
is the need for a reformulation of the comparative statics method
itself.

IT. AN ExaMpPLE OoF NoN-UNIQUENESS OF EQUILIBRIA

Let us begin by considering a simple economy with multiple
equilibria. In this example there are four commaodities and four
consumers. An interesting feature is that the aggregate excess
demand function exhibits gross substitutability.

Consumer j maximizes a Cobb-Douglas utility function,

W (2 ok es) = xixpacd xh
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subject to the constraints ELl X = EL vl and x; = 0,1 = 1,
2, 8, 4. Here the parameter v denotes the initial endowment of
good i held by j. The vector of initial endowments of consumer
is given by the jth column of the following matrix:

Consumer
Commedity 1 2 3 4
1 a0 a Q 1]
2 0 50 i} Q
3 0 0 400 0
4 0 1] 4] 460

Similarly, the vector of utility parameters o = (0 ,ah,0ch,0)) for
consumer j is given by the jth column of the following matrix:

Consumer
Commadity 1 2 3 4
1 0.52 (.86 .5 .05
2 0.4 0.1 0.2 .25
3 0.04 0.02 0.2975 1.0025
4 0.04 G.G2 0.0025 0.6875

Consumer j has an excess demand function &{a) for commodity i
given by the rule,

. .
J.Eg - T
Py i S Ak S

(1) gim) =

L

The vector of aggregate excess demands £(m) is formed by sum-
ming the individual excess demands: £&n) = X!_ & (). Notice that
¢ satisfies the typical properties of aggregate excess demand func-
tions. First, it is continuous as long as prices are strictly positive,
Second, it is bounded from below by the negative of the vector of
aggregate initial endowments w = X} w, £(m) = — w.Third, it
is homogeneous of degree zero, £(¢w) = £(n) for all t = 0; only rel-
ative prices matter to consumers' decision making. Fourth, it
satisfies Walras' law, w'&(n) = 0; since all consumers satisfy their
budget constraints, the aggregate excess demand function satis-
fies an aggregate budget constraint. £ also satisfies the very re-
strictive property of gross substitutability:
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The production side of this economy is given by a 4 x 8 ac-
tivity analysis matrix A. As is usual with constant-returns tech-
nologies, the delineation of individual producers or firms does not
matter in the study of equilibria; all that matters is the aggregate
technology specified by A. Each column of A represents an activ-
ity, or known technological process, which transforms inputs taken
from the vector of aggregate initial endowments or frem the out-
puts of other activities into outputs, which are either consumed
or further used as inputs. Positive entries in an activity denote
quantities of outputs produced by the activity: negative entries
denote quantities of inputs consumed. Aggregate production is
denoted Ay, where y 18 a 6 x 1 vector of nonnegative activity
levels:

-1 0 ] 0 6 -1
0 -1 0] 0 -1 3
0 0 -1 0O -4 17
0 0 ¢ -1 -1 -1

The first four columns of this matrix are, of course, free disposal
activities.

An equilibrium of this economy is a price vector # =
(fr) ,fr2,7r3,74) that satisfies the following three properties: first,
#'A = 0, second, there exists a nonnegative vector of activity
levels # = (91,¥2.93.54.75,5s) such that Ay = &); and third, =
i, #; = L. The first condition requires that there be no excess
profits available. The second requires that supply equal demand.
When these two conditions are combined with Walras' law, they
imply that profits are, in fact, maximized by the production plan
Ay, since Ay = i'§(#) = 0 but #'Ay = 0 for any y = 0. The
third condition is just a price normalization that we are permitted
by the homogeneity of &; if 4 satisfies the first two equilibrium
conditions, then so does t# for any ¢ > 0.

Unfortunately, even though £ exhibits gross substitutability,
the economy specified by £ and A has multiple equilibria. The
three equilibria of (£,A), together with activity levels, consump-
tion allocations, and utility levels, are listed below. Each of the
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three equilibria is, of course, Pareto optimal, although there are
wide differences in allocations across equilibria:

Equilibrium 1

7' = (0.25000, 0.25000, 0.25000, 0.25000)
¥t = (0, 0, 0, 0, 52.000, 63.000)
Consumer
Commadity 1 2 3 4
I 26.000 43.060 200.000 24 000
2 20.000 5.000 80.060 100.064
3 2.000 1.0G0 119.000 1.004G
4 2.000 1.0046 1.000 275.000
! 19.067 29.832 140.802 181.909
Equilibrium 2
72 = ((.15942, 0.25000, 0.03865, 0.55193)
Yy =1(0,0,0,0, 42701, 81.198)
Consumer
Commeodity 1 2 3 4
1 26.000 67431 48.490 83.083
2 12.754 5.000 12.368 220.771
3 8.249 6.468 119.000 14.280
0.578 0.453 .070 275.000
it 16.039 44 B8R0 47,410 240.484
Equilibrium 3
w¥ = (0.27514, 0.25000, 1.30865, 0.16621)
y* (0, 0,0, 0, 53.180, 65.148)
Cansumer
Commodity 1 2 3 4
1 26.000 39.072 224,362 14.492
2 22011 5.000 98.768 66 485
3 1.783 0.810 119.060 0.539
4 3.311 1.504 1.857 275.000
78 20.123 27.581 155.794 159.114
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III. THE INDEX THEOREM

In this section we present mathematical conditions necessary
and sufficient for uniqueness of equilibrium in economies similar
to that of the previous section. An economy with n geods is spec-
ified by an aggregate excess demand function £ and an activity
analysis matrix A, £ is assumed to be continuously differentiable
at all positive prices, to be bounded from below by some vector
—w,w > 0, to be homogeneous of degree zero, and to satisfy Wal-
ras’ law. Recent studies have suggested that assuming excess
demand to be a continuously differentiable, single-valued func-
tion, rather than the more general upper-semi-continuous, set-
valued correspondence is not overly restrictive [Debreu, 1972;
Mas-Colell, 1974). The central peint of these studies is that ar-
bitrarily small perturbations in the underlying preferences of
individual consumers suffice to make excess demand a differen-
tiahle function. Other studies have demonstrated that any excess
demand function that satisfies these assumptions can be gener-
ated by an economy of utility-maximizing consumers (see Me-
Fadden, Mas-Colell, Mantel, and Richter (1974]).

We assume that the n ¥ m activity analysis matrix A has n
free disposal activities, one for each commodity, and that there
can be no outputs without any inputs, {x ¢ R"x = 4y > 0,
y > 0} = {0}. This latter condition is equivalent to the assumption
that there exists w > 0 such that n'A < 0. A pure exchange econ-
omy is one in which the only production activities are the disposal
ones, in other words, in which A = — I, where [ is the n ¥ n
identity matrix. An equilibrium of an economy (£,4) is defined
as before.

Tao derive the index theorem, we define a single-valued con-
tinuous function g whose fixed points «# = g(#) are equivalent to
equilibria of (£,A). Letting S, = {m ¢ R*|1'A <0, n'e = 1}, we
define p54 as the projection map that takes any point g = R* into
the point p54 (q) = S, that is closest in terms of Euclidean dis-
tance. See Figure II. The function g is defined by the rule
glm = pSa[m + &m)]. (Similar least-distance mappings have been
used by Eaves [1971] and Todd [1979].)

THEOREM 1. Fixed points of the function g and equilibria of the
economy (£,A4) are equivalent.

Proof of Theorem 1. g(1r) is the unique solution to the problem,

{4) minimize 1/2[g — « — &w)l'[g — ® — &(w)]
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Ficung II
subject to
g'A =<0
gle = 1.
Heree = (1, 1,.. ., 1). The Kuhn-Tucker theorem implies that g

is a solution to this problem if and only if there exist a nonnegative
vector y and a scalar vy such that

(5) g-7m—Em + Ay +rhe =20
(6) g'Ay = (.

Suppose that g(#) = #. Then &#) = § + Ae. Walras’ law and (6)
imply that A = 0, Consequently, 7 is an equilibrium. Conversely,
we can set y = ¥ and A = 0 in (8} and (6) to demonstrate that, if
ir 18 an equilibrium, then it is also a fixed point of g.

QE.D.

Since S, is non-empty, compact, and convex, p54 is a contin-
uous function. To define g for all nonnegative prices, we need to
bound £ without disturbing it in some neighbarhood of any equi-
librium. Kehoe [1982b] presents a simple method for doing this.
Since g is then a continuoeus mapping of S, into itself, Brouwer’s
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fixed point theorem impliies that it has a fixed point and, hence,
that (£,A} has an equilibrium.

In the following analysis we facus our attention on the de-
rivatives of g at its fixed points. Unfortunately, the function g is
not everywhere differentiable. To ensure that it is differentiable
at its fixed points, we impose two additional restrictions: first, no
column of A can be expressed as a linear conbination of fewer
than n other columns; second, every activity that earns zero profit
at equilibrium is associated with a positive activity level. An
economy (£,A) is a regular economy if it satisfies these two as-
sumptions, and the additional restriction that I — Dg{) is non-
singular at every equilibrium #. Here Dg(#) denotes that n X n
matrix of partial derivatives of g evaluated at 4. Economies that
are not regular are eritical economies. This definition of a regular
economy is equivalent to that given by Debreu [1970] for the
special case of a pure exchange economy with ail equilibria strictly
positive.

We focus our attention on reguiar economies because, first,
almost all economies are regular, and second, regular economies
possess very desirable properties. To make a statement about how
common regularity is in the space of economies, we can take either
a topological or a measure-theoretic approach. We can specify a
topoiogical structure on the space of economies by defining the
concept of distance between two economies. If we do this in a
suitable manner, we can prove that the set of regular economies
is an open dense subset of the space of all economies. In other
words, if a reglar ecanomy is subjected to any small perturbation,
it remains regular, but, if an economy is not regular, an arbi-
trarily small perturbation can make it regular. On the other hand,
if we give the space of economies a suitable parameterization, we
can prove that regular economies form a subset of full measure.
Since critical economies then have zero measure, the probability
of choosing a critical economy at random from the space of ali
economies is zero.

The same properties of regular economies studied by Debreu
[1970] in the context of the pure exchange model hold for the
model with constant-returns production. If (§,A) is regular, then
it has a finite number of isolated equilibria that vary continuously
with its underlying parameters. Furthermore, the index theorem
developed by Dierker [1972] for pure exchange economies can be
extended to the model with production. We define the index of an
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equilibrium 4 of a regular economy to be sgn(det(f — Dg{)]).
Kehoe {1980] proves the following theorem:

THEOREM 2. If (£,A) is a regular economy, then
2 egem index (m) = +1.

This result is illustrated in Figure I, where w and g(w) may be
interpreted as the first coordinates of a two-commodity economy,
where my = 1 — mand gy{w) = 1 — g (=n). That! — Dg{f)isnon-
singular rules out situations where the graph of g is tangent to
the diagonal. A simple extension of the domain of g keeps all of
its fixed points in the interior of the domain.

Employing this index theorem, we are able to count the num-
ber of equilibria of a regular economy. The formula that we have
developed for this purpose, however, lacks any clear economic
interpretation. To apply our results to specific economic madels,
we must find alternative expressions for the index of an equilib-
rium. One way to develop such expressions is to manipulate the
matrix I — Dg(&) without changing the sign of its determinant.
Using elementary row and colummn operations with this property,
we woulid find it a straightforward, if slightly laborious, task to
demonstrate that

0 e’ 0
(7 index(ft) = (— L)"sgn] det| ¢ D) B()

0 B'(#) 0
Here B(f1) denotes the submatrix of A whose columns are all those
activities (possibly none) that earn zero profit at . Another for-
mula for index (#) can he computed as follows: choose any
n ¥ (n — k) matrix V whose columns span the null space of the

n % k matrix B(#). Let E be the n x n matrix whose every ele-
ment is unity. Then it is possible to demonstrate that

(8) index(#) = sgn[det( V'{E — D&(#)]V)].

For the derivations of these and other formulas for index(#), see
Kehoe [1979].

Yet another useful formula can be derived by choosing some
price, say the first, as numeraire. Let .J be formed by deleting the
first row and column from D¢(#), and let B be formed by deleting
the first row from B(#). If 4, > 0, then
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(9) index(#) = sgn| det|
-B’ 0

Since the disposal activity for commodity i is a column of B(#) if
fr, = 0, we can also delete any row and column from J and the
row and disposal activity from B that correspond to a commaodity
that is a free good at equilibrium. If only one price is positive at
an equilibrium, then index(#) = + 1.

To motivate this expression for the index consider the equa-
tions that locally determine an equilibrium:

(10) gm) — By = 0
(11} mB = 0.

We can set w; = 4, by homogeneity and use Walras' law to ignore
the first equation, £,(m) — 2by; = 0. Differentiating this system
with regpect to w and y yields the Jacobian matrix,

J -B
B’ 0

If this matrix is nonsingular, then the inverse function theorem
tells us that # is an isolated equilibrium and the implicit function
theorem tells us that 4 varies continuousiy with the parameters
of (£,A). These are the regularity conditions. The index theorem
says that the sign of the determinant of this matrix is crucial for
ensuring uniqueness of equilibrium.

The most significant consequence of the index theorem is that
it permits us to establish conditions sufficient for uniqueness of
equilibria. If the parameters of an economy (£,A) are such that
at every equilibrium the index is equal to + 1, then there is a
unique equilibrium. Conversely, if an economy (£, A ) has a unique
equilibrium 4, it cannot be the case that index(#) = — 1. Thus,
an economy with a unique equilibrium either is a critical economy
or else is such that index{(f) = + 1. The condition that
index(f} = + 1 at every equilibrium is, therefore, necessary as
well as sufficient for uniqueness in almost all cases.

Indeed, the example in the preceding section was found by
constructing an economy with an equilibrium with index — 1.
The parameters of this economy were chosen so that
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t = (0.25,0.25,0.25,0.25) would be an equilibrium. We easily
evaluate the Jacobian matrix,

1,068 172 800 967
80 — 800 320 400
Detr) =
8 4 - 16 4
L 8 4 4 - 164
Therefore, since activities a® and a® are in use at equilibrium 4,
—J B
indexifr} = sgnf det|
~B 0
(800 -320 ~ 400 — 1 3
-4 16 -4 -4 -1
= sgn| det| - 4 -4 16 -1 -1
1 4 1 (] 1]
- 3 1 1 0 0.
= ggn{— 1,292} = - 1.

This implies that (£, A} has multiple equilibria.

In fact, this economy has only the three equilibria reported.
When an economy is regular, we know that its equilibria are
finite and odd in number. If we cannot prove that there is a unique
equilibrium, this is usually all we can say about the number of
equiiibria. The fixed point algorithm developed by Scarf [1973] is
able to find some, but not necessarily all, of the equilibria of an
economy. Indeed, a conventional fixed point algorithm never ter-
minates at a fixed point whose index is — 1 (see Eaves and Scarf
[1978]). Although such algorithms can be maodified to get around
this particular difficulty, it remains true in general that it is
impossible to find all of the equilibria of an economy if there is
no guarantee that there is only one. Here, however, the task can
be simplified by demonstrating that (§,4) has the structure of the
input-output model with two scarce factors described hy Kehoe
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[1981). The search for equilibria of (§,A) can then be reduced to
a one-dimensional line search, and an exhaustive search can be
used to find all of the equilibria.

IV. Gross SUBSTITUTABILITY

Since the index theorem provides necessary and sufficient
conditions for the uniqueness of equilibrium, it is not surprising
to find that all previous theorems dealing with uniqueness are
special cases of this theorem. As we have noted, the bulk of work
done on the uniqueness question has dealt with the pure exchange
model, which, from our perspective, is an easy case to analyze.
The index theorem impies that, if det[ — J] > ¢ at every equilib-
rium of a pure exchange economy, then there is a unique equi-
librium. When we restrict ourselves to economies with differen-
tiable excess demand functions, this is the most general result
possible. Indeed, any conditions that imply uniqueness must also
imply that det[ — J1 = 0 at every equilibrium.

Previous to the development of the index theorem by Dierker
[1972], the most general conditions for uniqueness of equilibrium
were those given by Gale and Nikaido [1965]. The basic result
was that, if every equilibrium of a pure exchange economy is
strictly positive and if every principal minor of — J has the same
sign on the domain of all positive price vectors, then the economy
has a unique equilibrium. Qbviously, this global univalence theo-
rem is a special case of our index theorem since, if det{ — ] has
the same sign at every equilibrium, then it must indeed be pos-
itive at every equilibrium. The index theorem is, however, more
general than the global univalence theorem. It imposes conditions
only on det[ — .J], rather than on all the principal minors of —J;
it imposes conditions on — < only at equilibria, rather than at
all positive price vectors; it holds at equilibria with free goods;
and it is necessary as well as sufficient.

To illustrate the consequences of the index theorem, let us
consider the case of gross substitutability. An excess demand func-
tion £ is said to exhibit gross substitutability if (a€/aw,)(w) > 0 for
all i # j. [t is well-known that gross substitutability in & implies
uniqueness of equilibrium in a pure exchange economy. This same
result is trivial to demonstrate using our index theorem: we first
note that gross substitutability implies that any equilibrium price
vector is strictly pesitive (see Arrow and Hahn {1971, pp. 221-22]).
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The homogeneity assumption, when differentiated, implies that
Dg(mym = (. Therefore, the matrix — J has positive diagonal ele-
ments and negative off-diagonal elements. Furthermore,

S ,
— = a > Q, =2
2 T T '

)"‘!n‘.l

f=2
implies that — J has the same form as a productive Leontief
matrix; that is, — J is a P matrix, a matrix with all principal
miners positive. Thus, det[ — f] > 0 at every equilibrium, and the
index theorem implies that there is a unique equilibrium. The
gross substitutability conditions can easily be weakened to
(a&/dmHw) = 0 for all ¢ # j if we make provisions to rule out erit-
lcal economies.

Unfortunately, in economies with production, the gross sub-
stitutability conditions do not seem to play a significant role.
However, if — J is a positive definite matrix, a special type of P
matrix, then index(#) = + 1. To demonstrate this point, we need
the following lemma.

LemMa 1. Let J and B to be defined as Erekusly_ If J is nonsin-
gular, then index(#) = sgn(det( — J] det{—~ B’J-* B]).

Proof of Lemma 1. We base our argument on one of Gant-
macher [1959, pp. 45—46]. The expression
—d B
det B
- B’ 0
has the same sign as index(#). If we pre-multiply the first row of
this matrix by B’.J* and add it to the last row, the determinant
stays the same. The sign of index(#) is then the same as that of
-Jd -8B
(12) det | = det[— Jidet[— B'J'B].
0 - B’J'B
_ 3 Q.ED.
That — Jis positive definite implies that — JJ~* is positive definite,
which in turn implies that — B'J™! B is positive definite. There-
fore, if — .J is positive definite, index(#) = + 1. Recall, however,
that, although a positive definite matrix is a P matrix, the con-
verse does not necessarily hold unless the P matrix is symmetric.
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There is, of course, no reason for — «/ to be symmetric. That —
< is a P matrix does not, therefore, seem to imply anything about
index(#).

Nonetheless, it should be admitted that an example of non-
uniqueness coupled with gross substitutability in demand cannot
be constructed with fewer than four commodities. To demonstrate
this somewhat curious result, we employ the following lemma.

LEMMA 2. Let J and B be defined as previously. If B has n — 1
columns, then index(f) = + 1,

Proof of Lemma 2. If an equilibrium 4 has an n x (n — 1)
matrix of activities associated with it, the matrix B is square and,
by our nondegeneracy assumption, nonsingular. Therefore,

—d B o
13 det _ = det[B'B].
- B 0
Since B'B is positive definite, index(#) = + 1.
Q.ED.

There are two cases to investigate: that of n = 2, and that of
n = 3. Suppose first that n = 2. Either production takes place at
equilibrium, or it does not. If it does, there can beonlyl = n — 1
activity in use, and index(#) is therefore + 1. If it does not,
index(f) = + 1 because — J is a P matrix, in fact, a positive
scalar. A similar argument works for the case n = 3. Either there
are two or one or zero activities in use at equilibrium. I there
are two or zero, then we can demonstrate that index(#) = + 1
using the same reasoning as above. If there is only one activity
in use at equilibrium, we can choose the commodity whose cor-
responding row is deleted from the 3 x 1 matrix B() so that both
elements of B have the same gign. It follows that the 3 x 3 matrix,

J B
B 0
has one of two sign patterns:

+ - - + -

+_
+ + 0 - -
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In either case, the determinant is posgitive, and index(#) = + 1.
Our arguments have produced the following theorem:

THEOREM 3. Suppose an econaomy (£,A) is such that £ exhibits
grass substitutability. Then (£,A) has a unique equilibrium
if either of the following two additional conditions are sat-
isfied:

a. A = — I;that is, (£, A}is a pure exchange economy;
b. n=3.

As our example illustrates, if neither of these twa canditions holds,
then (£,A} does not necessarily have a unique equilibrium even
if £ exhibits gross substitutability.

V. THE WEAK AX!OM OF REVEALED PREFERENCE

That ¢ exhibits gross substitutability does not, in general,
imply that (¢£,A) has a unique equilibrium. However, if £ satisfies
another condition, the weak axiom of revealed preference, then
{£,A) does not have a unique equilibrium. An excess demand
function £ is said to satisfy the weak axiom of revealed preference
if, for every price vectors «! and n2, &(nl) # &w?) and 7' Ew!) < 0
imply w!'&n?) > 0. In an economy with a single consumer, this
condition has a simple interpretation: if the consumer can afford
to make the net trades &(w?) at prices w2, then he cannot afford
to make the net trades &(n?) at prices m* except in the trivial case
where the two vectors of net trades are identical. The net trade
vectar £(n?) is said to be revealed preferred to £(w'}. Although this
interpretation breaks down in an economy with heterogeneous
consurmers, the condition itself has been known since the time of
Wald (1951} to imply uniqueness of equilibrium in production
economies.

Not surprisingly, it is possible to prove this result using the
index theorem. To do so, we rely on a result whose proof follows
clasely one given by Kihlstrom, Mas-Colell, and Sonnenschein
[1976, Lemma 1]:

LEmMMa 3. Suppose that £ satisfies the weak axiom of revealed
preference. Then D&(m) is negative semi-definite on the null
space of &(w); in other words, v'D&amiv = 0 for any vectar v
such that v'&(a) = Q.

If & is an equilibrium, then this implies that vDEFIv =0
for any v such that v'B{f) = 0, since B(d)$ = &(#). Recall that
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(14) index(4) = sgnldet(V'[E — DE&(#}IV)],

where V is any matrix whose columns span the null space of the
columns of B(#) and E is a matrix of ones. If £ satisfies the weak
axiom, then V'DE&(#)V is a negative semi-definite matrix. Adding
the positive semi-definite matrix — V'D£(#}V to the positive semi-
definite matrix V'EV produces a positive semi-definite matrix.
Our arguments have, therefore, yielded the desired result:

THEOREM 4. Suppose that (£,A) is a regular economy. If £ satisfies
the weak axiom of revealed preferences, then it has a unique
equilibrium.

This is, of course, a well-known result, which could be proved with
a far simpler argument.

Imposing the weak axiom of revealed preference on £ implies,
in general, that every principal minor of — V'[D&(#) — E]V 1s
positive. To ensure unigueness, however, all we really need is
that the determinant of this matrix is positive. We might, there-
fore, be tempted to look for weaker conditions to impose on £ that
imply uniqueness. Unfortunately, the following result, which was
shown to the writer by Herbert Scarf, indicates that such a search
would be fruitless.

THEOREM 5. Suppose that £ is an excess demand function that
violates the weak axiom of revealed preference in the sense
that there exist distinct price vectors w* and n?, one of which
is strictly positive, such that w*'&(n*) = 0 and «"'&w”) < 0.
Then there exists an activity analysis matrix A such that
(£,A) has multiple equilibria.

Proof of Theorem 5. Let a' = &(n'), ¢® = &=”), and A =
[— I ! a?]. This matrix obviously satisfies aur free disposal as-
sumption. It also satisfies the assumption that there exist some
m = 0 such that m'A < 0, since either =! or #” is strictly positive
and both satisfy m'A = 0. Since both «¥/Z}_, =}, { = 1,2, satisfy
the equilibrium conditions, (§,A) has multiple equilibria.
QED.
We require that either w* or « is positive to ensure that there
exists a vector > 0 such that w'A = 0. If the only price vectors
that violate the weak axiom have the same elements equal to
zero, then it may not be possible to construct a matrix A that
satisfies this assumption. Thus, a necessary condition for unique-
ness is a slightly weaker version of the weak axiom. Notice, how-
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ever, even if ¢ satisfies the weak axiom, if §(w") = &%) at distinct
price vectars w! and 72, one of which is strictly positive, then an
economy (£,A) with multiple equilibria can be constructed. In this
case, the economy must be critical, since it is easy to show that
the set of equilibria is convex, which implies that there is a con-
tinuum of equilibria. Thus, a sufficient condition for uniqueness
is a slightly stronger version of the weak axiom. These qualifi-
cations are, however, mere technicalities. Both conditions are
equivalent to a weak axiom in almost all cases: if £ violates the
weak axiom, then it almost always does so for strictly positive
price vectors, and if £ satisfies the weak axiom, then (£,4) is almost
always a regular economy. In general, therefore, the weak axiom
is both necessary and sufficient for uniqueness of equilibria when
the activity analysis technology is arbitrary,

It is difficult, however, to give much of an econamic inter-
pretation to the condition that the aggregate excess demand fune-
tion £ satisfies the weak axiom. Although any individual excess
demand function, consistent with maximization of a strictly quasi-
concave utility function aver a non-empty budget set, satisfies the
weak axiom, this property is not preserved by aggregation. In
other words, even if £! and £ satisfy the weak axiom, £ + £ may
not. It has been shown by Arrow, Block, and Hurwicz [1959] that
gross substitutability in £ implies that the weak axiom holds at
least in comparisons between the equilibrium of a pure exchange
economy and any non-equilibrium price vector. Naw gross sub-
stitutability, a fairly restrictive property, is preserved by aggre-
gation. When production takes place at equilibrium, however, this
relationship between gross substitutability and the weak axiom
breaks down. It is nonetheless true that gross substitutability
implies that the weak axiom holds if there are fewer than four
goods. This curious result is an immediate consequence of Theo-
rems 3 and 5. It should, of course, be possible to demonstrate this
result by simpler means.

We have demonstrated that, if the excess demand function £
is such that. it ecould be derived by the maximization of utility by
a single consumer, then there is a unique equilibrium. There is
an interesting interpretation of this observation that relates the
formula for index{#) to the hordered Hessian of an optimization
problem whose solution is an equilibrium of a single consumer
economy. We specify the consumption side of such an economy
using the concepts of utility function and initial endowment rather
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than that of excess demand. We retain the activity analysis char-
acterization of the production side.

We impose differentiability, quasi concavity, and monoton-
icity conditions on the utility function z and a positivity condition
on the initial endowment vector w sufficient to guarantee that
the solution to the problem of maximizing u(x) subject to #'x = 7w,
x = 0, varies smoothly with 7 and 7'w when prices and income
are strictly positive. See Debreu [1972] and Mas-Colell [1974;
1976, pp. 87-90] for a discussion and justification of such condi-
tions. Denote the solution to this problem as x(m,n'w) = &w) + w.
The indirect utility function is defined as v(w,[) = ulx(w I)], where

= n'w. These same conditions on u and w imply that v is con-
tinuous with continuous first- and second-order partial deriva-
tives, strictly quasi-convex in w, monotonically decreasing in ,
and monotonically increasing in I (see Diewert [1974, pp. 120-24],
Varian [1978, pp. 89-91]). Moreover, v is related to the excess
demand function £ by Roy’s identity,

& du
Hé:i (w,w'w}/a (m,m'w) — W,

TaEOREM 6. The unique equilibrium of a single consumer econ-
omy (u,w,A) is equivalent to the solution to the problem of
minimizing v(m,w w) subject to m'A =0 and 7'e = 1.

(15) tinl =

Proof of Theorem 6. If # is a solution to the optimization
problem, then, by the Kuhn-Tucker theorem,

v, au ., .,
— {7 fw) + w, — (A w)
(16 o af
+2a”}1j+)1=0, E.:].,‘..,n,
=1
for some ;20,7 =1,...,m, and A. Dividing each equation

through by (au/al (4,4 w) > 0, we use Roy's identity to establish
that

~ gLy + (2 a,f; + R)/a—v(ffr,ﬁ'w) 0,
(1?} 61

i=1
t=1,...

If we define ¥, as L /(avfdl)(fr&'w) = 0,7 = 1,..., m, we can use
Walras' law and #'AjL = 0 to establish that &#) = Aj. Therefore,
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since #'A = 0 and #'e = 1, & is an equilibrium. Conversely, if
f is an equilibrium, then it satisfies the conditions sufficient for
a minimum to the optimization problem.

The strict quasi convexity of v implies that, if a selution to
the minimization problem exists, it is unique. We already know
that an equilibrium exists. Therefore, the single consumer econ-
omy (u,w,A) has a unique equilibrium.

Q.ED.

It is the strict quasi convexity of v that inplies the uniqueness of
equilibrium for (uz,w,A}. The differentiable version of the quasi
convexity at a solution + is a set of second-order conditions on
the hordered Hessian,

H C
C 0

Here H is the matrix of second partial derivatives of v(m 7 w)
and C is the matrix of coefficients of those constraints that hold
with equality at 4, C = [e B(#)]. If B(#) is n x k, then second-
arder conditions require that

H C

(- 1121 det
(18) ¢ 0
] e’ 0

= {— 1)*"" det| e H By | = 0.
0 B'{#) 0
Using Roy’s identity, we can express the typical element in H as

du JE; v v
19 hf' = — e i fi + R
(1) ! ol om; &(h) TR TE

Here all partial derivatives are evaluated at (f,7'w) and #. We
can multiply each of the final % columns of the second matrix in
(18} by y,([6*v/alow; | + w,¢"viol?)) and add it to the jth column,
J =1,..., n without changing its determinant. The equilibrium
condition £(#) = B(4)y then implies that



EQUILIBRIA AND COMPARATIVE STATICS 139

o m—k—1 Q e’ 0
(20) (-~ 1)k+? (d—?) det| e —iDE®) B | 2 0.
é 0 B 0

Consequently, since dv/al > 0, the second-order conditions imply
that

0 e’ Q
(21) {— 11" det| e DE(F) Bixy | = 0.
0 B 1]

Thus, when the economy (£,4) is regular, the second-order con-
ditions for our optimization problem imply that index{fr) = + 1
at every equilibrium. The restriction that ¢ behaves like the ex-
cess demand of a single consumer is obviously stringent. There
are two different sets of conditions that imply that this restriction
holds. Both require that all demands are homogeneous of degree
one in w'w; that is, x/(m tn'w) = t/(w,7'w) for all £ > 0 and all
consumers J. If, in addition, either all utility functions are iden-
tical [Gorman, 1953] or all initial endowments are proportional
[Chipman, 1974], then the aggregate excess demand function be-
haves like that of a single consumet. Consequently, our example
of non-uniqueness relies heavily on having consumers being het-
erogeneous, in terms of both utility functions and endowments.

We should note, however, that the single consumer assump-
tion is not necessary to ensure that the weak axiom of revealed
preference is satisfied. Utility maximization by a single consumer
is equivalent to a stronger restriction on £, the strong axiom of
revealed preference. An example due to Gale [1960] demonstrates
that the strong axiom and the weak axiom are not equivalent.
Unfortunately, there does not appear to be an obvicus economic
interpretation for excess demand functions that satisfy the weak
axiom but not the strong axiom. Qur goal is to find conditions for
uniqueness that can be checked for by examining the parameters
of (¢£,A). Searching for such conditions on the demand side of the
economy alone has produced only the extremely restrictive single
consumer assumption.

VI. ToE NONSUBSTITUTION THEOREM

We now turn our search for conditions that ensure uniqueness
of equilibrium to the production side of (¢,A ). Unfortunately, with
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the exception of the restriction that there is only one positive
price vector « for which n'A = 0, no condition on A implies that
(£,4) has a unique equilibrium if the only restrictions placed on
£ are differentiability, homogeneity, and Walras' law. For ex-
ample, &) = 0 produces an infinite number of equilibria as long
as there is more than one « for which n'A = 0. The economy in
this instance is critical. Suppose that A satisfies the regularity
condition that no column can be expressed as a linear combination
of fewer than n other columns. This rules out the possibility of
reversibility in production, and implies that there exists 7 > 0
such that 7’4 < Q. If this is the case, then we can find an open
set of demand functions such that (£, A) has multiple equilibria.
In other words, no small perturbations can eliminate the multi-
plicity of equilibria.

The condition that there is only one 7 such that ®'A = 0 is,
unfortunately, unpalatable. It implies that the set of efficient
points of the production set ¥ = {x ¢ R”x = Ay, y = 0} is a hy-
perplane; in other words, there is complete reversibility of pro-
duction in every direction (see Figure III).

To guarantee the uniqueness of equilibrium, we must some-
how combine conditions fram the consumption side with ones from
the production side. Lemma 2 implies that, if (£,A) has n — 1

Ficure [IL



EQUILIBRIA AND COMPARATIVE STATICS 141

linearly independent activities in use at every equilibrium, then
it is a regular economy with a unique equilibrium. To gain some
insight into this observation, recall that the conditions of the well-
known nonsubstitution theorem of input-output analysis imply
that there are always n — 1 activities in use at equilibrium (see
Samuelson [1951]). An input-output economy is an economy (£,4)
that satisfies the following four conditions. First, there is one
nonproduced good; a,;, =0 for = 1,..., m. Second, £,(m) >0,
it =1,...,n — 1, at every equilibrium . Third, there is no joint
production; a,, > 0 for at most one {,j = 1, ..., m. Fourth, there
exists some vector of nonnegative activity levels v such that X
moaayy, = 0,0 =1,...,n — L One way to ensure that the sec-
ond condition holds is to allow initial endowments only of the
nonproduced good, traditionally lahor. Since it must be the case
that all n — 1 produced goods are produced at equilibrium, and
since we rule out joint production, n — 1 activities must be run
at positive levels at every equilibrium 4. If no activity in A can
be expressed as a linear combination of fewer than n other col-
umns, then any activity that earns zero profit at an equilibrium
must be used at a positive level, since n — 1 is the maximum
number of activities that can earn zero profit. We have therefore
derived the following theorem with little effort:

THEOREM 7. Suppose that (£,4) is an input-output economy and
na column of A can be expressed as a linear combination of
fewer than n other columns. Then {£,A) is regular and has a
unique equilibrinm.

The nonsubstitution theorem implies that the unique equi-
librium of (¢,A) is determined independently of £ a conclusion
that our theorem misses. To offset this shortcoming, we should
note that Lemma 2 is a very general mathematical result. All we
need to know is that the maximum possible number of activities
are in use at every equilibrium to guarantee uniqueness. Unfor-
tunately, the conditions of an input-output economy seem to he
the only conditions on the parameters of (£, A) which ensure that
this premise holds.

VIII. SMooTH PRODUCTION TECHNOLOGIES

Although we have worked with activity analysis production
to simplify the exposition, the results presented in the previous
sections are applicable to economies with very general production
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technologies. In this section we indicate how our results can be
extended to production technologies specified by smooth profit
functions. To gain some understanding of the concept of profit
function that we employ, let us cansider an example in which any
vector x that satisfies the constraints,

f(x) =
(22)

ﬂ"\

0, i=1,. . .,1
0, =4+ 1,...,n,

\V

is a feasible net-output combination. Here fis a constant-returns
production function that employs the first { commodities as inputs
and produces the final n — ! commodities as outputs. We assume
that f is homogeneous of degree one and concave. For example,
flxy,xa,x3) = Pl — 2,0 — £,)'7% — x4 i3 the familiar Cobb-Douglas
production function where 1 = a = 0 and B > 0. To derive the
profit function a, we find a vector x(w) that solves the problem,

maximize
(23] T'x
suhject to
fx) =10
x'x =1
x = 0, t=1,...,1
x; = 0, =1+ 1,..., n

We then set a(m) = w'x(w). Thus, the profit function tells us the
maximum profit that can be earned at prices m when we are
constrained by x'x = 1. Given our assumption of constant returns
1o scale, such a constraint is necessary since the profit that can
be earned at w is unbounded if afw) = 0. It is well-known that
a(m) is homogeneous of degree one, convex, and continuous even
if the vector x(w) is not unique. If ¢ is continuously differentiable,
Hotelling's lemma says that Da(n) = x(w)(see, for example, Diewert
[1974]).

Suppose that production is specified by the profit functions
aim), j=1,...,m. We define the set S, = {m ¢ R™aim) =0,
Jj=1, ,m, T @, = 1}. Clearly, this definition is a generali-
zatlon of the activity analysis case, where a,(w) is the linear fune-
tion, X1 a,;m;. We can define the concepts of regularity and fixed
point index as hefore. Define B{f) as the n x % matrix whose
columns are the gradients of the £ profit functions that satisfy
a;(%) = 0. Hotelling’s lemma and the assumption of constant re-
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turns allows us to interpret B() as a matrix of activities. Further
define H{() as the n x n weighted sum of the Hessian matrices
of the same £ functions; the weights are the appropriate activity
levels. The calculation of index(#) becomes

(24)

0 e’ 0

index{f) = {— 1)" sgn| det| ¢ DE (w) — H{) B(f)

0 B'{(fr) 0
The activity analysis technology is, of course, the special case
where H(m} = 0. Utilizing the principle of duality, we can com-
pletely specify the production technology by a vector of profit
functions a(w) = (as(w), ... ,a.(m). An economy would thus be
specified as a pair (£,a). A more detailed analysis of this type of
economy, including the caleulation of the index, is given by Kehoe
(1983].

An advantage to this more general approach is that it can
easily be extended to economies with praduction technologies that
exhibit deereasing returns to scale. In such an environment we
have to specify production functions for individual firms and make
provisions to distribute the profit of these firms to consumers. The
situation can then be treated as a special case of constant-returns
production, where we define an additional primary goeod to account
for the profits of each firm; see McKenzie [1959] for details of the
construction. We can directly apply the results that we have de-
rived here to such economies.

For an economy with decreasing-return production the index
can be computed as

(25)

index(T) =
0 e’
{—1)" sgn| det

Here Dt (m,r) is the matrix of partial derivatives of the excess
demand function with respect to the vector of profits of the in-
dividual firms and H{w) can be thought of as the Jacobian matrix
of the excess supply function B(n)e.

Although this formula looks much like that for a pure ex-
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change economny, it is difficult £o interpret such considerations as
gross substitutability in this context. Rader [1968], for example,
has argued that factors of production are rarely gross substitutes;
in other words, the off-diagonal elements of — H{(mw) are rarely
all nonnegative.

Suppose, however, that DE (i, 7 + DE(r,#)B'(%) has all of
its off-diagonal elements positive. Differentiating the homoge-
neity assumption,

(26} gt ritw)l] = Ew.rin)),

we can demonstrate, as we did in the pure exchange case, that
the negative of this matrix, with any row and column deleted, is
a productive Leontief matrix. In other words, Jw > 0, where = is
the vector formed by deleting the same element from # as row
and column deleted from D¢ (4,7} + DE (R, #B'(®) to form J. Fur-
thermore, differentiating Walras’ law,

(27 ' Elm )} = e’ rin),

we can demonstrate the same for the transpose of this matrix.
Consequently, 1/2(J + J'17 > 0, which implies that 1/2(J + J")
1s itself a productive Leontief matrix and hence positive definite.
This implies that D (f,#} + DE(# PFIB'(#) is negative semi-def-
inite. Consequently, since H(#) is the sum of Hessians of convex
functions, and therefore positive semi-definite, we can argue that
index(f} = + 1.

This result was originally discovered by Rader [1972), who
did not use an index theorem. The interpretation that he gave it
was that gross substitutability in demand implies uniqueness of
equilibrium regardless of what the production technology looks
like. The example of nen-uniqueness of equilibria presented ear-
lier should make us suspicious of such an interpretation. The
problem is that the term D¢.(#,7)B'(f) does not depend on con-
sumer demand alone; it invalves a complex interaction between
income effects from the demand side of the economy and activities
fram the production side. [t seems impossible to develop easily
checked conditions to guarantee that D¢ (a7} + DE(#,F)B'(4)
has the required sign pattern.

VIII. CoNcLUDING REMARKS

Previous researchers are to be admired for developing most
of the significant economic theorems dealing with uniqueness
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without having such a pewerful tool as the index theorem at their
disposal. Indeed, as Andreu Mas-Colell once remarked to the writer,
it would be surprising if there were many significant economic
theorems to be derived after so many powerful minds had turned
their attention to the question of uniqueness. Nanetheless, many
of these researchers are to be faulted for two basic defecis in
approach: First, that previous approaches dealt with sufficient,
rather than necessary, conditions has led many to believe apti-
mistically that more general conditions couid be derived. Second,
they have given too much attention to the pure exchange model,
which misses many of the subtleties of the more general situation.

Even our approach has its shortcomings, however. In the
effort to translate the mathematically necessary and sufficient
conditions of the index theorem into restrictions on (£,A) with
economic interpretations, many conditions lose their necessity.
Nevertheless, we have derived some powerful negative results:
no condition on the consumption side of the economy that does
not imply the weak axiom of revealed preference, and no condition
on the production side except complete reversibility of production,
is sufficient for uniqueness. Moreover, through the use of an ex-
ample, we have demonstrated that gross substitutability in de-
mand does not imply uniqueness. If there is any hope for ensuring
the uniqueness of equilibrium in applied models, it would seem
to be in finding conditions, besides the representative consumer
conditions, that. imply the weak axiom. The gross substitutability
conditions for n = 3 is an example, albeit not a very general one,
of such a set of conditions.

Non-uniqueness of equilibrium does not seem so pathological
a situation as to warrant unqualified use of the simple compar-
ative statics method when dealing with general equilibrium models.
At present, many researchers are using variants of Scarf's algo-
rithm to evaluate the implications of policy decisions in empirical
general equilibrium models. Yet, for most of these models no
method now exists to determine whether the equilibrium found
by the algorithm is unique. To make matters worse, it appears
that non-uniqueness of equilibria is an even more common sit-
uation in applied models that allow for such distortions as taxes,
price rigidities, and unemployment than it is in the simple model
we have investigated here. There is a suggestion of this resuit in
the work of Foster and Sonnenschein [1970]}; Kehoe [1982a] pre-
sents a demonstration using teols similar to those used in this
paper.
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Some justification can surely be given for working with a
historically given equilibrium situation. Care must be taken,
however, since the parameters of the economy shift in response
to a policy change. If there is more than one equilibrium, then
the problem becomes a dynamic one. If nothing else, a general
set of conditions must be developed to ensure that the original
equilibrium is locally stable under some realistic dynamic ad-
justment process. An even more complex problem arises as the
parameters move through critical economies, where mathemat-
ical catastrophes can occur. Much work on these problems ob-
viously remains to he done.

CLARE COLLEGE, CAMRBRIDGE, ENGLAND
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