A Theory of Business Transfers

Anmol Bhandari

Minnesota

Paolo Martellini
Wisconsin
Ellen McGrattan
Minnesota

Motivation

Privately-owned firms

- Account for $1 / 2$ of US business net income
- Dominate discussions on growth, wealth inequality, tax policy
- But pose challenge for
- theory: technology of capital accumulation and transfer
- measurement: no reliable data on private wealth
- This paper:
- propose a theory of firm dynamics and capital allocation that is appropriate for such firms
- use IRS data to bring discipline to the theory
- Study business taxation

What do we know about Private Business Capital?

What do we know about Private Business Capital?

- Transferred assets are primarily intangible (from form $8594 \approx 70 \%$)
- Customer bases and client lists, non-compete covenants
- Licenses and permits, trademarks, tradenames
- Workforce in place
- Goodwill and on-going concern value
- Assets are sold as a group
- Sale requires time to find buyers/negotiate (from brokered data ≈ 290 days)
\Rightarrow Add intangible investment and transfers to Hopenhayn-style model

Related Literature

- Firm Dynamics
- Hopenhayn (1992), Hsieh and Klenow (2009, 2014), Sterk et al. (2021)
- Capital Reallocation
- Holmes and Schmitz (1990), Ottonello (2014), Guntin and Kochen (2020), Gaillard and Kankanamge (2020), David (2021)
- Entrepreneurship and Private Wealth
- Cagetti and De Nardi (2006), Saez and Zucman (2016), Smith et al. (2019)
- Capital Gain Taxes and Wealth Taxes
- Chari et al. (2003), Scheuer and Slemrod (2020), Guvenen et al. (2021), Agersnap and Zidar (2021)

Environment

- Infinite horizon, continuous time
- Demographics:
- total population N : workers and business owners
- newborns enter the economy, choose occupation, exit at rate δ
- Preferences: risk-neutral
- Workers supply labor inelastically

Environment

- Production technology:

$$
y(s, n)=z(s) k(s)^{\alpha} n^{\gamma}
$$

where n is a rentable input (labor)

- Productivity, z
- non-transferable
- evolves according to $\mathrm{dz}=\mu z \mathrm{dt}+\sigma z \mathrm{~d} \mathcal{B}$
- Business capital, k
- transferable
- built through investment: $\mathrm{dk}=\theta-\delta_{k}$, convex $\operatorname{cost} C(\theta)$
- Entry technology: entry cost $n_{0} w$, draw $s \sim G(s)$, where $s=(z, k)$
- Capital:
- Firms access market at rate η
- Bilaterally traded:
- type $s=(z, k)$ can trade with any type $\tilde{s}=(\tilde{z}, \tilde{k})$
- Allocation between s and \tilde{s} :
- $k^{m}(s, \tilde{s}) \in\{k(s)+k(\tilde{s}), 0\} \Rightarrow$ indivisibility (extension w/ costly divisibility)
- Price paid by s to $\tilde{\text { s }}$
- $p^{m}(s, \tilde{s})$, negative if selling
(extension w/ financing constraints: $p^{m}(s, \tilde{s}) \leq \xi y(s, n)$)
- Labor:
- competitive spot markets

Owner's Value

- The owner's value solves the following HJB

$$
\begin{aligned}
(r+\delta) V(s) & =\underbrace{\max _{n} y(s, n)-w n}_{\text {production }}+\underbrace{\max _{\theta} \partial_{k} V(s)\left(\theta-\delta_{k}\right)-C(\theta)}_{\text {investment }} \\
& +\underbrace{\mu z \partial_{z} V(s)+\frac{1}{2} \sigma^{2} z^{2} \partial_{z z} V(s)}_{\text {evolution of productivity }}+\underbrace{\max _{\lambda} \eta W(s ; \lambda)}_{\text {trade }}
\end{aligned}
$$

where

$$
W(s ; \lambda)=\int\left[V\left(z, k^{m}(s, \tilde{s})\right)-V(z, k)-p^{m}(s, \tilde{s})\right] \lambda(s, \tilde{s}) d \tilde{s}
$$

and

$$
\int \lambda(s, \tilde{s}) d \tilde{s}+\lambda(s, 0)=1
$$

Free Entry and Law of Motion

- Occupational Choice ("free-entry")

$$
\int V(s) d G(s)-n_{0} w \leq \frac{w}{r+\delta}, \quad \phi_{e} \geq 0, \quad w / \text { c.s. }
$$

- Distribution over the state space ϕ evolves according to the Kolmogorov Forward (KF) equation

$$
\dot{\phi}=\Gamma(\theta, \lambda ; \phi)+\phi_{e}
$$

- Evolution of ϕ induced by
\rightarrow investment \rightarrow trade \bullet entry/exit \rightarrow individual productivity process

Definition of Recursive Equilibrium

A (stationary) equilibrium is a set of value functions $V(s)$, policy functions for investment $\theta(s)$ and trade $\lambda(s, \tilde{s})$, terms of trade $\left(k^{m}(s, \tilde{s}), p^{m}(s, \tilde{s})\right)$, wage w, and distribution over the state space $\phi(s)$ that satisfy

- business owners' optimality
- no-arbitrage in occupational choice
- market clearing
- consistency of measures

Discussion of the Capital Trading Protocol

\Rightarrow Trade of multiple differentiated goods

- Standard approach:
- CES demand/monopolistic competition
- frictional market with fixed point on matching set
- Our model:
- rich heterogeneity in market participants
- friction less matching with a competitive forces

Trading Protocol: Implementation

- Who trades with whom?
- Solve assignment problem maximizing total gains
- How are terms of trade determined?
- Compute shadow prices from assignment problem
- Flexible block structure: $(\phi, V) \rightarrow\left(\lambda, p^{m}, k^{m}\right) \rightarrow\left(\phi^{\prime}, V^{\prime}\right)$
- Easy to extend to non-transferable utility environment

Properties of the Equilibrium

- Competitive prices are independent of seller's z

$$
p^{m}(s, \tilde{s})=\mathcal{P}(\kappa(\tilde{s}))
$$

Intuition: competitive nature of the equilibrium, same good sold at same price

- Pairwise stability: $\exists(s, \tilde{s})$ and feasible trade that makes the pair (strictly) better off
- Competitive allocation solves the planner's problem

$$
\int \exp (-\rho t) \int\left[y(s)-C(\theta(s, t))-m(t) c_{e}\right] \phi(s, t) \mathrm{dtds}
$$

given $\phi(s, 0)=\phi^{s s}(s)$

Using the Model

- Calibration using data on
- firm dynamics
- business transfers
- Model deliverables
- dispersion in mpk
- business price and value
- Tax Policy Analysis

Calibration

Parameter	Value
Discount rate	$r=0.06$
Share of rentable input	$\gamma=0.70$
Entry distribution, G	mass point at $z=z_{0}, k=1$
Death rate, depreciation rate	$\delta=0.1, \delta_{k}=0.058$
Investment cost, $C(\theta)=A \theta^{\rho}$	$A=13, \rho=2$
Trading rate	$\eta=1$
Returns to scale	$\alpha=0.09$
Productivity process	$\mu_{z}=0, \sigma_{z}=0.075$

Identification Strategy

- Life-cycle firm dynamics \Rightarrow productivity process, rentable input share, exit rate
- Transaction data \Rightarrow production, investment, meeting technology

Identification Strategy

- Life-cycle firm dynamics \Rightarrow productivity process, rentable input share, exit rate
- Transaction data \Rightarrow production, investment, meeting technology

Key parameters

- meeting rate η
- investment cost $C(\theta)=A \theta^{\rho}$
- output elasticity wrt $k, y(z, k, n)=z k^{\alpha} n^{\gamma}$
- volatility of $\log (z), \sigma_{z}$

Key moments from data

- brokered sales: time to sell
- IRS filings
- relative size of buyer/seller
- sale price/wage bill
- level and volatility of growth rates

Life-Cycle of the Firm

- Declining growth rates over the life cycle (from 5% to $<1 \%$)

- Buyer's size does not scale up with seller's
- Lower price per unit for large sellers (less competition)

Dispersion in MPK

- Idiosyncratic change in productivity \rightarrow input reallocation toward higher MPK
- Dispersion in marginal product of capital induced by
- decentralized trading
- indivisibility of asset sold
- Standard deviation of log-mpk: 55%

Business Wealth

- Finance textbook: Present value of owner's dividend
- Model counterpart: V(s)
- SCF respondent: Answer to the survey question-"What could you sell it for?"
- Model counterpart: $\mathcal{P}(k)$

Model Predictions for Business Wealth

- Heterogeneity in transferable share and returns
- Inputs to analysis of capital and wealth taxation

Distribution Pctile	Transferable Share $\frac{\mathcal{P}(k)}{V}$	Income Yield $\frac{y-w n-C(\theta)}{V}$
5	0.00	-0.06
25	0.14	0.09
50	0.21	0.10
75	0.29	0.11
95	0.43	0.13
99	0.57	0.14

Business Taxation

- Recent debate on business taxation
- What to tax
- flows: business income
- stocks: business capital or wealth (Guvenen et al. 2022)
- transfers: capital gains (Sarin et al 2022, Agersnap and Zidar 2021)
- Our model can speak to all three forms of taxation

Tax Instruments and Welfare

Comparison of

- capital gains: $\tau_{c} \mathcal{P}(k)$ [capital transaction]
- business income: $\tau_{b}(y-w n)$
- business capital: $\tau_{k} \mathcal{P}(k)$ [capital ownership]
- wealth: $\tau_{v} V$

Welfare measure: steady-state value at birth conditional on raising revenue R

- by indifference at entry, all agents' ex-ante value is proportional to w

Main Results:Welfare

- For most levels of R, exclusively use τ_{b}

Main Results: Investment and MPK dispersion

Intuition

Compared with tax on income,

- tax on capital gains
- distorts capital reallocation across firms
- decreases investment to sell
- tax on business capital
- higher incidence on low and medium z firms which are more elastic
- tax on wealth \approx tax on income + tax on option value of selling capital

Practical implementation: k and V are not observed

Next Steps

- Add other salient features
- undiversifable risk
- other motives (retirements, etc)
- financing constraints
- Fuller study of tax policy
- Buyers and sellers both report sale
- seller has to pay capital gains
- buyer has to report depreciable assets
- Price allocated across asset types
- seller wants to allocate to long-term
- buyer wants to allocate to short-term
\Rightarrow Conflict of interest and thus consistent reporting

Define gains from trade between s, \tilde{s} :

$$
X(s, \tilde{s})=\max _{k^{m} \in\{k(s)+k(\tilde{s}), 0\}}\left\{V\left(z(s), k^{m}\right)+V\left(z(\tilde{s}), k(s)+k(\tilde{s})-k^{m}\right)\right\}-(V(s)+V(\tilde{s}))
$$

$$
\begin{aligned}
& Q(\phi, V)=\max _{\pi \geq 0} \Sigma_{s, \tilde{s}} X(s, \tilde{s}) \pi(s, \tilde{s}) \\
& \text { s.t. } \Sigma_{\tilde{s}} \pi(s, \tilde{s})+\pi(s, 0)=\frac{\phi(s)}{2} \forall s \quad\left[\mu^{a}(s)\right] \\
& \Sigma_{\tilde{s}} \pi(\tilde{s}, s)+\pi(0, s)=\frac{\phi(s)}{2} \forall s \quad\left[\mu^{b}(s)\right]
\end{aligned}
$$

Auxiliary Problem: Static Planner

Lemma

- $W(s)=\frac{\partial Q}{\partial \phi(s)}=\frac{\mu^{a}(s)+\mu^{b}(s)}{2} \equiv \mu(s)$
- $\lambda(s, \tilde{s})=\frac{2 \pi(s, \tilde{s})}{\phi(s)}$
- $k^{m}(s, \tilde{s})=\arg \max X(s, \tilde{s}) \quad p^{m}(s, \tilde{s})=V\left(z, k^{m}(s, \tilde{s})\right)-V(z, k)-W(s)$
- Multipliers $\mu=\mu^{a}=\mu^{b}$ capture gains from trade

$$
\mu=\nabla_{\phi} Q
$$

- Prices implement gains from trade

$$
p^{m}(s, \tilde{s})=V\left(z(s), k^{m}(s, \tilde{s})\right)-\mu(s)
$$

- Post-trade values are intuitively connected

$$
V(s)=\max y(s)-C(\theta)+(1-\delta) \beta \mathbb{E} \mu\left(s^{\prime}\right)
$$

- From the minimax thm, the solution of the primal problem is equal to the solution of the dual
- The multipliers in the primal are equal to the choice variable in the dual, and vice versa

$$
\begin{array}{ll}
Q(\phi)=\min _{\mu^{a} \geq 0, \mu^{b} \geq 0} \Sigma_{s}\left(\mu^{a}(s)+\mu^{b}(s)\right) \frac{\phi(s)}{2} \\
\text { s.t. } \mu^{a}(s)+\mu^{b}(\tilde{s}) \geq X(s, \tilde{s}) \quad \forall s, \tilde{s} \quad[\pi(s, \tilde{s})]
\end{array}
$$

- After-trade values for buyers $\left(v_{b}\right)$ and sellers (v_{s})
- $v_{b}(s, \hat{k} ; p)$: value from buying \hat{k}
- $v_{s}(s, 0 ; p)$: value from selling $k(s)$
- Matching probability

$$
\begin{aligned}
& \lambda(s, \hat{k} ; p)=\exp \left(\frac{v_{b}(s, \hat{k} ; p)-W(s)}{\sigma}\right) \\
& \lambda(s, 0 ; p)=\exp \left(\frac{v_{s}(s, 0 ; p)-W(s)}{\sigma}\right)
\end{aligned}
$$

where $W(s)=\mathbb{E} \max \left\{v_{b}(s, \hat{k} ; p), v_{s}(s, 0 ; p)\right\}$

- Find $\{p(s)\}$ such that $\forall \hat{k}$

$$
\underbrace{\int \lambda(s, \hat{k} ; p)}_{\text {demand }}=\underbrace{\int \lambda(s, 0 ; p) \mathbb{I}\{k(s)=\hat{k}\}}_{\text {supply }}
$$

Price Cap and Taxes

- Under capital gain $\operatorname{tax} \tau$,

$$
\begin{aligned}
v_{b}(s ; \hat{k}) & =V(z, k(s)+\hat{k})-p(\hat{k}) \\
v_{s}(s) & =V(\tilde{s}, 0)+(1-\tau) p(k(s))
\end{aligned}
$$

- Under cap on paid price equal to $\xi y(s, n)$

$$
\begin{aligned}
v_{b}(s ; \hat{k}) & = \begin{cases}V(z, k(s)+\hat{k})-p(\hat{k}) & \text { if } p(\hat{k}) \leq \xi y(s, n) \\
-\infty & \text { o/w }\end{cases} \\
v_{s}(s) & =V(\tilde{s}, 0)+p(k(s))
\end{aligned}
$$

Feasibility and Pair-wise stability

Terms of trade $\left\{p^{m}, k^{m}\right\}$ satisfy

- feasibility

$$
\begin{aligned}
& k^{m}(s, \tilde{s}) \in\{k(s)+k(\tilde{s}), 0\} \\
& k^{m}(s, \tilde{s})+k^{m}(\tilde{s}, s) \leq k(s)+k(\tilde{s}) \\
& p(s, \tilde{s})+p(\tilde{s}, s) \geq 0
\end{aligned}
$$

- pair-wise stability: $\exists(s, \tilde{s})$ and feasible trade that makes the pair (strictly) better off

Understanding the Tax Results

Who pays more from taxing business income instead of business capital?

