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1 Introduction

Households, small businesses, and community centers are just a few examples of some

of the most fundamental institutions in society, referred to broadly as teams. This

paper develops a formal economic model of team formation and organization. Using

the framework of Makowski and Ostroy (2003) as a point of departure, the tools of

general equilibrium and game theory are employed in a unified framework to identify

just how economic forces lead individuals to participate in organized teams.

The organization of a team is interpreted as a contract consisting of three broadly-

construed components: individual behavior (assumed incentive compatible), trade of

physical commodities (which may include contractual payments to individuals), and

the allocation of information to team members (which may differ across individuals).

The model developed below addresses all three components explicitly by describing

the interaction amongst team members as a (normal-form) game with communication,

whose outcome is the result of market forces. In other words, a team’s organization

is an economic outcome, where individuals, bargaining competitively, agree to join a

team with an organizational design that maximizes its net worth.

Competition is modeled formally as price taking equilibrium, where individuals take

as given contractual prices, i.e., personalized prices for membership in organized

teams. Contractual prices fulfill two roles: to lead individuals towards joining the

right team, and to induce team members to agree on the right contract. The per-

sonalized nature of contractual prices is generally unavoidable if such prices are to

decentralize efficient organizations. Since individual preferences determine the set

of incentive compatible contracts, prices must distinguish between team members

with different preferences in order for the right organization to emerge. Otherwise,

individuals might be led (by prices) towards suboptimal organizations.

The main technical challenge of this paper involves formulating a team’s organiza-

tional problem and developing a notion of price taking equilibrium where individuals

trade organized team membership in such a way that game-theoretic considerations

are accommodated in general equilibrium. To this end, the organizational role of

mediation in a team is emphasized throughout the paper. Formally, mediation builds

a natural bridge between general equilibrium and game theory.

This section continues with an introductory overview of the paper, followed by a

comparison with the relevant literature.
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1.1 Overview and Discussion

This paper begins by exploring the view of a team as a family of normal-form games

indexed by commodity trades. Such games are augmented to include an additional

player above and beyond the original team members, who is indifferent between ev-

ery possible outcome of the game and whose available strategies consist of the team’s

net trades. A team’s organization is understood as any correlated equilibrium of this

augmented game. Since this additional player is indifferent, he may be interpreted as

an “invisible” organizer, or mediating principal: a disinterested party whose respon-

sibility within the team is twofold: to recommend behavior to other team members

(tell people what to do), and to implement the team’s trading strategy (decide the

team’s net trade, possibly contingent on his recommendations).

Correlated equilibrium underlines the potential role of secrets in organizations to-

wards improving a team’s welfare. For instance, it may be in the team’s interest that

some individual members know about the team’s trades and/or other team members’

actions and for others not to know. This informational allocation is in principle an

integral part of a team’s organization when individual behavior is subject to incen-

tive compatibility. (Without incentive compatibility, there is no need for secrets.)

Possibly asymmetric information is allocated to team members by the organizer: on

the one hand, he provides information by recommending individual behavior; on the

other hand, he withholds it by doing so privately.

With this definition of organization, a model of competition for participation in such

organizations is introduced in Section 3. We begin by formalizing the intuition that

competition ought to drive individuals towards joining teams and organizing them

in such a way that maximizes social welfare. Three structural assumptions drive

our formulation of the planning problem. The first is that the goings-on in a team

do not affect in any direct way the utility possibilities of members of any other

team. The second assumption is that individuals find membership in different teams

and/or organizations perfectly substitutable. Finally, we focus on economies with

transferable utility.1

The planner’s problem turns out to be a linear program. Using duality, we define

price taking equilibrium so that the first welfare theorem automatically applies.

1Arguably, the main role of these assumptions is to simplify exposition, their relaxation is con-
sidered beyond the scope of this paper and the subject of further research.
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Our notion of price taking equilibrium has three salient features. Firstly, contracts

are explicitly priced, and are subject to specific linearity requirements: the price

of any convex combination (or lottery) of contracts must equal the same convex

combination of prices for the original contracts (otherwise there will be arbitrage

opportunities). Secondly, organizers are viewed as operating a reproducible and non-

proprietary technology, as (non-scarce) entrepreneurs who sell to individuals the right

to participate in a specifically organized team and make the associated commodity

transactions subject to any contracts sold being incentive compatible. In equilibrium,

organizers’ net revenue from all these transactions equals zero. Finally, contractual

prices are personalized in that they must generally distinguish between individuals

with different preferences to decentralize efficient allocations.

We then consider team membership markets from a different angle. We assume that

individuals compete for “occupations” and that all they care about is their occupation

as well as that of their co-workers together with what the team does, rather than on

any individual’s particular type or preferences. Without incentive constraints, this

translates into an anonymous “job” market where occupations in teams are priced

as private goods would. Individuals of different types purchase their occupation as

well as their employer (team), in accordance with Ellickson et al. (1999,2003). With

incentive constraints, this anonymous job market fails to be incentive efficient, since

an individual’s tastes for occupations affects a team’s utility possibilities by virtue of

determining whether or not actions are incentive compatible.

1.2 Location in the Literature

With hindsight, one of the first formal approaches for addressing social interactions

in general equilibrium might be attributed to Lindahl (1919). Much of this work is

founded to a large extent on the insight that the outcome of a game is a public good

and that as such it may be priced in the spirit originally proposed by Lindahl.

The most relevant literature on general equilibrium may be categorized into the theory

of clubs and literature based on the assignment model.

An economic theory of clubs began with Buchanan (1965), who focused on the issue

of crowding. It was rekindled by Ellickson (1973) and his “constituencies,” which

evolved back into clubs in Cole and Prescott (1997) and Ellickson et al. (1999,2003).

Such club theories involve neither incentive constraints nor information problems.
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Individuals compete for a club membership that includes their occupation, which

lends an interpretation that individuals compete for “jobs” in anonymous markets.

In Section 4, we consider this alternative to conclude that, with incentive constraints,

anonymous job markets generally fail to decentralize efficient allocations.

Prescott and Townsend (2000) introduced a rudimentary version of incentive con-

straints into the framework of clubs. Their paper deals with the problem of hiring

monitors to relax incentive constraints for workers in general equilibrium. However,

by assuming that all agents have the same preferences over consumption, effort, and

job, they obviate away the problems alluded to in the previous paragraph. Recently,

Zame (2005) developed a formal, general theory of clubs with incentive constraints

that is compared to the present approach in Section 4.

As for literature stemming from the assignment model of Shapley and Shubik (1972),

the work of Gretsky et al. (1999,2003) may be thought of as studying teams to

trace the boundaries of perfect competition. Makowski and Ostroy (2003) are the

first to include games in general equilibrium, with their study of transparent teams.

They focus their analysis on environments where individual members’ actions are

freely (i.e., at no cost) observable and contractible by all members of any team.

Equivalently, teams have access to binding contracts for individual actions, thereby

assuming away behavioral incentive constraints within a team. Makowski and Ostroy

(2003) develop a model where individuals—led by market forces—form teams that

trade in goods markets and bargain competitively over team actions as local public

goods. This paper’s incremental contribution is the analysis of incentive constraints

within a team in general equilibrium by relaxing the assumption of binding contracts.

As regards organization specifically, communication between team members is viewed

as a crucial facet, and as such we rely on the correlated equilibrium of Aumann

(1987), and on Myerson (1997), who describes it as the solution of a linear program.

For specific organizational questions such as the allocation of monitoring, residual

claims, and control rights, see Rahman (2005), on which this paper is based.

Finally, there is a vast literature on general equilibrium with incentive constraints.

Arguably, the most prevalent papers in this literature are Prescott and Townsend

(1984a,1984b), who rely on duality to define Walrasian equilibrium with “built-in”

incentive compatibility constraints. Also relevant is the work of Jerez (2003), who

emphasizes a linear programming approach to economies with moral hazard and

adverse selection.
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2 Economic Organization

In this section we define an organization as well as a team’s problem of finding an

efficient one. We begin by describing a team production technology as in Makowski

and Ostroy (2003), where team members are thought of playing a given normal-

form game. This game involves a virtual team member, referred to as the team’s

organizer, in charge of the team’s trading strategy. Trades may include local public

goods, such as a household’s appliances, or may consist of private goods, such as

incentive payments to a firm’s employees.

The organizer fulfills two tasks: to make recommendations to players (in private) and

to strike (possibly recommendation-contingent) trades for the team. Specifically, he

picks a team action/trade pair according to some probability distribution and then

privately recommends players to play their part of the drawn team action. Team

members, taking the organizer’s recommendation into account, recognize the likely

recommendations to other team members as well as the team’s trades when decid-

ing whether or not to obey the organizer. As such, individuals obtain information

from the organizer’s recommendation. Just how much information is allocated to

individual members thus becomes part of a team’s organizational problem.

A contract is a probability distribution over team actions and net trades with the

property that team members are willing to obey the organizer’s recommendations, in

other words, a correlated equilibrium. A team’s organizational problem is to maximize

welfare by choosing a correlated equilibrium from amongst all correlated equilibria

that on average make net trades consistent with the team’s available physical re-

sources.

According to our assumptions on a team’s technology, an economic organization (a

solution to the team’s problem) always exists. Furthermore, the value function that

arises by solving the team’s problems with different resource constraints is a well-

defined, concave function. It is interpreted as the utility of a “representative team”

whose members play no game at all and whose utility function is defined on the space

of net trades.

We conclude this section deriving an alternative, dual version of a team’s organiza-

tional problem, which will be useful in Section 3 to motivate the interpretation that

teams maximize profit.
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2.1 A Team Production Technology

This subsection follows closely Makowski and Ostroy (2003). A team is a finite

collection of individuals. A type of team is a finite collection t of types of individual.

Teams engage in team production. Given a team of any type t, each of its members

i ∈ t has a finite set2 of available actions collected in Ai
t, with typical element ai

t.

Team actions, i.e., profiles of individual actions indexed by team members, are de-

noted by at and belong to the product space

At =
∏
i∈t

Ai
t.

Team actions have two consequences for the team. First of all, they have repercussions

on utilities. Every individual member i ∈ t is assumed to have an intrinsic utility

function over team actions and net trades. Thus, if the team action is at ∈ At and

the net trade is zt ∈ R`, let vi
t(at, zt) denote i’s associated utility.

Our first formal assumption will be on the topological properties of vi
t(at).

Assumption 2.1. For every i ∈ t and at ∈ At, the function vi
t(at) is Lipschitz on

its effective domain, dom vi
t(at) = {zt ∈ R` : vi

t(at, zt) > −∞}, which is a compact,

convex set containing the zero net trade vector.

Team actions also have a direct effect on the team’s trading possibilities. Every team

of any type is assumed to take as given a function

v0
t : At × R` → {0,−∞},

called the team’s trading possibilities indicator, where v0
t (at, zt) = 0 means that it is

technologically possible, feasible, for the team to trade zt when their team action is

at; the value −∞ means that it is impossible. This leads us to our second assumption,

that constrains the set of feasible trading possibilities.

Assumption 2.2. For every at ∈ At, dom v0
t (at) = v0

t (at)
−1(0) is a compact, convex

set that contains the zero trade vector.

2Although, in the interest of clarity, the main body of the paper assumes finite games, the proofs
in Appendix A extend all results to continuous games. See Appendix B for a definition of such
games as well as correlated equilibrium therein.
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Given a team action at and a trade zt, I will denote the team’s utility by vt(at, zt)

and define it by the following summation:

vt(at, zt) :=
∑
i∈t

vi
t(at, zt) + v0

t (at, zt).

The value vt(at, zt) may be interpreted as the team’s welfare (with equal welfare

weights by assuming transferable utility, see Section 3) when the team action is at

and the team’s net trade is zt, for any zt that is feasible with respect to at. If zt is

not feasible with respect to at, then zt lies outside the effective domain of vt(at).

A correlated team strategy is any (regular, Borel) probability measure σt ∈ ∆(At×R`)

on the space of team actions and net trades. The quantity σt(at, zt) stands for the

probability (density) that the team takes action at and trades zt.

2.2 The Organization of Team Production

We begin by stating the team’s problem of finding an incentive efficient contract.3

Vt(zt) := sup
σt≥0

∑
(at,ẑt)

σt(at, ẑt)vt(at, ẑt) s.t.

∑
(at,ẑt)

σt(at, ẑt) = 1

∑
(a−i

t ,ẑt)

σt(at, ẑt)[v
i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)] ≤ 0

∑
(at,ẑt)

σt(at, ẑt)ẑt = zt.

The team chooses a lottery over team actions and trades subject to a family of incen-

tive constraints indexed by team members i ∈ t and individual action pairs ai
t, b

i
t ∈ Ai

t,

as well as a resource constraint. The resource constraint requires a team’s expected

trade to equal some given trade zt that indexes a family of organizational problems

and defines a value function for the team which subsumes its normal-form games.

The incentive constraints lead to correlated equilibrium as a game-theoretic solution

concept by imagining a virtual “zeroth” player—called the team’s organizer—whose

available actions are the team’s trades and whose utility function equals the team’s

trading possibilities indicator.

3The supremum is defined on the set of regular, Borel probability measures on At × R`; for any
f : At × R` → R, the sum

∑
(at,ẑt)

f(at, ẑt)σt(at, ẑt) is shorthand for
∫

At×R` f(at, ẑt)dσt(at, ẑt).
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Indeed, consider the following augmented normal-form game. The set of players is

t ∪ {0}. Let A0
t = R` and

At∪{0} := At × A0
t ,

where A0
t is the organizer’s action space. The organizer’s utility function over At∪{0}

is given by v0
t (at, zt); all other players i ∈ t have the same utility function as before,

namely vi
t(at, zt).

By definition, a correlated strategy of the augmented game σt ∈ ∆(At∪{0}) is a

correlated equilibrium of the augmented game or a contract if for every team member

i ∈ t and every pair of individual actions ai
t, b

i
t ∈ Ai

t,∑
(a−i

t ,zt)

σt(at, zt)[v
i
t(b

i
t, a

−i
t , zt)− vi

t(at, zt)] ≤ 0.

Being indifferent to every (feasible) correlated strategy of the augmented game, the

organizer’s incentive constraints never bind, so we might as well ignore them. This

does not mean, however, that the organizer has no strategic role, as demonstrated by

Example 2.3 below.

Example 2.3. Suppose that ` = 1 and that there is only one active player i ∈ t

with the set of actions available to him given by At = {at, bt, ct}. Let’s say that

dom v0
t (at) = dom v0

t (bt) = dom v0
t (ct) = [0, 1]. Utility functions are

vi
t(at, zt) = min{2zt,

1
2
zt + 1

2
} = vt(at, zt)

vi
t(bt, zt) = 0.6, vt(bt, zt) = 1.1

vi
t(ct, zt) = min{2(1− zt),

1
2
(1− zt) + 1

2
} = vt(ct, zt).

Note that bt is never incentive compatible when the organizer plays a pure strategy.

Indeed, for 1
3
≤ zt ≤ 1, player i finds it a best response to play at, whereas for

0 ≤ zt ≤ 2
3
, player i finds it a best response to play ct instead.

On the other hand, there are mixed strategies by the organizer that make bt a best

response. For instance, consider the mixed strategy µ = 1
2
[0] + 1

2
[1].4 Indeed,

vi
t(at, µ) = vi

t(ct, µ) = 1
2
, which is clearly less than 0.6 = vi

t(bt, µ). It now follows

that bt is a best response for player i to µ.

Therefore, Vt(
1
2
) = 1.1, whereas the most the team could achieve with i knowing the

team’s trade would be 1, since bt is never a best response if the organizer is restricted

to pure trading strategies.

4Here [zt] stands for Dirac measure: for any A ⊂ R`, [zt](A) = 1 if zt ∈ A and zero otherwise.
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An immediate lesson from this example is that even when all utility functions are

concave, there may still be gains to randomization of net trades. Furthermore, gains

from such randomization with concave utilities must arise from the relaxation of

incentive constraints. More generally, the example suggests that output uncertainty

might be the solution to a team’s incentive problem rather than the problem itself.

Calculating the entire function Vt in Example 2.3, it is noteworthy to remark that it

is concave. Concavity turns out to be a general phenomenon, as claimed in the next

result. (Its proof, as well as all other proofs, may be found in Appendix A.)

Proposition 2.4. The function Vt is concave. The supremum in the team’s problem

is always attained by some σt.

Proposition 2.4 asserts that Vt subsumes a team’s goings-on into some concave utility

function over possible trades. Concavity points towards possible interpretations of

correlated equilibrium. Specifically, the team’s problem may be thought to involve

two kinds of “lottery.” The first kind provides mixed trading strategies in order to

create incentives, and the second specializes teams to playing different correlated

equilibria. For instance, both such types of lottery are used to calculate the entire

function Vt in Example 2.3.

The first kind of lottery allocates uncertainty across team members in order to relax

incentive constraints (this is related to the incentive-constraint-relaxing lotteries of

Arnott and Stiglitz (1988) and Cole (1989)), whereas the second kind is comparable

to “public randomization” or the so-called “convexifying effect of large numbers.”

For example, the distinction between ex ante and ex post lotteries by Bennardo and

Chiappori (2003) is similar to ours, except that in this model, what is ex ante and

what is ex post will generally depend endogenously on the particular team member

at a given correlated equilibrium.

To illustrate, consider the next example, where it turns out to be optimal for one

active player to remain ignorant of the team’s trading strategy (ex ante lotteries)

and another active player to be perfectly informed (ex post lotteries). Such “secrets”

involve the organizer’s mediation strategy as a crucial part of the team’s optimal

contract. The motivation for secrets is simply that one player ought to be ignorant of

the team’s trades for a welfare-improving action to be incentive compatible without

making the other active player ignorant, who would benefit from knowing the team’s

trade.
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Example 2.5. Once again, ` = 1 and the relevant trading space is the unit interval.

There are two active players, 1 and 2, with action space

At = A1
t × A2

t = {ut, dt} × {lt,mt, rt}.

Let the payoffs to player 1 be given by

v1
t (ut, lt, zt) = v1

t (ut,mt, zt) = v1
t (ut, rt, zt) = 1− z2

t

v1
t (dt, lt, zt) = v1

t (dt,mt, zt) = v1
t (dt, rt, zt) = 1− (1− zt)

2,

and let the utility functions for player 2 be

v2
t (ut, lt, zt) = min{2zt,

1
2
zt + 1

2
} = v2

t (dt, lt, zt)

v2
t (ut,mt, zt) = 0.6 = v2

t (dt,mt, zt)

v2
t (ut, rt, zt) = min{2(1− zt),

1
2
(1− zt) + 1

2
} = v2

t (dt, rt, zt).

The team’s overall utility is given by vt(at, zt) = v1
t (at, zt) + v2

t (at, zt).

Notice that active players don’t really care about their opponent’s play. However,

they care about the strategy of the organizer. For zt = 1
2
, the team’s best correlated

equilibrium of its augmented game is given by

σt((ut,mt), 0) = σt((dt,mt), 1) = 1
2
.

Looking at players’ incentive constraints, it follows that when recommended to play

m, player 2 attaches equal probability to the trades zt = 0 and zt = 1. On the other

hand, when recommended to play ut, player 1 knows that the team’s trade will be

zt = 0 and when recommended to play dt he knows that the trade will be zt = 1.

Being risk averse, player 1 prefers to know. Similarly, the organizer always knows the

recommended moves of active players. Finally, it follows that Vt(
1
2
) = 1.6.

The organizer, indifferent amongst every feasible outcome, may be thought of as

a correlating, mediating, or randomizing device, a machine or disinterested party

who leads the team by coordinating team members, striking trades on the team’s

behalf, and accepting the burden of trading feasibility. We might imagine a market for

organizers where the technology for organization services is perfectly reproducible and

non-proprietary and whose cost is negligible. With an unlimited supply of organizers,

the price to a team of acquiring organization services should also be negligible. This

is explored in Section 3, where competition drives organizational efficiency.
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2.3 A Team’s Dual Problem

An alternative form of the team’s problem is now considered. Notice that the team’s

problem above is a linear program, and as such has an equivalent dual problem.

Proposition 2.6. The team’s problem’s dual is the following linear program.

Wt(zt) := inf
λ≥0,v,p

p · zt + v s.t.

vt(at, ẑt)− p · ẑt −
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)] ≤ v

for every at ∈ At and ẑt ∈ R`. Moreover, Vt(zt) = Wt(zt) for every zt.

The dual above chooses “shadow” prices for primal constraints. The λ’s are prices for

incentive constraints, v for the probability constraint, and p for the team’s resources.

The dual objective is to minimize a team’s utility gross of commodity purchases, p·zt.

Lemma 2.7. If (λ, v, p) solves the dual at zt then v equals the team’s indirect utility,

V ∗
t (p, λ) := sup

σt∈∆

∑
(at,ẑt)

[vt(at, ẑt)−p· ẑt−
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)−vi

t(at, ẑt)]]σt(at, ẑt).

If σt solves the team’s problem at the same zt then it also solves the indirect utility.

This indirect utility maximizes a team’s welfare by picking correlated strategies with-

out regard to incentive compatibility. At a dual solution, a welfare-maximizing choice

exists that is also a correlated equilibrium. Another way of describing the team’s

problem, called the “sesquial,” restricts the team to choose correlated equilibria.

V ∗
t (p) := sup

σt∈∆

∑
(at,ẑt)

(vt(at, ẑt)− p · ẑt)σt(at, ẑt) s.t.

∑
(a−i

t ,ẑt)

σt(at, ẑt)[v
i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)] ≤ 0.

Proposition 2.8. Suppose that (λ, v, p) solves a team’s dual at some zt. If σt solves

the team’s problem at the same zt then it also solves the sesquial, and∑
(at,ẑt)

∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]σt(at, ẑt) = 0,

therefore V ∗
t (p, λ) = V ∗

t (p) = supẑt
{Vt(ẑt)− p · ẑt}.
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Therefore, a team’s organization may be subsumed beneath its commodity purchasing

problem, where the team’s game is entirely implicit.

The key difference between a team’s indirect utility and its sesquial is that in the

former the team may choose any correlated strategy and at dual-solving prices chooses

to purchase a correlated equilibrium, whereas in the latter the team may only choose

correlated strategies amongst the set of correlated equilibria. By Proposition 2.8,

both views are compatible with the current model of a team’s organizational problem.

Such compatibility also applies to an economy where individuals may choose to join

different teams, as will be seen in Section 3.

But first, we present an example to illustrate the duality derived above.

Example 2.9. Consider a two-member team playing the following normal-form game

without commodity trades.

L R

U 4, 4 1, 5

D 5, 1 0, 0

The team’s problem of maximizing the sum of utilities simplifies to

sup
σ≥0

8σ(U,L) + 6σ(U,R) + 6σ(D,L) s.t.

σ(U,L) + σ(U,R) + σ(D,L) ≤ 1

4σ(U,L) + σ(U,R) ≥ 5σ(U,L)

4σ(U,L) + σ(D,L) ≥ 5σ(U,L)

and is solved by σ(U,L) = σ(U,R) = σ(D,L) = 1/3. The team’s welfare equals 20/3.

The dual problem simplifies to

inf
λ≥0,v

v s.t.

8− λ1(U,D)− λ2(L,R) ≤ v

6 + λ1(U,D) ≤ v

6 + λ2(L,R) ≤ v

and is solved by λ1(U,D) = λ2(L,R) = 2/3. The value of the dual clearly equals the

value of the primal, 20/3.
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3 Organized Competition

This section introduces a version of price taking equilibrium, called contractual pricing

equilibrium, that incorporates contracts as per Section 2. It extends the version of

Makowski and Ostroy (2003) to incorporate incentive compatibility constraints in

economies with moral hazard.

We begin by defining the planner’s problem of assigning individuals to teams and

organizing teams (incentive) efficiently. Doing so requires a commodity representa-

tion of economic activity. Such a representation defines an activity as a team, a

net trade, and a team action. The planner “activates” activities subject to avail-

ability of individuals, availability of physical commodities, and contractual incentive

compatibility.

We continue by using duality to study a relevant price system for the economy that

will decentralize the planner’s allocations. Taking personalized activity prices as

given, individuals purchase participation in organizations to maximize utility without

regard to whether or not they are feasible, incentive compatible. It is argued that

with the “right” price system, individuals—led by prices—choose to participate not

only in feasibly, incentive compatibly organized teams, but also that their contracts

are incentive efficient.

Therefore, economic organizations emerge as a result of market competition. Activity

prices lead individuals to agree not only upon the team’s behavior, but also on the

division of the team’s surplus. It is also be established that solving a team’s problem

is a competitive outcome. Organizers in the spirit of Section 2 are assumed to be

on the long side of the market, competing to deliver organizational services with

a technology exhibiting constant returns to scale, and as such earn zero profit in

equilibrium. This may also be motivated by interpreting organizers as entrepreneurs,

and assuming that “entrepreneurship” is not scarce.

Technically, the version of price taking equilibrium proposed is an expression of com-

plementary slackness conditions derived from the dual to the planner’s problem. This

approaches relies on the assumption that the economy avails transferable utility.

Finally, this section concludes with an illustrative example where individuals may or

may not join organized teams as well as trade in commodity markets.

14



3.1 The Planner’s Problem

Consider an economy with finitely many types of individual in the set I = {1, . . . , n}
(which may include type repetitions). The set of possible types of team, with typical

type of team t, is given by the collection

T = {t ⊂ I : t 6= ∅}.

There is a continuum of each type of individual. A population is a vector q ∈ RI
++,

where qi > 0 stands for the mass of individuals of type i in the economy.

Definition 3.1. An activity is a triple (t, at, zt) such that t ∈ T is a type of team,

at ∈ At is a team action, and zt ∈ R` is a net trade. Let A denote the set of all

activities, and Ai = {(t, at, zt) ∈ A : i ∈ t}. An allocation is a positive (regular,

Borel) measure on A. Let X be the set of allocations, with typical element x.

An individual’s utility over an activity (t, at, zt) is given by vi(t, at, zt) = vi
t(at, zt),

where vi
t is given. As a normalization, we assume that vi(t, at, zt) = −∞ if i /∈ t. We

also write v0(t, at, zt) = v0
t (at, zt) for the trading possibilities indicator.

Definition 3.2. The planner’s problem of allocating (human and physical) resources

to maximize welfare incentive compatibly is given by the following linear program.

V (q) := sup
xi≥0

n∑
i=0

∑
(t,at,zt)

vi(t, at, zt)xi(t, at, zt) s.t.

∑
(t,at,zt)

xi(t, at, zt) = qi∑
(a−i

t ,zt)

x0(t, at, zt)[vi(t, b
i
t, a

−i
t , zt)− vi(t, at, zt)] ≤ 0

∑
(t,at,zt)

ztx0(t, at, zt) = 0

(xi − x0)|Ai
= 0.

The planner’s objective is to maximize the sum of individual utilities by choosing the

type of team t to which every individual belongs, the team’s action profile at, and its

commodity trade zt. The mass of individuals of type i allocated to activity (t, at, zt)

equals xi(t, at, zt). Every individual of type i allocated to activity (t, at, zt) obtains

a utility vi(t, at, zt); the equal-weighted total utility amongst all individuals of type i

consuming activity (t, at, zt) is vi(t, at, zt)xi(t, at, zt).
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The first family of constraints, indexed by i ∈ I, stipulates that the planner’s alloca-

tion of individuals of any type i to activities must equal the available mass of those

individuals. (In other words, the net supply of individuals equals zero.)

The second family of constraints is indexed by types of team t, individual team mem-

bers i ∈ t, and individual action pairs ai
t, b

i
t ∈ Ai

t. To interpret these constraints

game-theoretically, suppose that the planner allocates individuals of each type to ac-

tivities randomly, and even though they may be informed of the planner’s allocation,

they remain ignorant of the precise activity to which they are associated, until the ac-

tivity is realized. For instance, take any two activities α = (t, at, zt) and β = (t, bt, yt)

and suppose that the planner intends to activate a positive mass of each. Take any

individual of a given type i ∈ t which by assumption is completely unaware of the

activity to which he is contributing until he receives a recommendation from the plan-

ner to play ai
t or bit. Taking a “frequentist” approach, this individual interprets the

mass of activities to which he might belong (as per the planner’s allocation) and con-

structs therefrom a probability function with which to evaluate his incentive to obey

the planner’s recommendation. With only two activities, if ai
t 6= bit then the individual

learns the precise activity as soon he receives his recommendation. If ai
t = bit then the

individual attaches a probability of belonging to α and β according to population pro-

portions: x0(α)/(x0(α)+x0(β)) and x0(β)/(x0(α)+x0(β)). Since the right-hand side

equals zero, without loss we may divide both sides by x0(α) + x0(β) > 0 to read the

incentive constraints in terms of population masses and probability interchangeably.

The third constraint in the planner’s problem is the economy’s restriction on physical

resources, imposing a zero net supply of trades.

Finally, the fourth family of constraints, indexed by individual types i, requires that

allocations be consistent across types of individual. Formally, this is an equality of

measures captured by stating that the difference between xi and x0 must be zero

on the subspace Ai := {(t, at, zt) ∈ A : i ∈ t}.5 Strictly speaking, this constraint

is redundant in that the planner’s problem could have been equivalently written

without it by replacing xi with x0 and restricting vi to t 3 i. Nevertheless, including

it facilitates an interpretation of activities as consumption goods and allocations as

consumption bundles. Acknowledging that the outcome of a game is a public good

(albeit local), this constraint makes explicit the public nature of activity consumption:

every team member must consume exactly the same activity adopted by a team.

5Formally, given a measure x0 and any measurable set B, we define x0|Ai(B) = x0(B ∩ Ai).
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3.2 Price Taking Equilibrium

Next, we define a version of price taking equilibrium applicable to this economy and

argue its efficiency properties. To this end, we begin by deriving the dual linear

program associated with the planner’s problem. This will lead us both towards a

definition of equilibrium and towards proving the First Welfare Theorem.

Definition 3.3. A price system is a family p = {p, pi : i ∈ I} where p ∈ R` is a

vector of commodity prices and pi : A → R is a continuous function of personalized

activity prices for every i ∈ I.

Theorem 3.4. The planner’s problem’s dual program is given by:

W (q) := inf
λ≥0,π,p

∑
i∈I

πiqi s.t.

vi(t, at, zt)− pi(t, at, zt) ≤ πi

v0(t, at, zt)− p0(t, at, zt) ≤ 0∑
i∈t∪{0}

pi(t, at, zt)−
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[vi(t, b

i
t, a

−i
t , zt)− vi(t, at, zt)] = p · zt,

where p is a price system. Moreover, V (q) = W (q).

The choice variables in the dual program above correspond to “shadow prices” of

relaxing each constraint in the planner’s problem. The πi are associated with the

planner’s constraint on human resources (the marginal social value of increasing qi),

the vector p reflects the marginal social value of relaxing the zero net supply constraint

on commodity trades, the functions pi are associated with the public good constraints,

and finally λ is associated with the incentive constraints.

The objective in the dual is interpretable as the sum of “expenditures” on individuals,

calculated by adding across individual types the utility of each individual of a given

type i, πi, multiplied by the mass of individuals of that type, qi.

The first family of constraints is indexed by individual types i and activities (t, at, zt).

Interpreting pi(t, at, zt) as the “money” price (i.e., in units of transferrable utility)

to individuals of type i for participating in activity (t, at, zt), the constraints may be

read as requiring that the utility vi(t, at, zt) to an individual of type i from (t, at, zt)

net of its price pi(t, at, zt) must be bounded above by πi for every activity (t, at, zt).

Hence, the supremum of all such net utilities must be bounded above by πi, too. In

fact, at a solution of the dual program, the bound on this supremum is tight.
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Proposition 3.5. If (λ, π, p) solves the dual then

sup{vi(t, at, zt)− pi(t, at, zt)} = πi

for every i ∈ I ∪ {0}, with π0 = 0. Moreover, the indirect utility

v∗i (pi) := sup
µ∈∆(A)

∑
(t,at,zt)

[vi(t, at, zt)− pi(t, at, zt)]µ(t, at, zt)

also satisfies v∗i (pi) = πi for every i ∈ I ∪ {0}. Every supremum above is attained.

Proposition 3.5 shows how activity prices pi determine contractual prices : for any

type of team t, every i ∈ t ∪ {0}, and organization σt ∈ ∆(At∪{0}),

pi(σt) :=
∑

(at,zt)

pi(t, at, zt)σt(at, zt)

may be interpreted as i’s price to join t and play σt.

An individual’s indirect utility reflects his decision problem. Given personalized prices

and an endowment of one unit of “self,” every i purchases participation in organized

teams to maximize utility.6 By construction, the organizer becomes responsible for

the feasibility of a team’s commodity trades (since v0 = −∞ affects his “bottom line”

and no other team member’s). Neither the organizer nor individual team members

care about feasibility or incentive compatibility of organizations they trade. As will

be argued subsequently, prices are such that everyone is willing to purchase feasible,

incentive compatible organizations.

Next, consider the relationship between contractual prices and commodity prices. For

any type of team t and any correlated strategy σt ∈ (At∪{0}), let

mt(σt) :=
∑

(at,zt)

∑
i∈t∪{0}

(pi(t, at, zt)− p · zt)σt(at, zt)

be the net money expenditure associated with σt.

Proposition 3.6. If (λ, π, p) solves the dual problem then for any type of team t

and any σt ∈ ∆(At∪{0}), mt(σt) > 0 only if σt is not a correlated equilibrium, and

mt(σt) < 0 if σt is feasible but suboptimal.

6Specifically, we assume the existence of a “money” good mi that enters utility linearly and may
be consumed in arbitrarily positive or negative amounts (and whose price equals one). Therefore,
sup{vi(µ) + mi : mi + pi(µ) ≤ 0} = v∗i (pi), giving the economy transferable utility.
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Corollary 3.7. If (λ, π, p) solves the dual and x solves the primal then for all t,∑
(at,zt)

∑
i∈t

pi(t, at, zt)x(t, at, zt) =
∑

(at,zt)

p · ztx(t, at, zt)

and the organizer’s expected expenditure equals zero:∑
(at,zt)

p0(t, at, zt)x(t, at, zt) = 0.

The last two results describe the role of λ in the dual problem. The λ’s are shadow

prices of a team’s incentive constraints, reflecting the opportunity cost of incentive

compatibility. The amount
∑

(i,bi
t)
λi

t(a
i
t, b

i
t)[vi(t, at, zt)−vi(t, b

i
t, a

−i
t , zt)] may be inter-

preted as a “tax” on incentive incompatibility, imposed on team members in order for

incentive compatible team behavior to be demanded by them. By Corollary 3.7, such

taxes add up to zero on average: the sum of personalized contractual prices equals

the team’s expected net revenue from commodity trades. Corollary 3.7 also implies

that p0(t, at, zt) = 0 for every activity (t, at, zt) ∈ supp x. In other words, organizer’s

don’t just earn zero profit on average, but on every such activity.

The previous results describe individual and team behavior when facing dual-solving

contractual prices and point out some connections between individual price-taking

behavior and the planner’s problem. This leads to the following notion of price taking

equilibrium, which reconciles the primal and the dual.

Definition 3.8. An contractual pricing equilibrium (CPE) is a pair (x, p) such that

x is an allocation and p is a price system with which markets clear, contracts clear,

and individuals optimize: ∑
(t,at,zt)

ztx(t, at, zt) = 0

∑
(t,at,zt)∈Ai

x(t, at, zt) = qi∑
(at,zt)

∑
i∈t∪{0}

pi(t, at, zt)x(t, at, zt) =
∑

(at,zt)

p · ztx(t, at, zt)∑
(at,zt)

p0(t, at, zt)x(t, at, zt) = 0

∑
(a−i

t ,zt)

x(t, at, zt)[vi(t, b
i
t, a

−i
t , zt)− vi(t, at, zt)] ≤ 0

(vi(t, at, zt)− pi(t, at, zt))x(t, at, zt) = v∗i (pi)x(t, at, zt).
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The objects that define CPE are a feasible solution to the primal, x, and a price

system from which a feasible solution to the dual may be derived. In CPE, the

pair (x, p) is associated with two mutually dual linear programs that are linked by

Theorem 3.4. The conditions for CPE simply list the requirements for x to be a

feasible solution to the primal, for p to yield a feasible solution to the dual, and that

there be no duality gap. We interpret each condition below.

The first condition is an equality of trade vectors, requiring that overall trades of

physical commodities add up to zero, so commodity markets must clear. The second

condition, indexed by I, requires consistency in the assignment of individuals to teams

with respect to individual availability, so people markets must also clear. Organizers

are not included in these constraints because by assumption they are not scarce.

The third condition, indexed by T , requires that individual money payments made

in equilibrium by team members coincide with payments associated with a team’s

trade. By the first constraint, organizers’ payments when trading commodities add

up to zero, so the money market clears. Therefore all markets clear in CPE.

The fourth condition requires organizers to trade an average of zero units of money

in equilibrium. Organizers only trade feasible organizations (i.e., σt ∈ ∆(At∪{0}) such

that supp σt ⊂ dom v0
t ), therefore v∗0(p0) = 0, in other words, organizers make no

profit. This requirement could have been incorporated in other equivalent ways. For

instance, we could have explicitly introduced a mass of organizers that far exceeded

the possible mass of teams and assumed that organizer’s reservation utility equals

zero. Equivalently, we could have assumed that organizational technology exhibits

constant returns to scale, and that organizers’ indirect utility involves them choosing

positive measures instead of probability measures, thereby requiring zero profit for

organizers in order for organizational markets to clear. To avoid complications, we

may as well require that p0(α) = 0 for every activity.

The fifth condition requires equilibrium allocations to be incentive compatible. This

is the intended meaning of “contractual clearance” in the definition of CPE. Without

this condition, contractual demand would not necessarily equal supply.

The last condition, indexed by I ∪ {0}, requires that allocations maximize individ-

ual utility, including that of organizers. Such utility maximization, net of monetary

transfers, does not take into account feasibility or incentive compatibility of organiza-

tions. Individuals are led towards feasible, incentive compatible organizations purely

by prices. We now study the extent to which they are also led towards efficient ones.
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Definition 3.9. An allocation x ∈ X is called incentive efficient if it solves the

planner’s problem.

This definition agrees with incentive-constrained Pareto efficiency in economies with

transferable utility, as follows. Redefine an allocation by (x,m) to include money

transfers, where m : I → R (assume organizers get no money), and call it incentive-

constrained Pareto efficient if it is feasible (i.e., x is feasible in the planner’s problem

and
∑

imiqi = 0) and there exists no other (x′,m′) such that

vi(x
′|Ai

) +m′
iqi ≥ vi(x|Ai

) +miqi

for every i and vi(x
′|Ai

) +m′
iqi > vi(x|Ai

) +miqi for some i.

Proposition 3.10. Let m : I → R be any feasible allocation of money. An allocation

x is incentive efficient if and only if (x,m) is incentive-constrained Pareto efficient.

We may now state the main result of this paper.

Theorem 3.11. Contractual pricing equilibrium exists and is incentive efficient.

Led by equilibrium prices, individuals choose to join teams and enter into contractual

arrangements in such a way that resources are allocated incentive efficiently. Formally,

Theorem 3.11 bridges the planner’s problem and its dual with the help of organizers.

Viewing organizers as entrepreneurs, the fact that in equilibrium they make zero profit

illustrates the implicit assumption that entrepreneurship is not scarce. Entrepreneurs

may be viewed as team organizers, facilitating contractual efficiency and incentive

compatibility. Otherwise there would be gains from organizational trade that such

entrepreneurs would be sure to exploit. In equilibrium, no such gains are available

beyond equilibrium allocations.

Before presenting an illustrative example, we conclude this subsection by remarking

that, in equilibrium, teams maximize profit.

Proposition 3.12. If (x, p) is a contractual pricing equilibrium then

V ∗
t (p) =

∑
i∈t∪{0}

v∗i (pi)

for any type of team t such that xt = x(t × At∪{0}) > 0, and x/xt solves every

individual member’s indirect utility as well as the team’s.
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3.3 Example

An example that immediately comes to mind is the famous assignment model, which

is clearly a special case of this economy. We now present an example that incorporates

individual matching, incentive constraints, and trade of physical commodities.

Example 3.13. Consider an economy with ` = 1 and I = {h,w}, where h stands

for ‘husband,’ and w for ‘wife.’ The population of individuals is given by q = (1, 1).

Individuals belonging to singleton teams have the following utility functions:

vh(zh) = zh − 1
2
z2

h, vw(zw) = −1
2
z2

w,

where dom vh = [0, 1] and dom vw = (−∞, 0]. Intuitively, husbands are buyers

and wives are sellers. Husbands and wives may get ‘married’ to form a team of type

m = {h,w} and play the following game. Let Am = {chm, dh
m}×{cwm, dw

m}, and suppose

that utility functions are given by dom v0
m(am) = [0, 1] and

cwm dw
m

chm
9
16
zm, 9

16
zm

3
16
zm, 12

16
zm

dh
m

12
16
zm, 3

16
zm 0, 0

The team’s problem is solved by σm(chm, c
w
m) = σm(chm, d

w
m) = σm(dh

m, c
w
m) = 1/3 for

any zm > 0. (Random trades won’t add value in this case.) The organized team’s

utility is therefore given by Vm(zm) = min{zm, 1}.

After a little symbolic arithmetic, it follows that the planner’s problem is solved by

zm = 1, zw = − 1√
2
, zh = 1− 1√

2
,

and letting the mass of married couples equal xm = 1 − 1√
2
. The market price for

the commodity is given by p = 1√
2
, since wives’ partial equilibrium problem equates

their quantity supplied with the price.

As regards activity prices, for singleton teams let pi(i, zi) = p · zi. Equilibrium

prices for married couples must leave individuals indifferent between purchasing

(m, chm, c
w
m, zm), (m, chm, d

w
m, zm), and (m, dh

m, c
w
m, zm), and clear the money market:

vi(m, c
h
m, c

w
m, zm)− pi(m, c

h
m, c

w
m, zm) = vi(m, c

h
m, d

w
m, zm)− pi(m, c

h
m, d

w
m, zm)

= vi(m, d
h
m, c

w
m, zm)− pi(m, d

h
m, c

w
m, zm),∑

i∈{h,w}

pi(m, c
h
m, c

w
m, zm) + pi(m, c

h
m, d

w
m, zm) + pi(m, d

h
m, c

w
m, zm) = p · zm.

22



Furthermore, since there are both matched and unmatched husbands and wives,

they must be indifferent between marrying and not marrying, which implies that

vh(m,σm, zm)− ph(m,σm, zm) = 3
4
− 1√

2
and vw(m,σm, zm)− pw(m,σm, zm) = 1

4
. (As

for other activities, e.g., ones that are not “activated,” many prices would support

them not being purchased.) Since vh(m,σm, zm) = vw(m,σm, zm) = 1
2
, it follows that

ph(m,σm, zm) = 1√
2
− 1

4
and pw(m,σm, zm) = 1

4
. Finally,

ph(m, c
h
m, c

w
m, zm) = 9

16
− (3

4
− 1√

2
), ph(m, c

h
m, d

w
m, zm) = 3

16
− (3

4
− 1√

2
),

ph(m, d
h
m, c

w
m, zm) = 12

16
− (3

4
− 1√

2
), pw(m, chm, c

w
m, zm) = 9

16
− 1

4
,

pw(m, chm, d
w
m, zm) = 12

16
− 1

4
, pw(m, dh

m, c
w
m, zm) = 3

16
− 1

4
.

By the remarks after Corollary 3.7, without loss we may assume that organizer’s prices

are identically zero. This completes the description of contractual pricing equilibrium

in this economy. Incentive efficiency is readily verified.

4 Occupational Equilibrium

So far, we have relied exclusively on the view that individuals of a certain type face

personalized prices for team membership in the role dictated by their type. Let us now

consider a different view of teams and the market for team membership. Specifically,

let us relax this assumption by allowing individuals the possibility of having different

occupations within the team. Of course, we might interpret the interaction of team

members as including the choice of occupation within a team, rendering this view

a special case of the previous one. The main difference here is that individuals are

allowed preferences over different occupations. As such, we consider team membership

prices indexed by occupations rather than types of individual.

An “occupational equilibrium” that distinguishes the market for individuals from

the market for occupations in a team is discussed as an alternative to Section 3,

in line with the theory of clubs (see Section 1.2). Individuals compete for jobs in

teams, where tastes are defined over what team members do without reference to their

particular identity. In other words, we assume that only what “coworkers” do, rather

than who they are, matters to prospective team members. The “job market,” or the

market for occupations, is anonymous in that individuals may purchase participation

in a team in any occupation at prices that are not personalized, and competing

individuals purchase those jobs that best suit their tastes at prevailing market prices.
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Without incentive constraints, this pricing approach suffices to decentralize efficient

allocations. However, in the presence of incentive constraints, and as soon as indi-

viduals have differing tastes over actions within the same occupation, this approach

fails to decentralize (incentive) efficient allocations. This is because individual tastes

determine the set of incentive compatible allocations, so without taste-indexed prices

there are not enough “degrees of freedom” for efficient decentralization. We develop

this argument in more detail and provide an illustrative example below.

4.1 Occupational Market

As usual, let I = {1, . . . , n} denote the set of types of individual, and q ∈ RI
++ the

population of such individual types. Define the set of occupations as Ω = {1, . . . ,m},
which may include repetitions, with typical element ω. A type of team is now a non-

empty subset τ ⊂ Ω together with a map ϕ : τ → I, called a “fill,” specifying the

type of individual ϕ(ω) ∈ I that fills occupation ω in τ .7 We redefine

T := {t = (τ, ϕ) : τ ⊂ Ω, τ 6= ∅, ϕ : τ → I}

to be the set of all types of team. A team of type t = (τ, ϕ) plays a normal-form

game just as before. We make the following normalization.

Assumption 4.1. For every t = (τ, ϕ) and t′ = (τ, ψ), At = At′ .

In other words, an occupation involves the same choice of actions for every type of

individual. This assumption is, of course, without loss of generality, since we could

always augment individual action spaces and suitably restrict utility levels to ensure

its satisfaction. Having made this assumption, we may denote the space of team

actions available to a team of type t = (τ, ϕ) by Aτ for any ϕ.

Next, we define individual preferences. In principle, every individual of any type

i ∈ I has preferences over occupations, types of team, team actions, and net trades.

A type of team no longer determines an individual’s occupation, since ϕ need not

be injective. Denote by vi(ω, t, at, zt) the utility representing such preferences, with

vi(ω, t, at, zt) = −∞ if t = (τ, ϕ) and i 6= ϕ(ω). Let A be the set of all (t, at, zt)

and A′ = Ω × A. Finally, let Ai = {(τ, ϕ, aτ , zτ ) ∈ A : (∃ω ∈ τ)(ϕ(ω) = i)} and

Aω
i = {(τ, ϕ, aτ , zτ ) ∈ A : ϕ(ω) = i}.
7Thus, it is possible for individuals of the same type to fill more than one occupation in some τ

by letting ϕ(ω) = i for more than one ω ∈ τ .
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Next, we make an assumption that is often emphasized in the clubs literature, namely

that a team’s assignment of other individuals to occupations, ϕ, has no effect on any

individual’s utility, so individual utility does not vary with coworkers’ identities.

Assumption 4.2. For every individual type i ∈ I as well as every pair t = (τ, ϕ) and

t′ = (τ, ψ), vi(ω, t, aτ , zτ ) = vi(ω, t
′, aτ , zτ ). Furthermore, v0(t, aτ , zτ ) = v0(t

′, aτ , zτ ).

Therefore, individuals do not intrinsically care about other team members’ types.

Furthermore, the team’s trading possibilities are also unaffected by the individual

types of its members, they are only affected by team actions.

4.2 Equilibrium without Incentive Constraints

From the economy just defined, we now derive a version of the planner’s problem

assuming that individuals are able to make binding agreements on team actions.

Therefore, individual behavior in a team is not subject to any incentive constraints.

The planner assigns individuals to occupations in organized teams that play team

actions and strike commodity trades.

Consider the following version of the planner’s problem, discussed below.

V (q) := sup
xi≥0

n∑
i=1

∑
(ω,t,at,zt)

vi(ω, t, at, zt)xi(ω, t, at, zt) + v0(t, at, zt)x0(t, at, zt) s.t.

∑
(t,at,zt)

xi(ω, t, at, zt) = qi∑
(t,at,zt)

ztx0(t, at, zt) = 0

xi(ω)− x0|Aω
i

= 0.

Intuitively, the planner maximizes welfare by allocating individuals of each type to

economic activities. The planner maximizes the sum of utilities of all team members

by choosing the mass of individuals assigned to a particular set of activities and

occupations, involving types of team, team actions and net trades. The planner

chooses positive (regular, Borel) measures x0 on A and xi(ω) on Aω
i for every (i, ω).

The first family of constraints, indexed by i ∈ I, requires the planner’s assignment of

individuals to be compatible with their availability. The second constraint requires

that net trades add up to zero.
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The third family of constraints, indexed by (i, ω) ∈ I × Ω, imposes an equality in

the space of measures on Aω
i . It requires that the mass of individuals participating

in any activity coincide with the mass of other team members participating in the

same activity. Thus, if a unit mass of teams of type t = (τ, ϕ) for ϕ is activated by

the planner, then the same mass of individuals of type ϕ(ω) must participate in t’s

activity with occupation ω for every ω ∈ τ .

With the construction above, and relying on the material developed in Section 3, one

might appeal to duality in order to obtain a notion of “occupational equilibrium.”

However, by Assumptions 4.1 and 4.2, individuals do not care about a team’s fill, ϕ.

This suggests an alternative formulation of the planner’s problem, discussed below.

Proposition 4.3. U(q) = V (q) for every q, where

U(q) := sup
xi≥0

∑
(i,ω,τ,aτ ,zτ )

vi(ω, τ, aτ , zτ )xi(ω, τ, aτ , zτ ) + v0(τ, aτ , zτ )x0(τ, aτ , zτ ) s.t.

∑
(ω,τ,aτ ,zτ )

xi(ω, τ, aτ , zτ ) = qi∑
(τ,aτ ,zτ )

zτx0(τ, aτ , zτ ) = 0

∑
i∈I

xi(ω)− x0|A′
ω

= 0,

and A′
ω = {(τ, aτ , zτ ) : ω ∈ τ}.

Relying on Assumption 4.2, this version of the planner’s problem derives individual

preferences without reference to a team’s fill, i.e., the identity of other team members.

The planner chooses positive (regular, Borel) measures x0 on A′ and xi(ω) on A′
ω

for every ω. The first and second families of constraints carry the same intuition as

before, namely that the assignment of individuals coincide with their availability, and

that the economy’s resource constraint is satisfied. The third family of constraints,

indexed by ω ∈ Ω, ensures the supply of occupations (given by the mass of teams

with such occupations) equals the demand for such occupations,
∑

i xi(ω).

In U , occupation-contingent team membership (ω, τ, aτ , zτ ) is viewed as a private

good, whereas in V , (ω, τ, ϕ, aτ , zτ ) is viewed as part of a local public good. The

condition in U that replaces the Lindahl constraint in V is that the sum of individual

demands for activities adds up to aggregate supply. The planner’s problem is “folded”

to reflect the provision of private rather than public goods.
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The equality between U and V is interpreted as a “commodification” of the market

for occupations, leading to an anonymous job market. This is confirmed by the

anonymous price system that emerges from the dual below.

Proposition 4.4. The dual of U is given by the following linear program:

U(q) = inf
π,p

∑
i∈I

πiqi s.t.

vi(ω, τ, aτ , zτ )− pω(τ, aτ , zτ ) ≤ πi

v0(τ, aτ , zτ ) + p · zτ −
∑
ω∈τ

pω(τ, aτ , zτ ) ≤ 0

and there is no duality gap.

The dual minimizes “expenditure” on individuals subject to the usual constraint that

the expense on each individual corresponds to his indirect utility (see Proposition 3.5)

and that monetary transfers amongst feasible activities add up to zero. (The inter-

pretation of an “organizer” also applies here.) The planner selects a vector π indexed

by individual types, a vector p of commodity prices, and a family {pω(τ, aτ , zτ )} of

activity prices, indexed by occupational choices, which turn out to be anonymous :

an individual’s price for participating in (τ, aτ , zτ ) as ω ∈ τ does not depend on his

identity. We interpret this as an anonymous, or “commodified,” job market.

Definition 4.5. An occupational equilibrium is a pair (x, p) such that markets clear

and individuals optimize: ∑
(τ,aτ ,zτ )

zτx0(τ, aτ , zτ ) = 0,

∑
(ω,τ,aτ ,zτ )

xi(ω, τ, aτ , zτ ) = qi,

(v0(τ, aτ , zτ ) +
∑
ω∈τ

pω(τ, aτ , zτ )− p · zτ )x0(τ, aτ , zτ ) = 0,

(vi(ω, τ, aτ , zτ )− pω(τ, aτ , zτ ))xi(ω, τ, aτ , zτ ) = v∗i (pi)x0(τ, aτ , zτ ).

Individuals compete anonymously for occupations. By duality, equilibrium is efficient.

Theorem 4.6. An occupational equilibrium exists and satisfies Pareto efficiency.

Next, we introduce incentive constraints, to argue that incentive efficient allocations

(solutions to the planner’s incentive-constrained problem) cannot be decentralized by

an anonymous job market, unlike the present case.
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4.3 Failure of Efficiency with Incentive Constraints

Let us now introduce incentive constraints. Consider the planner’s problem below.

V (q) := sup
xi≥0

∑
(i,ω,t,at,zt)

vi(ω, t, at, zt)xi(ω, t, at, zt) + v0(t, at, zt)x0(t, at, zt) s.t.

∑
(ω,t,at,zt)

xi(ω, t, at, zt) = qi∑
(t,at,zt)

ztx0(t, at, zt) = 0

∑
(a−ω

t ,zt)

x0(t, at, zt)[vϕ(ω)(ω, t, b
ω
t , a

−ω
t , zt)− vϕ(ω)(ω, t, at, zt)] ≤ 0

xi(ω)− x0|Aω
i

= 0.

The planner’s objective is the same as that for V in the previous subsection, to

maximize welfare with respect to x, which must be a positive measure on the same

space of activities as before. In fact, the only difference that has been introduced

here is the third family of constraints, indexed by t ∈ T , ω ∈ τ , and aω
t , b

ω
t ∈ Aω

τ .

The constraints stipulate that the individual of type ϕ(ω) playing the role of ω must

find it incentive compatible to play aω
t when recommended to do so by an organizer,

as in Section 2.

Notice that we could have omitted ϕ altogether if it weren’t for the third constraint,

which imposes incentive compatibility. Regardless of Assumption 4.2, which requires

that individual preferences depend only on actions and trades, not others’ individual

types, an individual’s tastes over his own actions determine whether or not some

action is incentive compatible given what others play. This has an effect on the dual

of the planner’s problem below, where efficiently decentralizing prices will generally

depend on individual types.

V (q) = inf
λ≥0,p

∑
i∈I

πiqi s.t.

vi(ω, t, at, zt)− pi(ω, t, at, zt) ≤ πi,

v0(t, at, zt)− p0(t, at, zt) ≤ 0

p0(t, at, zt) +
∑
ω∈Ω

pϕ(ω)(ω, t, at, zt)

−
∑

(ω,bω
t )

λϕ(ω)(ω, t, a
ω
t , b

ω
t )[vϕ(ω)(ω, t, b

ω
t , a

−ω
t , zt)− vϕ(ω)(ω, t, at, zt)] = p · zt.
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In the dual, individuals generally must face personalized prices for team membership

in order for the planner’s allocation to be decentralized, where this now includes an

assignment of individuals to occupations. Furthermore, even though by assumption

individuals do not care about the identity of those taking up various occupations,

it will generally matter to team membership prices, since the incidence of incentive

constraints might vary with individual types, thereby affecting a team’s contractual

possibilities. To illustrate, consider the following example.

Example 4.7. Let I = {m, f1, f2} and Ω = {h,w}, with q = (1, 1, 1). For simplicity,

suppose that there is no trade of physical commodities. On their own, individuals

of type f1 obtain a utility of 1, everyone else gets zero. In pairs, they play different

games depending on their occupation. Assume that individuals of type m (“males”)

obtain a sufficiently negative utility from taking the occupation w (“wife”), as well

as individuals of type f1 or f2 (“females”) taking the occupation h (“husband”) that

only males will be husbands and only females will be wives. Also, therefore, there

will be no teams consisting of two females, since one of them would then have to

become a husband. If a male marries a female (i.e., forms a doubleton team where

the male is the husband and the female is the wife) then the couple plays the following

normal form game depending on the female’s type (the left bi-matrix corresponds to

marrying a female of type f1 and the right bi-matrix corresponds to f2):

L R

U 4, 4 1, 5

D 5, 1 0, 0

L R

U 4, 4 1, 5

D 5, 1 0, 2

In each game, males are row players and females choose columns. The only difference

between the two games is that in the left game, f1 gets a utility of 0 if (D,R) is

played, whereas f2 gets a utility of 2. Husbands’ payoffs do not depend on their

wives’ identity (i.e., whether their type is f1 or f2), in line with Assumption 4.2.8

By Example 2.9, there is a unique correlated equilibrium for a marriage t1 between a

male and a female of type f1 that maximizes the sum of utilities, namely σt1(U,L) =

σt1(D,L) = σt1(U,R) = 1/3. However, this correlated strategy is not incentive

compatible in a game played by a marriage t2 consisting of a male and a female of

type 2, since then L is strictly dominated by R. The unique contract that maximizes

the sum of utilities is given by σt2(U,R) = 1, a pure-strategy Nash equilibrium.

8I thank Bill Zame for help with this example.
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Without personalized prices, i.e., prices for correlated strategies that depend on the

type of a female, it is impossible to decentralize this economy’s efficient allocation,

which is to match all the males with all the females of type f1 and for them to play

the correlated strategy σt1 defined in the previous paragraph.

Indeed, any commodified price system must reward females of type f1 with at least

one unit of net utility, implying that females of type f2 will want to participate in

marriage, since their utility from any team action in a marriage is greater than or

equal to that of a female of type f1. Since females of type f2 get zero if unmatched

and at least 1 if matched, it is necessary for equilibrium that all females of type f2

be married. (No personalized rationing is allowed.) It follows that anonymous prices

cannot decentralize the economy’s incentive efficient allocation.

5 Conclusions

This paper has identified and explored the concept of organized competition. In doing

so we have resorted to general equilibrium and game theory as our main theoretical

tools, and found a framework in which to unify them. We have developed a model that

captures important economic phenomena: individual substitution possibilities across

teams, the allocation of incentive compatible individual as well as team actions and

commodities, the allocation of information in organizations, and the interpretation

that teams maximize profit.

As regards organizations, our reliance on correlated equilibrium as a game-theoretic

solution yielded on the one hand a succinct description of communication amongst

team members as part of a team’s organization. In particular, correlated strategies

gave a complete description of the potential uses of uncertainty for a team.

On the other hand it provided a useful technical tool for placing a team’s partial

equilibrium problem of finding a welfare-maximizing contract in general equilibrium.

By facilitating a simple construction of a team’s “indirect utility” from those of its

individual members, the profit-maximizing interpretation of team behavior becomes

a natural one that is riveted to economic behavior.

As regards organized competition, an overall conclusion might be that individuals

compete to play games, and the outcome of those games is determined competitively.
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For instance, principals and agents might compete for each other to play some con-

tractual game which may be improved upon by the participation of a monitor. This

suggests that the incidence of incentive constraints may also be thought of as a com-

petitive outcome with benefits (better-aligned incentives) and (monitoring) costs.

Formally, a notion of price taking equilibrium was introduced in an economy with

transferable utility, whose equilibrium allocations were incentive efficient. Individuals

were viewed as owning a single unit of “self” which they sold to purchase team

membership. Contractual pricing equilibrium describes how the outcome of a game

may be priced, and how individuals, in purchasing team membership, might agree

to enter a contractual organization in which they remain less than fully informed of

other team members’ behavior. In equilibrium, personalized team-membership prices

will tend to reflect individual substitution possibilities across teams.

Finally, we commented on the recent theory of clubs, and one important way in

which the present approach differs from it. We argued that introducing incentive

constraints in a general equilibrium model of teams makes it generally impossible for

incentive efficiency to be attained with “anonymous prices” for occupations. Unless

all individuals have the same preferences over actions under each occupation (or by

a strange coincidence), incentive efficiency is bound to fail. Our objection to such

an assumption on preferences further motivates the “teams” approach when those

teams are subject to incentive constraints (or equivalently, teams fail to have access

to binding contracts) on the grounds that some notion of (incentive) efficiency is

desirable for any positive model of competition.

As a technical comment, the proofs of results in the text that appear in Appendix

A are written in order to automatically accommodate continuous games, as well as

correlated equilibrium therein. See Appendix B for definitions and preliminaries.

Many further questions arise naturally as a result of this paper. Some such questions

include more detailed results about a team’s economic organization, the effects of

private information before and after teams have formed, an explicit introduction of

time (and space) into the model, and, of course, relaxing some of the key assump-

tions above, such as transferable utility and that teams are perfectly substitutable.

Answers to those questions are the subject of subsequent papers, and beyond the

scope of this particular one. The broad objective in this paper was to lay down a

theoretical foundation with which to be able to ask questions about team formation

and organization.
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A Proofs

The support of a regular Borel measure µ is denoted by supp µ and defined as the comple-
ment of the union of all open sets with measure zero according to µ.

Lemma A.1. For any σt ∈ ∆(At × R`), vt(σt) > −∞ if and only if supp σt ⊂ dom vt,
where dom vt = {(at, zt) : vt(at, zt) > −∞}.

Proof. For necessity, since dom vt is compact and vt is continuous on it, by Weierstrass’
Theorem (Folland, 1999, page 129, Proposition 4.26) the range vt(dom vt) is compact, hence
bounded below by some v > −∞. By monotonicity of Lebesgue’s integral, and since σt is
a probability measure, it follows that vt(σt) =

∫
vtdσt ≥ vσt(dom vt) = v.

For sufficiency, suppose that there is an (at, zt) ∈ supp σt outside dom vt. Since dom vt is
closed (by virtue of being compact by Assumptions 2.1 and 2.2), the complement of dom vt,
call it Ut, is open. By additivity,

vt(σt) =
∫

vtdσt =
∫

Uc
t

vtdσt +
∫

Ut

vtdσt.

If σt(Ut) = 0 then supp σt ⊂ U c
t = dom vt, and in particular (at, zt) /∈ supp σt, a con-

tradiction. Therefore, σt(Ut) > 0, so
∫
Ut

vtdσt = −∞, since vt = −∞ on Ut. Since
the range vt(dom vt) is compact, it is bounded above by some V < +∞. Therefore,∫
Uc

t
vtdσt ≤ V σt(U c

t ) ≤ V , so vt(σt) = −∞. �

Proposition 2.4. Take any zt for which there exists some σt with supp σt ⊂ dom vt and∑
σt(at, ẑt)ẑt = zt. (Otherwise vt(σt) = −∞ by Lemma A.1 for every feasible σt, so

Vt(zt) = −∞, too.) Viewed as a linear functional on ∆(dom vt), vt is clearly bounded
(being Lipschitz and dom vt being compact by Assumptions 2.1 and 2.2), hence also con-
tinuous (Folland, 1999, page 153, Proposition 5.2). By Lemma A.1, without loss we restrict
attention to σt ∈ ∆(dom vt). This set of probability measures is the closed unit ball of the
dual of the space of continuous functions on dom vt with the supremum norm. Therefore,
by Alaoglu’s Theorem (Folland, 1999, page 169), ∆(dom vt) is weak∗ compact. The set of
feasible σt (i.e., those satisfying the resource constraint as well as incentive compatibility)
is a weak∗ closed subset of ∆(dom vt), being defined by finitely many linear inequalities,
therefore it is weak∗ compact. By Weierstrass’ Theorem, the supremum in the team’s
problem is attained by some feasible σt whenever the feasible set is nonempty.

For concavity of Vt, take any two trades yt, zt ∈ R`, and let µt, σt solve their associated
team’s problems. For any λ ∈ (0, 1), the mixture λµt + (1 − λ)σt satisfies incentive com-
patibility (since µt and σt satisfy it individually), so it is a feasible solution for the team’s
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problem given the trade λyt + (1− λ)zt. Finally, by definition of supremum, it follows that
Vt(λyt + (1− λ)zt) ≥ λvt(µt) + (1− λ)vt(σt) = λVt(yt) + (1− λ)Vt(zt). �

Proposition 2.6. Let X = ∆(At∪{0}) and Y = R×RKt ×R`, where Kt =
∏

i∈t

∣∣Ai
t

∣∣× ∣∣Ai
t

∣∣.
With the notation of Appendix C, the team’s (primal) organizational problem is given by
(F, g, h∗), where F : X → Y determines the primal left-hand side constraints, g determines
the right-hand side constraints, and h∗ = vt. By inspection, the dual parameters (F̂ , ĝ, ĥ∗)
satisfy F̂ : Y ∗ → X∗, where X∗ = C(At∪{0}), since we endow X with the weak∗ topology
(see Lemma B.3), ĝ = h∗, and ĥ∗ = g, so it remains only to show that F̂ = F ∗, the adjoint
of F . Given (v, λ, p) ∈ Y ∗, and σt ∈ X, by definition σt(F ∗(v, λ, p)) = (v, λ, p)(F (σt)),
which in turn equals∫

p · ẑt − v +
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσt.

But this is the same as σt(F̂ (v, λ, p)), yielding duality. To show that there is no duality gap
(i.e., Vt(zt) = Wt(zt)), by Theorem C.1 it suffices to argue that Vt is subdifferentiable with
respect to its right-hand side constraints. To do so we apply Theorem C.1 and Theorem C.2
and show that Vt has bounded steepness. First we show that Vt is subdifferentiable with
respect to zt, and then we include the remaining right-hand sides. For bounded steepness,
it suffices to show that the directional derivative V ′

t (zt; y) = limλ↓0(Vt(zt + λy)− Vt(zt))/λ

is bounded above by a constant times ‖y‖. For a contradiction, suppose the contrary, that
is, V ′

t (zt; y) = +∞. Therefore there is a sequence {λn > 0} such that λn ↓ 0 and for every
m > 0 there is an Nm ∈ N with (Vt(zt + λny) − Vt(zt))/λn > m for all n > Nm. (Pick
a subsequence such that Nm = m.) By Theorem 2.4, for every n there is a σn

t such that∫
zdσn

t (a, z) = zt + λny and σn
t is a correlated equilibrium with

∫
vtdσn

t = Vt(zt + λny).
By the Maximum Theorem (see, e.g., Stokey and Lucas, 1989, Theorem 3.6, page 62),
the efficient correlated equilibrium correspondence is upper hemicontinuous (the feasible
correlated equilibrium correspondence is clearly continuous since σt is feasible for zt and σ′t
for z′t only if γσt + (1− γ)σ′t is feasible for γzt + (1− γ)z′t given 0 < γ < 1), so we may pick
σn

t converging to some σt. Since σn
t is a probability measure, there exists (an

t , ẑn
t ) ∈ supp σn

t

such that vt(an
t , ẑn

t ) ≥ Vt(zt + λny) and vt(an
t , ẑn

t )/λn > n for every n ∈ N. But because
At×dom Vt is compact, there is a subsequence {(ank

t , ẑnk
t )} that converges to some (at, ẑt).

Hence, for any ε > 0 there exists K ∈ N such that |vt(at, ẑ
nk
t )− vt(a

nk
t , ẑnk

t )| < ε for
every k > K. Finally, (vt(at, ẑ

nk
t ) − vt(at, zt))/λn ≥ (vt(a

nk
t , ẑnk

t ) − ε − vt(at, zt))/λn =
(vt(a

nk
t , ẑnk

t )−vt(at, zt))/λn−ε/λn. As n tends to infinity, (vt(at, ẑ
nk
t )−vt(at, zt))/λn tends

to v′t(at, zt; at, ẑt), whereas ε/λn tends to zero. However, (vt(a
nk
t , ẑnk

t )− vt(at, zt))/λn tends
to infinity, contradicting that vt(at) is Lipschitz (Assumptions 2.1 and 2.2). Therefore,
the directional derivative V ′

t (zt; y) is bounded. Since it is also positively homogeneous, its
bound may be written as V ′

t (zt; y) ≤ C ‖y‖.
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It remains to show that Vt has bounded steepness with respect to all its right-hand side
constraints perturbed together. A small perturbation in the incentive constraints’ right-
hand sides still leaves the set of feasible correlated strategies a compact, convex set. As
long as it remains nonempty (which is the only case of interest), the arguments above follow
through just the same. Finally, including the probability constraint is subsumed by the zt

constraint since going from a measure whose total mass is one to a mass m is equivalent to
going from zt to zt/m and multiplying the objective by m. �

Remark A.2. The proof of Proposition 2.6 applies also to continuous games word for word.
See Appendix B for a description of such games.

Lemma 2.7. By complementary slackness (see the second condition in Proposition C.4),
σt maximizes∫

At∪{0}

vt(at, ẑt)− p · ẑt − v −
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσt(at, ẑt)

amongst all positive measures, and equals zero since there is no duality gap by Proposition
2.6. Therefore, σt maximizes∫

At∪{0}

vt(at, ẑt)− p · ẑt −
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσt(at, ẑt)− v

amongst all probability measures and equals zero, too. The result now follows. �

Proposition 2.8. By definition, if σ′t is a correlated equilibrium then for any λ ≥ 0,∫ ∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσ′t(at, ẑt) ≤ 0.

By complementary slackness (Proposition C.4), this holds with equality if σ′t = σt solves
the team’s primal problem.

Looking at the indirect utility, by Lemma 2.7, for any correlated equilibrium σ′t,∫
vt(at, ẑt)− p · ẑtdσt(at, ẑt) ≥∫

vt(at, ẑt)− p · ẑt −
∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσ′t ≥

∫
vt(at, ẑt)− p · ẑtdσ′t(at, ẑt).

36



Therefore, σt solves the sesquial and V ∗
t (p, λ) = V ∗

t (p). It remains to show that V ∗
t (p) =

supẑt
{Vt(ẑt)− p · ẑt}. But this is immediate because replacing ẑt with

∫
ẑtdσt(at, ẑt) every-

where in supẑt
{Vt(ẑt)− p · ẑt} is exactly the same optimization problem as the sesquial, so

they must have the same solution and value. �

Theorem 3.4. In the notation of Appendix C, the primal is defined by the triple (F, g, h∗)
where F : X → Y , g ∈ Y , and h∗ ∈ X∗, together with

X =
n∏

i=0

M(A), Y = RI × RK × R` ×
n∏

i=1

M(A),

where
K =

∏
t∈T

∏
i∈t

∣∣Ai
t

∣∣× ∣∣Ai
t

∣∣
is finite. It can be shown (Conway, 1990, Theorem V.1.3, page 125) that if X is any locally
convex space then (X∗, wk∗)∗ = X. Therefore, (M(A), wk∗)∗ = C(A).

Endowing M(A) with the weak∗ topology implies that

X∗ =
n∏

i=0

C(A), Y ∗ = RI × RK × R` ×
n∏

i=1

C(A).

It is clear that the dual constraints map Y ∗ into X∗, since their left-hand sides involve
finite sums of continuous functions, hence are also continuous. It is also clear that g and h∗

from the primal correspond to h∗ and g in the dual. Therefore, all that remains to prove
is that the dual constraints operator F̂ : Y ∗ → X∗ equals the adjoint F ∗. By definition of
the adjoint, x(F ∗(y∗)) = y(F (x)). For any (π, λ, p) ∈ Y ∗ and any (x0, xi) ∈ X, this equals

n∑
i=1

∫
πidxi −

∑
(t,i,ai

t,b
i
t)

∫
A−i

t ×R`

λi
t(a

i
t, b

i
t)(vi(t, bi

t, a
−i
t , zt)− vi(t, at, zt))dx0(t, at, zt)

−
∫

p · ztdx0(t, at, zt)−
n∑

i=1

∫
Ai

pid(xi − x0),

which is precisely what is obtained from F̂ when the vi’s are interpreted as right-hand side
constraints in the purported dual. This completes the derivation of the dual problem.

Next we show that V (q) = W (q). By Theorem C.1, it suffices to show that V is subdiffer-
entiable at all its right-hand side constraints. By Theorem C.2, it suffices to show that V

has bounded steepness. Fixing the right-hand side Lindahl constraints at zero, this follows
from Proposition 2.6. To incorporate the Lindahl constraints, let ηi ∈ M(Ai) be any regu-
lar, Borel measure on the space of activities for type i individuals. Denote by Vt(η), where

37



η : i 7→ ηi, the primal value function of the right-hand side Lindahl constraints. The direc-
tional derivative Vt(0; η) = limλ↓0(Vt(λη)−Vt(0))/λ will be shown to be bounded by a similar
technique as in the proof of Proposition 2.6. Suppose λn ↓ 0, and let xn = {xn

0 , xn
i : i ∈ I}

solve the primal with λnη for right-hand side constraints. By construction, xn
i = xn

0 +λnηi.
Therefore, Vt(λnη) =

∑∫
vidxn

i =
∑∫

vid(xn
0 + λnηi) ≤

∑∫
vidxn

0 +
∫

viλnd |ηi|, where
vi < ∞ is an upper bound on vi. Let the primal solution x∞ when λ = 0 be a limit point of
xn (this is possible because the primal solution correspondence is upper hemicontinuous),
so that V ′

t (0; η) ≤
∑∫

vid |ηi| =
∑

vi ‖ηi‖, implying that Vt has bounded steepness with
respect to the Lindahl constraints. The argument for bounded steepness when all right-
hand side constraints are perturbed jointly is a repetition of the argument above and that
of Proposition 2.6 at the same time. Finally, there is no duality gap. �

Proposition 3.5. Firstly, vi(t, at, zt) − pi(t, at, zt) ≤ πi for every (t, at, zt), therefore π′i =
sup{vi(t, at, zt)− pi(t, at, zt)} ≤ πi. If π′i < πi and π′j ≤ πj for j 6= i then

∑
π′kqk <

∑
πkqk,

contradicting optimality of π and proving the first claim for i 6= 0. For the organizer’s
bound, if sup{v0 − p0} = −ε < 0 then v0(t, at, zt) − p0(t, at, zt) < 0 for every activity,
so for any i ∈ I we may increase pi to p′i = pi + ε such that sup{v0 − p′0} = 0. But
this implies that vi(t, at, zt) − p′i(t, at, zt) < vi(t, at, zt) − pi(t, at, zt) and furthermore that
sup{vi − p′i} < sup{vi − pi} = πi. Therefore, there is a π′ ≤ π that is feasible and leads to
a lower objective than π, contradicting optimality. This establishes the first claim.

By Lemma A.1, without loss supp µ is compact, and by Alaoglu’s Theorem the choice space
for v∗i (pi) is compact. Viewed as a linear functional on ∆(A), vi − pi is continuous, so a
maximum µ∗ exists. By monotonicity of Lebesgue’s integral,

∫
(vi − pi)dµ∗ ≤ sup{vi − pi}.

Conversely, by definition of supremum there is a sequence {αn} of activities such that
(vi−pi)([αn]) → sup{vi−pi}, and since Dirac measure9 is regular, Borel (so in ∆(A)), for any
ε > 0 there is an N such that sup{vi−pi}−ε < (vi−pi)([αn]) ≤

∫
(vi−pi)dµ∗ for all n > N .

Since ε > 0 was arbitrary, sup{vi − pi} ≤
∫

(vi − pi)dµ∗, so sup{vi − pi} =
∫

(vi − pi)dµ∗

and the result follows. Finally, supremal attainment follows by Weierstrass’ Theorem. �

Proposition 3.6. We develop a very similar argument to the proof of Proposition 2.8. If
σt is a correlated equilibrium then

mt(σt) =
∫ ∑

(i,bi
t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dσt(at, ẑt) ≤ 0,

where the equality follows from the dual formulation (see Theorem 3.4) and the inequality
follows by definition of correlated equilibrium. This establishes the first part of the claim.

9The measure [α] is defined as follows: for any B ⊂ A, [α](B) = 1 if α ∈ B and zero otherwise.
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For the second claim, notice that if x solves the primal then σt = x/xt ∈ ∆(At∪{0}) (where
xt = x(t×At×R`) > 0) is a correlated equilibrium such that mt(σt) = 0 by complementary
slackness (Proposition C.4). �

Corollary 3.7. Since there is no duality gap by Theorem 3.4, complementary slackness
with respect to the primal incentive constraints implies that∫

At∪{0}

∑
(i,bi

t)

λi
t(a

i
t, b

i
t)[v

i
t(b

i
t, a

−i
t , ẑt)− vi

t(at, ẑt)]dx(t, at, ẑt) = 0

for every t. This establishes the first equality. The second equality is a consequence of
Proposition 3.5. According to it, the organizer’s indirect utility equals zero. Therefore,
supp x ⊂ dom v0. But since v0(α) = 0 for all α ∈ dom v0, the second claim follows. �

Proposition 3.10. If (x,m) fails to be incentive-constrained Pareto efficient then there
exists some other feasible (x′,m′) such that vi(x′|Ai) + m′

i ≥ vi(x|Ai) + mi for every i and
vi(x′|Ai) + m′

i > vi(x|Ai) + mi for some i. Adding across i and by feasibility of monetary
transfers,

∑
i vi(x′|Ai) >

∑
i vi(x|Ai), therefore x is not incentive efficient. Conversely, if

x is any non-incentive efficient, feasible allocation (if it isn’t feasible then immediately it
isn’t Pareto efficient), then there is another feasible x′ that attains a greater value in the
planner’s problem:

∑
i vi(x′|Ai)−vi(x|Ai) = β > 0. If βiqi = vi(x|Ai)−vi(x′|Ai)+miqi+β/n

then
∑

i βiqi = 0 and vi(x′|Ai) + βiqi = vi(x|Ai) + miqi + β/n > vi(x|Ai) + miqi for every i,
therefore (x,m) is not Pareto efficient. This completes the proof. �

Theorem 3.11. By Theorem 3.4 there is no duality gap between the planner’s problem
and its dual, and by Assumptions 2.1 and 2.2 together with Theorem B.11 the feasible
set for the planner’s problem is not empty, implying that there is a solution to both the
primal and the dual by Theorem 3.4 and Theorem C.1 as well as that there is no duality
gap. By definition of equilibrium, both x is feasible for the primal and without loss p is
feasible for the dual (the third condition for CPE is satisfied on all correlated equilibria by
complementary slackness, and p0 may be redefined if necessary off correlated equilibria, if
necessary). By market clearance, individual money payments add up to zero, therefore the
value of the primal equals the value of the dual, from which it follows that x solves the
primal and that it is incentive efficient. �

Proposition 3.12. Since xt > 0, it follows, by the last condition for CPE, that∑
(at,zt)

(vi(t, at, zt)− pi(t, at, zt))x(t, at, zt)/xt = v∗i (pi).
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Summing across t ∪ {0} and using the third condition for CPE yields∑
(at,zt)

∑
i∈t∪{0}

(vi(t, at, zt)− p · zt)x(t, at, zt)/xt =
∑

i∈t∪{0}

v∗i (pi).

But by the fourth condition for CPE, it follows that x/xt must maximize the team’s welfare
amongst all incentive compatible contracts with the same expected net trade, otherwise the
planner’s problem would not be solved, therefore, by Proposition 2.8,

V ∗
t (p) =

∑
(at,zt)

∑
i∈t∪{0}

(vi(t, at, zt)− p · zt)x(t, at, zt)/xt,

and the result finally follows. �

Proposition 4.3. Both U and V have optimal solutions by Weierstrass’ Theorem. (The
details of this argument mimic the proof of Proposition 2.4.) Let A = {(τ, ϕ, aτ , zτ )} and
A′ = {(τ, aτ , zτ )}. First we prove that U(q) ≥ V (q). For any x = {xi : i ∈ I ∪ {0}} that is
feasible for V and any Borel subset B′ of A′, let B̂ = {(τ, ϕ, aτ , zτ ) : (τ, aτ , zτ ) ∈ B′} and
define x′0(B

′) := x0(B̂). Then x′0 satisfies the resource constraint associated with U , since
by construction ∫

zτdx′0(τ, aτ , zτ ) =
∫

ztdx0(τ, ϕ, aτ , zτ ) = 0.

For any Borel subset B′ of A′
ω and any (i, ω), define the subset

Bω
i = {(τ, ϕ, aτ , zτ ) ∈ A : (ω, τ, aτ , zτ ) ∈ B′, ϕ(ω) = i},

and let x′i(ω, B′) := xi(ω, Bω
i ). The population constraint on individuals is also satisfied by

x′i, since by definition x′i(ω,A′) = xi(ω,A), and adding across ω yields the required equality.

Next, the private-goods constraint associated with U is derived from the Lindahl constraint
associated with V . By definition, x′i(ω, B′) = xi(ω, Bω

i ), which in turn equals x0(Bω
i ∩Aω

i )
according to the Lindahl constraint in V . Adding across i, it follows that∑

i∈I

x′i(ω, B′) =
∑
i∈I

xi(ω, Bω
i ) =

∑
i∈I

x0(Bω
i ) = x0(B̂) = x′0(B

′),

since the Bω
i are disjoint and their union equals B̂. Therefore, x′ derives a feasible so-

lution for U from any feasible solution for V . By Assumption 4.2, vi(ω, τ, ϕ, aτ , zτ ) =
vi(ω, τ, aτ , zτ ) for any ϕ such that i = ϕ(ω), therefore∫

vi(ω, τ, ϕ, aτ , zτ )dxi(ω, τ, ϕ, aτ , zτ ) =
∫

vi(ω, τ, aτ , zτ )dxi(ω, τ, ϕ, aτ , zτ ),

which in turn equals
∫

vi(ω, τ, aτ , zτ )dx′i(ω, τ, aτ , zτ ). Hence, the value of the objective in
V at x equals that in U at x′. It follows that U(q) ≥ V (q), since for any feasible solution x
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to V there is a feasible solution x′ to U with the same value (so an optimal solution to V

is feasible for U).

To show that U(q) ≤ V (q), consider any x̂ = {x̂i : i ∈ I ∪ {0}} feasible for U . By the team
constraint in U ,

∑
i x̂i(ω) = x̂0, and in particular x̂i(ω) is absolutely continuous with respect

to x̂0. By the Radon-Nikodym Theorem (see Folland, 1999, page 90), x̂i(ω) has a Radon-
Nikodym derivative ĝω

i ∈ L1
+(x̂0) such that xi(ω, B) =

∫
B ĝω

i dx0. Fix any α = (τ, aτ , zτ )
with ω ∈ τ and let I(ω, α) = {i ∈ I : ĝω

i (α) > 0}. If I(ω, τ, aτ , zτ ) is a singleton for every
ω ∈ τ then let ϕ̂(ω) = I(ω, τ, aτ , zτ ) and

gω
i (τ, ϕ, aτ , zτ ) =

{
ĝω
i (τ, aτ , zτ ) if ϕ = ϕ̂

0 otherwise.

Next, suppose I(ω, τ, aτ , zτ ) is not a singleton. Pick any i(ω) ∈ I(ω, τ, aτ , zτ ) for every
ω ∈ τ . This defines a fill ϕ̂, given by ϕ̂(ω) = i(ω). Let ĝ(α) = min{gω

i(ω)(ω, α) : ω ∈ τ},
which is greater than zero since there are finitely many ω ∈ τ and i(ω) ∈ I(ω, α), and define

gω
i(ω)(ω, τ, ϕ, aτ , zτ ) = ĝ(α).

Subtract ĝ(α) from ĝω
i(ω)(α) for every ω ∈ τ and repeat the previous algorithm. At every

stage of this algorithm, at least one element from at least one I(ω, α) is removed, and
therefore (since each I(ω, α) is finite and there are finitely many ω ∈ τ) all the elements
in I(ω, α) will be removed after finitely many repetitions of the algorithm. Applying this
finitely iterated algorithm to each α eventually leads to a family of functions {gω

i }. We
construct {xi(ω)} as follows. From x̂i(ω), let For any Borel subset B ⊂ Aω

i , let xi(ω, B) =∫
B′
∑

ϕ gω
i (τ, ϕ, aτ , zτ )dx0(τ, aτ , zτ ), where B′ = {(τ, aτ , zτ ) : (∃ϕ)((τ, ϕ, aτ , zτ ) ∈ B)}. De-

fine x0 according to the Lindahl constraint for V . This leads to an x that is feasible for V ,
since it is feasible at every step of the algorithm. It now follows that any x̂ feasible for U

leads to an x that is feasible for V with the same value (since individual preferences as well
as trading possibilities are independent of ϕ), so an optimal solution for U leads to a feasible
solution for V with the same value. Therefore, U(q) ≤ V (q), and finally U(q) = V (q). �

Proposition 4.4. We will use the notation developed in the proof of Proposition 4.3. The
proof is similar to the previous results resting on duality. Let

X = M(A′)×
n∏

i=1

m∏
ω=1

M(A′
ω), Y = RI × R` ×

m∏
ω=1

M(A′
ω),

with dual spaces

X∗ = C(A′)×
n∏

i=1

m∏
ω=1

C(A′
ω), Y ∗ = RI × R` ×

m∏
ω=1

C(A′
ω).
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That these spaces coincide with the domain and range spaces of the primal and the dual,
respectively, is verified by inspection. The confirmation that indeed the primal and dual
have mutually adjoint constraint operators is verified by the approach of Theorem 3.4 as
well as that U is Lipschitz. This completes the proof. �

Theorem 4.6. By Proposition 3.10, Pareto efficiency is equivalent to solving the planner’s
problem. By Proposition 4.4, there is no duality gap, so by Theorem C.1, the result follows,
since there exists a solution to the primal (by Weierstrass’ Theorem). �

B Correlated Equilibrium in Continuous Games

Let I be a finite set of individuals, let (Ai, di) be a compact metric space of individual actions
for every i ∈ I, and let Bi = B(Ai) denote its Borel σ-algebra, the smallest σ-algebra that
includes every open set defined according to the metric di. Let

A =
n∏

i=1

Ai

be the product space of action profiles, endowed with the product σ-algebra. Let ∆(A)
stand for the set of regular, Borel probability measures on A, with typical element µ, called
a correlated strategy. Every individual i has a given utility function vi : A → R that is
assumed continuous with respect to a ∈ A.

Definition B.1. µ ∈ ∆(A) is a correlated equilibrium if given i ∈ I, bi ∈ Ai, and Bi ∈ Bi,∫
Bi×A−i

vi(bi, a−i)dµ(a) ≤
∫

Bi×A−i

vi(a)dµ(a).

Clearly, this definition coincides with that for finitely many actions when A is a finite set.

Lemma B.2. The set of correlated equilibria is a compact, convex set.

Proof. Let µ and ν be correlated equilibria and consider λ = pµ+(1−p)ν, for any p ∈ [0, 1].
By the linearity of integration with respect to measures, it follows that

∫
fdλ = p

∫
fdµ +

(1 − p)
∫

fdν, for any bounded, Borel measurable f , and convexity follows. Compactness
follows because the set of correlated equilibria is weak∗ closed (if µn →wk∗ µ then

∫
fdµn →∫

fdµ for any bounded, continuous f : A → R, and viχBi is approximable by bounded,
continuous functions by Egoroff’s Theorem, where χ is a characteristic function), the set of
correlated strategies is weak∗ compact by Alaoglu’s Theorem, and a closed subset of any
compact set is compact. �
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Next, we show existence of correlated equilibrium by extending Myerson’s (1997) proof,
taken from Nau and McCardle (1990), to continuous games. We begin by defining the
continuous version of the strategic incentive problem, followed by its dual. Then we appeal
to Theorem 1 in Gretsky et al.(2002), which requires a Lipschitz calculation to finally prove
existence. Their relevant results and some preliminaries are collected in Appendix C.

B.1 Primal

Consider the following linear program.

inf
α≥0,β

β s.t.

(∀i ∈ I, ai ∈ Ai)
∫

Ai

dαi(bi|ai) = 1

(∀a ∈ A) β +
n∑

i=1

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai) ≥ 0.

The spaces X of choice variables and Y of right-hand side constraints are given by

X = R×
n∏

i=1

C(Ai,M(Ai)), Y = C(A)×
n∏

i=1

C(Ai).

The space X of choice variables consists of the real number β and αi ∈ C(Ai,M(Ai)) for
every i, a continuous map from Ai to M(Ai), the space of regular, Borel measures on Ai

endowed with the weak∗ topology. It follows that for any ai, âi ∈ Ai sufficiently close to
one another, the measures αi(·|ai), αi(·|âi) will be arbitrarily close.

The primal problem is to minimize β subject to αi(·|ai) being a probability measure for
every ai ∈ Ai and for every a ∈ A, the sum of deviation gains across players exceeds
−β. The measures αi may be interpreted as players’ reactions to recommended behavior.
Multiplying the second constraint by −1, −β may be interpreted as the minimum sum of
utility surpluses to players from obeying recommendations versus deviating according to α.

Now we turn to defining the dual problem associated with this primal. To do so, we will
define the relevant dual spaces of choice variables and right-hand side constraints. Once
both the primal and dual are defined we will proceed to prove existence of correlated
equilibrium in continuous games.
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B.2 Dual

To find the dual problem, we must calculate the spaces X∗ and Y ∗. First we cite a useful
result (Conway, 1990, Theorem V.1.3, page 125).

Lemma B.3. If X is a locally convex space then (X∗, wk∗)∗ = X.

It follows that (M(Ai), wk∗)∗ = C(Ai). Therefore:

Proposition B.4. The dual spaces X∗ and Y ∗ of X and Y are given by

X∗ = R×
n∏

i=1

M(Ai, C(Ai))

Y ∗ = M(A)×
n∏

i=1

M(Ai).

Proof. That Y ∗ is the dual of Y follows directly from the Riesz Represenation Theorem,
whereas the duality of X∗ follows from Singer’s Representation Theorem (which extends
the Riesz Representation Theorem to vector-valued measures). �

Theorem B.5. The dual problem is given by

sup
µ≥0,λ

n∑
i=1

∫
Ai

dλi s.t.∫
A

dµ = 1

(∀i ∈ I, bi ∈ Ai, Bi ∈ B(Ai)) λi(Bi) +
∫

Bi×A−i

[vi(bi, a−i)− vi(a)]dµ(a) ≤ 0

Before proving the theorem, we state and prove the following useful results.

Lemma B.6. For any (µ, λ) ∈ X, the map Φ : Ai → M(Ai) defined by

Φ(bi)(Bi) = λi(Bi) +
∫

Bi×A−i

[vi(bi, a−i)− vi(a)]dµ(a)

is continuous.

Proof. Since vi is continuous, if {bn
i } is a sequence in Ai such that bn

i → bi ∈ Ai then
vi(bn

i , a−i) → vi(bi, a−i). Since A is compact, vi is bounded above by some vi < +∞, for
which

∫
Bi×A−i

vidµ = viµ(Bi ×A−i) ≤ vi.

By the Bounded Convergence Theorem,∫
Bi×A−i

vi(bn
i , a−i)dµ(a) →

∫
Bi×A−i

vi(bi, a−i)dµ(a),

therefore Φ(bn
i )(Bi) → Φ(bi)(Bi) for every Borel set Bi ∈ B(Ai), as required. �
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Corollary B.7. For any (µ, λ) ∈ X, the map Ψ : B(Ai) → C(Ai) defined by

Ψ(Bi)(bi) = λi(Bi) +
∫

Bi×A−i

[vi(bi, a−i)− vi(a)]dµ(a)

is a vector measure.

Proof. For any countable family {Bn
i } of disjoint Borel sets, we must show that Ψ(

⋃
n Bn

i ) =∑
n Ψ(Bn

i ). For any bi ∈ Ai, Ψ(
⋃

n Bn
i )(bi) =

∑
n Ψ(Bn

i )(bi) follows by σ-additivity of the
integral with respect to µ. That Ψ(

⋃
n Bn

i ) =
∑

n Ψ(Bn
i ) is a continuous function of bi

follows by the proof of Lemma B.6. �

Proof of Theorem B.5. We must show that the constraint set is generated by the adjoint
A∗ of A, where A : X → Y is defined by

A(α, β) =

([∫
dαi(bi|ai)

]
i∈I,ai∈Ai

,

[
β +

n∑
i=1

∫
[vi(bi, a−i)− vi(a)]dαi(bi|ai)

]
a∈A

)
.

By construction, A(x) ∈ Y , so y∗(A(x)) ∈ R for any y∗ ∈ Y ∗. The adjoint of A is defined
as the map A∗ that solves y∗(A(x)) = x(A∗(y∗)).

For any y∗ = (µ, λ) ∈ Y ∗, the dual problem identifies A∗ as

A∗(µ, λ) =

∫ dµ,

[
λi(Bi) +

∫
Bi×A−i

[vi(bi, a−i)− vi(a)]dµ(a)

]
i∈I,bi∈Ai,Bi∈B(Ai)

 .

By Corollary B.7, A∗ indeed maps Y ∗ to X∗. Notice that (µ, λ)(A(α, β)) equals

n∑
i=1

∫
Ai

∫
Ai

dαi(bi|ai)dλi(ai) + β

∫
A

dµ +
n∑

i=1

∫
A

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai)dµ(a),

whereas (α, β)(A∗(µ, λ)) equals

β

∫
dµ +

n∑
i=1

∫
Ai

∫
Ai

dαi(bi|ai)dλi(ai) +
∫

A

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai)dµ(a),

establishing the required duality between the primal and the dual problems. �

B.3 Existence of Correlated Equilibrium

To prove existence of correlated equilibrium, we show that the value function of the primal
problem is subdifferentiable at the primal constraint, after which Theorem 1 of Gretsky
et al.(2002) may be summoned (see Appendix C for details).
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Let v(b) denote the value function from the primal, where b = (b0,bi)i∈I ∈ Y :

v(b) = inf
α≥0,β

β s.t.

(∀i ∈ I, ai ∈ Ai)
∫

Ai

dαi(bi|ai) = bi,

(∀a ∈ A) β +
n∑

i=1

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai) ≥ b0(a).

Clearly, v(0) = 0. Furthermore, v(00,1) = 0, as the next lemma demonstrates with an
extension of the finite dimensional argument in Myerson (1997).

Lemma B.8. Let b0 = 0 and bi(ai) = 1 for every ai ∈ Ai. Then v(b) = 0.

Proof. First notice that v(b) ≤ 0, since setting β = 0 and

αi(Bi|ai) =

{
1 if ai ∈ Bi

0 otherwise

is a feasible solution that yields a value of zero. Indeed, if {an
i } is a sequence in Ai converging

to ai then {αi(·|an
i )} is a sequence of measures that converges to αi(·|ai) in the weak∗

topology (although not in the norm topology), since for any bounded, continuous f ,∫
f(bi)dα(bi|an

i ) = f(an
i )bi(an

i ) → f(ai)bi(ai)

because both f and bi are continuous and hence so is their product. Therefore, αi belongs
to C(Ai,M(Ai)). On the other hand, if αi has a stationary distribution then v(b) ≥ 0.
This requires the existence of a positive measure σi ∈ M(Ai) such that∫

Ai

αi(Bi|ai)dσi(ai) = σi(Bi)

for every Bi ∈ B(Ai). To prove that such αi-stationary distribution exists, define the map
F : ∆(Ai) → ∆(Ai) by

F (σi)(Bi) =
∫

αi(Bi|ai)dσi(ai).

F (σi) ∈ ∆(Ai) because for any sequence of disjoint, Borel subsets {Bn
i } ⊂ B(Ai),

αi(Bn
i |ai) ≤

∑
n

αi(Bn
i |ai) = αi(

⋃
n

Bn
i |ai) ≤ 1

for every ai ∈ Ai, so by the Bounded Convergence Theorem∑
n

∫
αi(Bn

i |ai)dσi(ai) =
∫ ∑

n

αi(Bn
i |ai)dσi(ai) =

∫
αi(
⋃
n

Bn
i |ai)dσi(ai).
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Next we show that F is continuous. If σn
i →wk∗ σi then∫

αi(Bi|ai)dσn
i (ai) →

∫
αi(Bi|ai)dσi(ai)

for every Bi, since αi(Bi|ai) is continuous in ai. Therefore, by Schauder’s Fixed Point
Theorem (Conway, 1990, Theorem V.9.5, page 150), there exists a probability measure
σi ∈ ∆(Ai) such that F (σi) = σi.

Next, we show that the primal constraints, β +
∑n

i=1

∫
Ai

[vi(bi, a−i) − vi(a)]dαi(bi|ai) ≥ 0
for every a ∈ A, have a left-hand side that is continuous in a. By assumption, vi(a) is
continuous, hence it suffices to argue continuity of

∑∫
vi(bi, a−i)dαi(bi|ai).

Given a sequence {an} ⊂ A converging to some a ∈ A, weak∗ continuity of α and continuity
of vi imply that ∫

vi(bi, a−i)dαi(bi|an
i ) →

∫
vi(bi, a−i)dαi(bi|ai)

for every i, as required.

Since continuity implies Borel measurability, for any positive measure µ ∈ M(A) on A, it
must be the case that∫

A
β +

n∑
i=1

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai)dµ(a) ≥ 0.

But letting µ =
∏

i σi, where σi is αi-stationary, implies (by Fubini’s Theorem) that∫
A

∫
Ai

[vi(bi, a−i)− vi(a)]dαi(bi|ai)dµ(a) = 0

for every i, therefore β ≥ 0, hence v(00,1i) ≥ 0, and finally v(00,1i) = 0. �

Next, we prove the following lemma.

Lemma B.9. v(b) = sup{b0(a) : a ∈ A} = max{b0(a) : a ∈ A}.

Proof. The second equality follows by Weierstrass’ Theorem. If bi ≡ 1 then by the proof
of Lemma B.8, it follows immediately that v(b) = sup{b0(a) : a ∈ A}, since any feasible
primal variable β must satisfy β ≥ b0(a) for every a ∈ A. Otherwise, assuming bi(ai) > 0
for every ai without loss of generality, letting α̂i = αi/bi we are back in the environment
of Lemma B.8 where there is a stationary distribution σi ∈ ∆(Ai) for α̂i. Defining dµ =∏

i bidσi, it again follows that β ≥ sup{b0(a) : a ∈ A}. On the other hand, v(b) ≤
sup{b0(a) : a ∈ A}, since β = sup{b0(a) : a ∈ A} and

αi(Bi|ai) =

{
bi(ai) if ai ∈ Bi

0 otherwise

is a feasible solution. �
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Proposition B.10. v(b) is subdifferentiable at b = (b0,bi) for bi > 0.

Proof. By Lemma B.9, |v(b)− v(y)| = |sup{bi} − sup{yi}| ≤ sup |bi − yi| = ‖bi − yi‖.
Therefore, by the third condition of Theorem C.2, the result follows. �

This leads us to the final result of this appendix.

Theorem B.11. Correlated equilibrium exists in continuous games.

Proof. By Proposition B.10, v is subdifferentiable at b = (1,0) as defined in Lemma B.8,
so by Theorem C.1, there exists a dual solution and there is no duality gap. A dual solution
at b incluides a correlated equilibrium. �

C Linear Programming

We recall basic results on linear programming from Gretsky et al.(2002). Let X and Y be
ordered, locally convex, topological vector spaces with dual spaces X∗ and Y ∗, respectively.
A linear program is a triple (A, b, c∗) such that A : X → Y is a continuous linear operator,
b ∈ Y , and c∗ ∈ X∗. The adjoint of A is denoted A∗ : Y ∗ → X∗.

Every linear program has two “sides:” the primal (P) and the dual (D).

sup
x∈X

{c∗(x) : Ax ≤ b, x ≥ 0} (P)

inf
y∗∈Y ∗

{y∗(b) : A∗y∗ ≥ c∗, y∗ ≥ 0} (D)

We say there is no gap if the value of the primal equals the value of the dual. Fixing the
operator A and the functional c∗, and viewing the constraint b as a variable, define the
value function of the primal to be v : Y → R ∪ {±∞} as

v(b) = sup
x∈X

{c∗(x) : Ax ≤ b and x ≥ 0}

The subdifferential of a concave function v : Y → R ∪ {±∞} at a point b ∈ dom v is

∂v(b) = {y∗ ∈ Y ∗ : y∗(y − b) ≥ v(y)− v(b) for all y ∈ Y },

where dom v = {b : v(b) < +∞}. We say v is subdifferentiable at b if ∂v(b) is non-empty.

Theorem C.1 (Theorem 1, Gretsky et al.(2002)). Consider any linear program (A, b, c∗).
Both the dual has a solution and there is no gap if and only if v is subdifferentiable at b.
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Suppose f : Y → R ∪ {+∞} is proper, concave, and Y is a normed, linear space.

Theorem C.2 (Section 5, Gretsky et al.(2002)). Each of the following conditions implies
the next and the last is equivalent to the subdifferentiability of f at b ∈ dom f .

1. f is upper semicontinuous and b is an interior point of dom f ;

2. f is locally Lipschitz at the point b, i.e., there exists δ > 0 such that f is Lipschitz
on dom f ∩B(b, δ);

3. f has bounded steepness at the point b, i.e., f(b)−f(y)
‖y−b‖ is bounded above.

For the value function of a linear program, upper semicontinuity is commonplace.

Lemma C.3 (Lemma 1, Gretsky et al.(2002)). If the value function v for a linear program
on ordered normed linear spaces is proper, then v is an upper semicontinuous extended
real-valued (concave and homogeneous) function.

Proposition C.4. Given a linear program (A, b, c∗) without duality gap, if x is feasible for
the primal and y∗ is feasible for the dual then the following are equivalent assertions.

1. x solves the primal and y solves the dual.

2. c∗(x) = y∗(Ax) = x(A∗y∗) = y∗(b).

3. x solves sup{c∗(x)− y∗(Ax) : x ≥ 0} and y∗ solves inf{y∗(b)− x(A∗y∗) : y∗ ≥ 0}.

Proof. (1) ⇔ (2): For any feasible x and y∗, we must have c∗(x) ≤ y∗(Ax) = x(A∗y∗) ≤
y∗(b). Since there is no duality gap, c∗(x) = y∗(b) if and only if x solves the primal
and y∗ solves the dual. (2) ⇒ (3): Since c∗(x) − y∗Ax ≤ 0 for any x ≥ 0 (because
c∗ ≤ y∗A) and y∗(b)− y∗Ax ≥ 0 for any y∗ ≥ 0 (because Ax ≤ b). (3) ⇒ (2): Notice that
sup{c∗(x)−y∗(Ax) : x ≥ 0} = 0, since x = 0 is feasible and y∗ satisfies c∗ ≤ y∗A. Similarly,
inf{y∗(b) − x(A∗y∗) : y∗ ≥ 0} = 0, too. By definition of the adjoint, y∗(Ax) = x(A∗y∗),
therefore c∗(x) = y∗(Ax) = x(A∗y∗) = y∗(b). �
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