

A THEORY OF BUSINESS TRANSFERS

Anmol Bhandari, Paolo Martellini, Ellen McGrattan

- Privately-owned firms
 - \circ Account for 1/2 of US business net income
 - Relevant for growth, wealth, tax policy/compliance
- But pose challenge for theory and measurement

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- † Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

† Still very much in progress

Form 8594 (Rev. November 2021) Department of the Treasury	nt of the Treasury			OMB No. 1545-0074 Attachment Sequence No. 169	_	
Internal Revenue Service Name as shown	v	s and the	Identifying number as shown		-	
	x that identifies you:				_	
Purchaser	Seller				-	
	r party to the transaction		Other party's identifying num	ber	-	
Address (num	ber, street, and room or suite no.)				-	
City or town,	state, and ZIP code					
2 Date of sale	3 1	Total sales	s price (consideration)			
Part II Origina	al Statement of Assets Transferred				_	
4 Assets	Aggregate fair market value (actual amount for Class I)		Allocation of sales p	ice	_	
Class I	\$	\$				
		•			K	
Class II	\$	\$			_	Coal / comition
Class III	\$	\$				Cash/securities
		•			\leftarrow	Inventories
Class IV	\$	\$				
Class V	\$	\$			\leftarrow	Fixed assets
Class VI and VII	\$	\$			\leftarrow	Sec. 197 intangibles
Total	\$	\$				0
5 Did the purch written docum If "Yes," are th	aser and seller provide for an allocation of the sales prid nent signed by both parties?		sses I, II, III, IV, V, VI, and VI	Yes No	_	
not to compe	se of the group of assets (or stock), did the purchaser al te, or enter into a lease agreement, employment contra with the seller (or managers, directors, owners, or employ	act, man	agement contract, or simila		_	
	h a statement that specifies (a) the type of agreement and (not including interest) paid or to be paid under the agree					

• Transferred assets are primarily intangible

- Transferred assets are primarily intangible
 - ⇒ evidence in IRS Forms 8594, 8883 data shows intangible, non-liquid share is $\approx 60\%$

- Transferred assets are primarily intangible
 - $\circ\,$ Customer bases and client lists
 - Non-compete covenants
 - Licenses and permits
 - $\circ\,$ Franchises, trademarks, tradenames
 - Workforce in place
 - IT and other know-how in place
 - Goodwill and on-going concern value

 \Rightarrow Classified as Section 197 intangibles by IRS

- Transferred assets are primarily
 - $\circ~$ Intangible and neither pledgeable nor rentable

- Transferred assets are primarily
 - Intangible and neither pledgeable nor rentable
 - Sold as a group that makes up a business

- Transferred assets are primarily
 - $\circ~$ Intangible and neither pledgeable nor rentable
 - Sold as a group that makes up a business
 - \Rightarrow evidence in IRS Forms 8594, 8883 data

- Transferred assets are primarily
 - Intangible and neither pledgeable nor rentable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals

- Transferred assets are primarily
 - Intangible and neither pledgeable nor rentable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
 - \Rightarrow evidence in brokered sale data is \approx 290 days

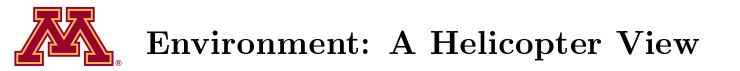
- Transferred assets are primarily
 - $\circ~$ Intangible and neither pledgeable nor rentable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
- \Rightarrow Existing models unsuitable for studying business transfers

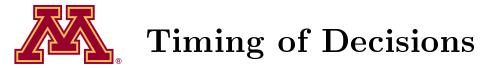
• Study firm dynamics

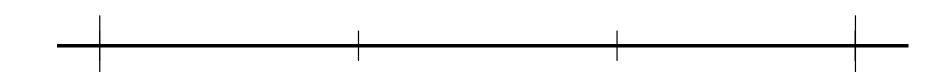
• Characterize competitive equilibrium

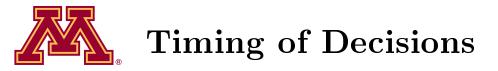
• Estimate wealth and impact of capital gains tax

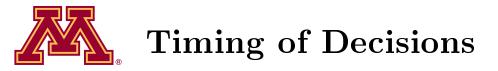
- Study firm dynamics with
 - $\circ~$ Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium

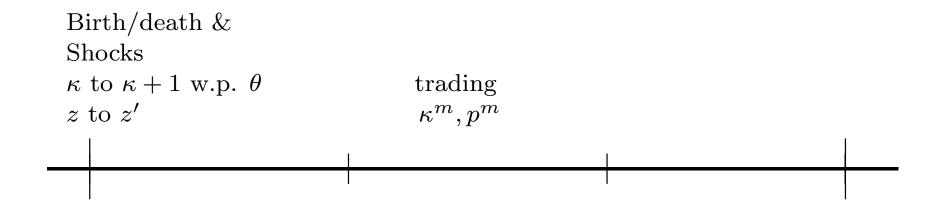

• Estimate wealth and impact of capital gains tax


- Study firm dynamics with
 - $\circ~$ Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium
 - Who trades with whom?
 - How are terms of trade determined?
 - What are the properties?
- Estimate wealth and impact of capital gains tax

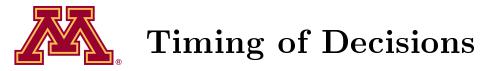


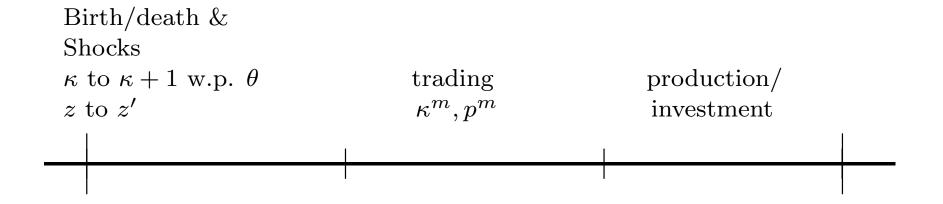

THEORY


- Infinite horizon with discrete time
- Preferences: (for today) owners are risk-neutral
- Technology:
 - Firms indexed by $s = (z, \kappa)$
 - Produce $y(s) = z(s)\kappa(s)^{\alpha} = \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} wn$
 - z: non-transferable capital with z'|z exogenous
 - κ : transferable capital
 - n: all external rented factors
 - $\circ \mbox{ Investment: } \theta = P\{\kappa(s') = \kappa(s) + 1\} \mbox{ at cost } C(\theta)$
- Birth/death: draw from G(s) at cost c_e and die at rate δ



Birth/death & Shocks κ to $\kappa + 1$ w.p. θ z to z'

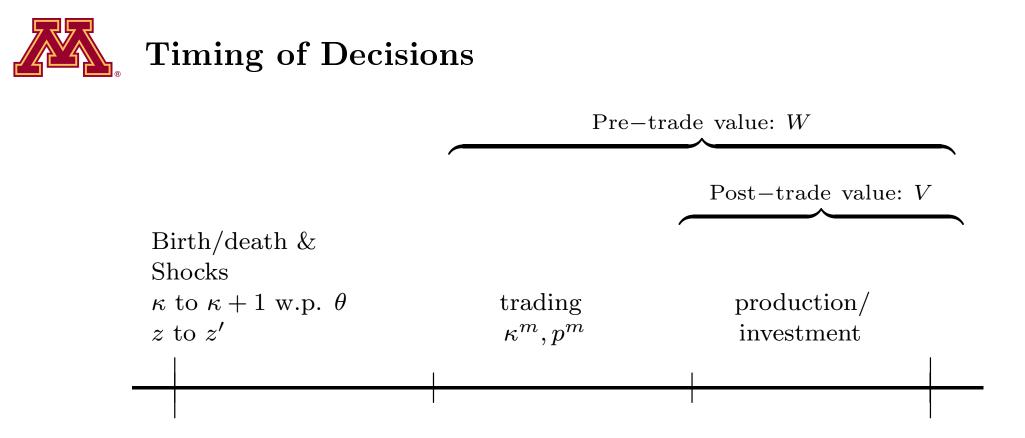




• Terms of trade for pair (s, \tilde{s})

 \circ Allocations: $\kappa^m(s,\tilde{s})$ is post-trade capital for s

• Prices: $p^m(s, \tilde{s})$ is payment by s to \tilde{s}



• Terms of trade for pair (s, \tilde{s})

• Allocations: $\kappa^m(s, \tilde{s})$ is post-trade capital for s

• Prices: $p^m(s, \tilde{s})$ is payment by s to \tilde{s}

• Terms of trade for pair (s, \tilde{s})

 \circ Allocations: $\kappa^m(s,\tilde{s})$ is post-trade capital for s

• Prices: $p^m(s, \tilde{s})$ is payment by s to \tilde{s}

Dynamic Program of Incumbent Firms

- Given prices and allocations $\{p^m(s, \tilde{s}), \kappa^m(s, \tilde{s})\}_{s, \tilde{s}}$
- Compute values:

$$V(s) = \max_{\theta \in [0,1]} z(s)\kappa(s)^{\alpha} - C(\theta) + (1-\delta)\beta \mathbb{E}W(s')$$

$$W(s') = \max_{\substack{\lambda(\tilde{s}) \ge 0 \\ \lambda_o \ge 0}} \int \underbrace{\left[V(z(s'), \kappa^m(s', \tilde{s})) - p^m(s', \tilde{s}) \right] \lambda(\tilde{s})}_{\text{value of trading with } \tilde{s}} + \underbrace{V(s') \lambda_o}_{\text{being alone}}$$

where $\{\lambda(\cdot), \lambda_o\}$ are probabilities over trading options

- Measures:
 - $\phi(s)$: firms of type s
 - $\phi_e(s)$: entrants of type s
 - o $\Lambda(s,\tilde{s})=\lambda(\tilde{s}|s)\phi(s)$: matches between s,\tilde{s}
 - $\Lambda_o(s) = \lambda_o(s)\phi(s)$: unmatched firms of type s
- Law of motion for ϕ :

$$\phi'(s) = \Gamma(\phi; \lambda, \lambda_o, \theta, \phi_e, k^m)$$

Recursive Equilibrium with Pairwise Stability

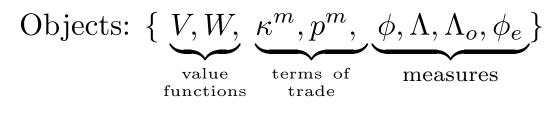
Objects: { $\underbrace{V, W, }_{\kappa^m, p^m, \phi, \Lambda, \Lambda_o, \phi_e}$ } value terms of measures functions trade

such that

- 1. firms optimize and entrants make zero profits
- 2. bilateral trades are feasible and pairwise stable
- 3. measures are consistent with decisions and stationarity

Conditions 1) and 3) are standard. Next, consider 2)

- Terms of trade satisfy
 - Feasibility:


$$\kappa^{m}(s,\tilde{s}) + \kappa^{m}(\tilde{s},s) \le \kappa(s) + \kappa(\tilde{s})$$
$$p^{m}(s,\tilde{s}) + p^{m}(\tilde{s},s) \ge 0$$

where
$$\kappa^m(s, \tilde{s}) \in \left\{ \underbrace{\kappa(s) + \kappa(\tilde{s})}_{\text{buy}}, \underbrace{\kappa(s)}_{\text{no trade}}, \underbrace{0}_{\text{sell}} \right\}$$

• Pairwise stability:

 $\not\exists$ feasible trade for (s, \tilde{s}) increasing pair's welfare

such that

1. V, W solve firms problems and entrants make zero profits 2. κ^m, p^m are feasible and pairwise stable 3. $\phi, \Lambda, \Lambda_o, \phi_e$ satisfy for all $A \subseteq S, m \ge 0$: $\phi(A) = \int \Lambda(ds \in A, d\tilde{s} \in S) + \Lambda_o(ds \in A)$ $\phi(A) = \int \Lambda(d\tilde{s} \in S, d\tilde{s} \in A) + \Lambda_o(ds \in A)$

$$\phi_e(A) = G(ds \in A)m$$
$$\phi'(A) = \Gamma(\phi; \lambda, \lambda_o, \theta, \phi_e, k^m)(A)$$

- Relative to models with
 - CES demand/ monopolistic competition
 - Frictional labor or asset markets
- Framework delivers (with few a priori restrictions)
 - Differentiated goods
 - Rich heterogeneity in market participants
 - Endogenously evolving matching sets

CHARACTERIZING EQUILIBRIA

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Efficient reallocation:
 - $\circ~10$ low types sell to 10 of the high types

How are Terms of Trade Determined?

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Price leaves high types indifferent between:

• Trading, with $\kappa = 2$ post-trade

• Not trading, with $\kappa = 1$ post-trade

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Capital allocations: $k^m(s_H, s_L) = 2, k^m(s_L, s_H) = 0$
- Prices: $p^m(s_H, s_L) = 1, p^m(s_L, s_H) = -1$
- Choice probabilities:

$$\lambda(s_H|s_L) = 1, \ \lambda(s_L|s_H) = 1/2, \ \lambda_o(s_L) = 0, \ \lambda_o(s_H) = 1/2$$

- Who trades with whom?
 - Solve assignment problem maximizing total gains
- How are terms of trade determined?
 - Compute shadow prices from assignment problem
- Can solve dynamic program iteratively
 - $\circ \text{ Update: } (\phi, V) \rightarrow \text{equilibrium objects} \rightarrow (\phi, V)$

• Imagine splitting our businesses in two

$$5 \begin{cases} z_L & z_L \\ z_L & z_L \\ z_L & z_L \\ z_L & z_L \\ z_L & z_L \end{cases} 5$$
$$10 \begin{cases} z_H & z_H \\ z_H & z_H \\ z_H & z_H \\ \vdots & \vdots \\ z_H & z_H \end{cases} 10$$

Monge-Kantorovich Assignment Problem

$$Q(\phi, V) = \max_{\substack{\pi_{s,\tilde{s}} \geq 0 \\ \pi_{o}, \tilde{\pi}_{o} \geq 0}} \int X(s, \tilde{s}) \pi_{s,\tilde{s}}(ds, d\tilde{s}) + V(s) \pi_{o}(ds) + V(\tilde{s}) \tilde{\pi}_{o}(d\tilde{s})$$
$$s.t. \int \pi_{s,\tilde{s}}(ds \in A, d\tilde{s} \in S) + \pi_{o}(ds \in A) = \phi(A)/2$$
$$\int \pi_{s,\tilde{s}}(ds \in S, d\tilde{s} \in A) + \tilde{\pi}_{o}(ds \in A) = \phi(A)/2$$

where the gains to trade are

$$X(s,\tilde{s}) = \max\{\underbrace{V(z(s),\kappa(s)+\kappa(\tilde{s}))}_{s \text{ buys}},\underbrace{V(s)+V(\tilde{s})}_{\text{no trade}},\underbrace{V(z(\tilde{s}),\kappa(s)+\kappa(\tilde{s}))}_{\tilde{s} \text{ buys}}\}$$

• Multipliers $\mu = \mu^a = \mu^b$ capture gains from trade

 $\mu = \nabla_{\phi} Q$

• Prices implement optimal gains from trade:

$$\underbrace{\mu(s)}_{\text{social}} = \underbrace{V(z(s), k^m(s, \tilde{s})) - p^m(s, \tilde{s})}_{= \text{private gains}}$$

• Updates of ϕ, V are easy to compute:

$$V(s) = \max \ y(s) - C(\theta) + (1 - \delta)\beta \operatorname{IE} \mu(s')$$
$$\phi'(s) = \Gamma(\phi; \pi, \pi_o, \theta, \phi_e, k^m)$$

• Competitive allocations maximize

$$\sum_{t} \beta^{t} \int \phi_{t}(s) [y(s) - C(\theta(s)) - m_{t}c_{e}]$$

• Competitive prices independent of z

• Competitive allocations maximize

$$\sum_{t} \beta^{t} \int \phi_{t}(s) [y(s) - C(\theta(s)) - m_{t}c_{e}]$$

• Competitive prices independent of z, eg,

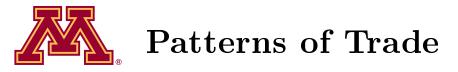
$$p^{m}(\tilde{s},s) = V(z(\tilde{s}),\kappa(s) + \kappa(\tilde{s})) - \mu(\tilde{s})$$
$$p^{m}(\tilde{s},s') = V(z(\tilde{s}),\kappa(s') + \kappa(\tilde{s})) - \mu(\tilde{s})$$

 $\Rightarrow p^m(\tilde{s}, s')$ depends on κ but not z

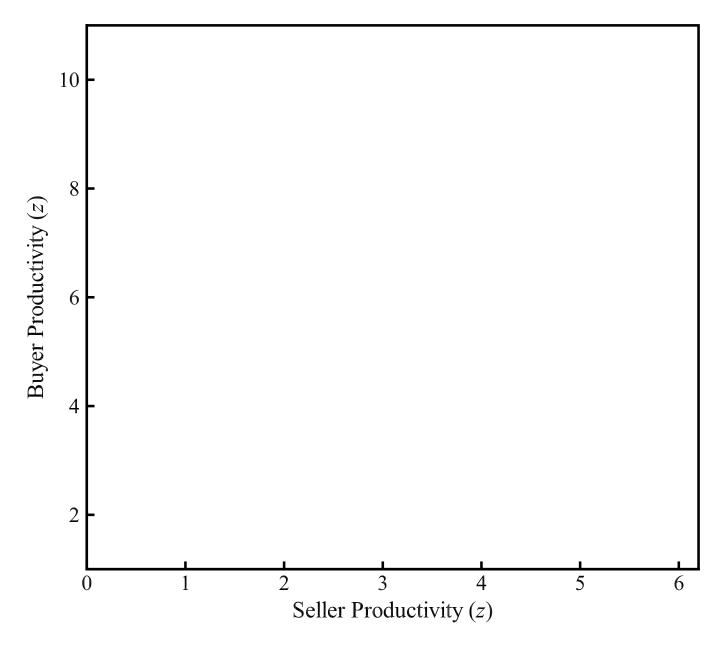
• Competitive allocations maximize

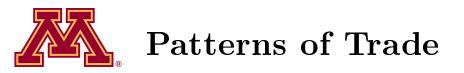
$$\sum_{t} \beta^{t} \int \phi_{t}(s) [y(s) - C(\theta(s)) - m_{t}c_{e}]$$

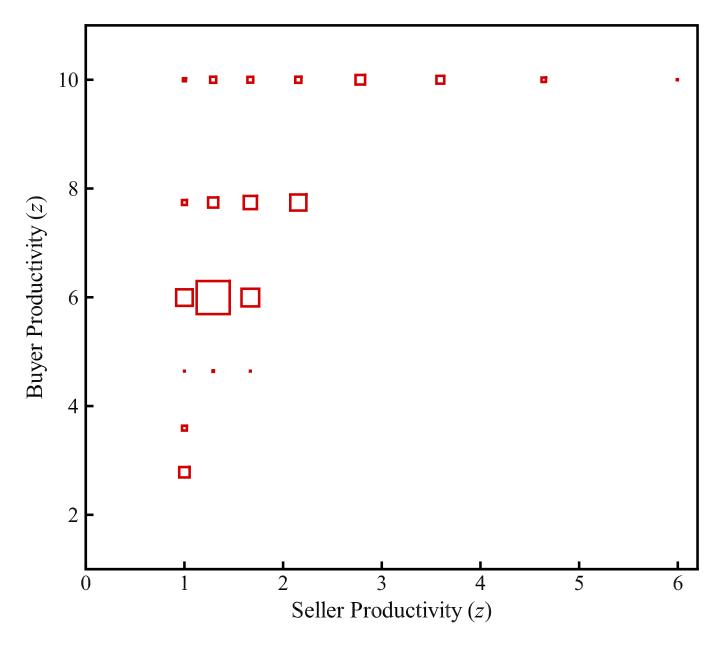
• Competitive prices independent of z


$$p^m(s,\tilde{s}) = \mathcal{P}(\kappa(s))$$

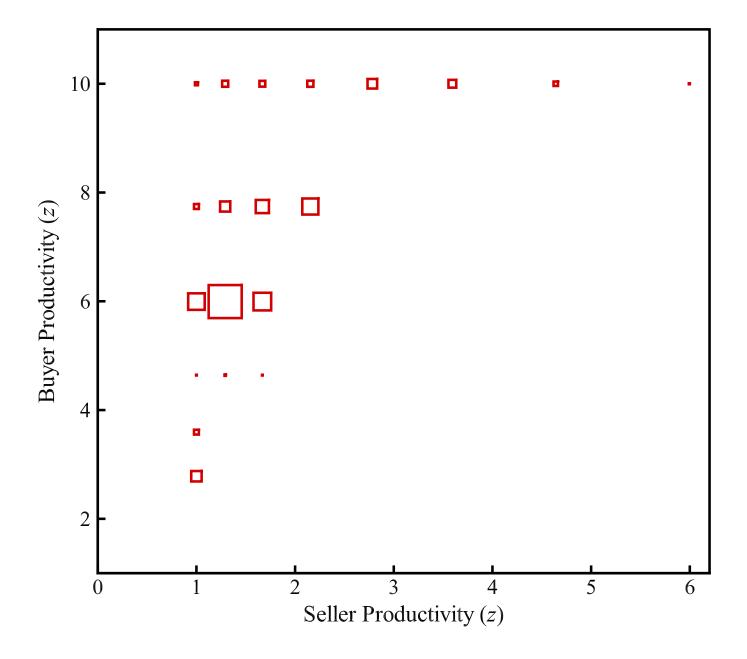
QUANTITATIVE RESULTS



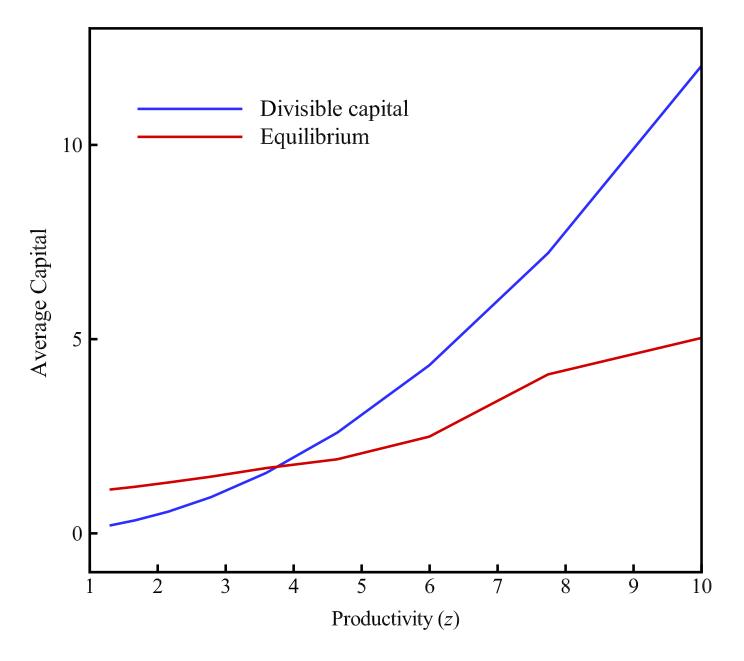

Description	Values
Returns to scale	$\alpha = 0.50$
Discount rate	$\beta = 0.95$
Investment cost, $C(\theta) = A\theta^{\rho}$	$A=10, \rho=2.0$
Productivity, $z' z $ AR(1)	$ \rho_z = 0.90, \sigma_z = 0.30 $
Entrant distribution, $\operatorname{Zipf}(z)$	tail = 1.20
Death rate	$\delta = 0.20$

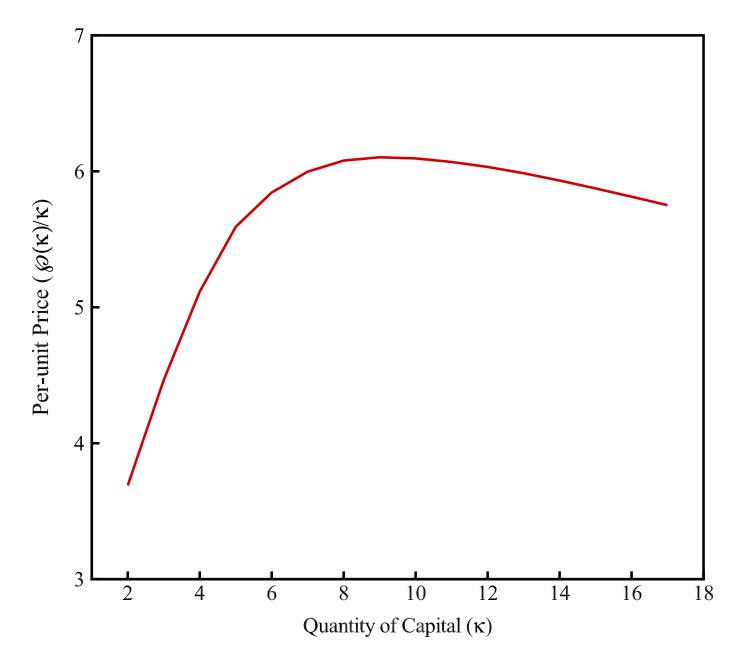


- Statistics to be matched to IRS data:
 - $\circ\,$ Roughly 4% of κ units traded each period
 - $\circ~$ Price is 4 to 7 times seller's income
 - Buyer's income is 2 to 4 times seller's income
- Who trades with whom?

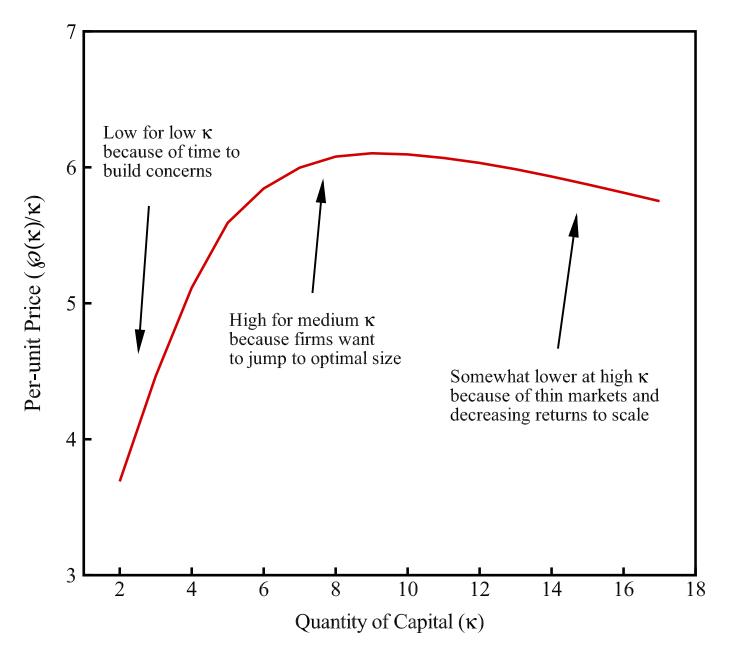


Capital Trades Upward in MPK Sense




- Compare to "misallocation" literature benchmark
 - Divisible versus indivisible capital
 - Rental versus no rental markets
- Compute *first-best*:

$$\kappa^{FB}(s) \in \operatorname{argmax} \int z(s) [\kappa^{FB}(s)]^{\alpha} \phi(s) ds$$
$$\int \phi(s) \kappa^{FB}(s) ds = \int \phi(s) \kappa(s) ds$$



Dispersion in Prices without Frictions

- Finance textbook: present value of owner dividends
- SCF survey: price if sold business today
- Both have clear model counterparts

- Finance textbook: present value of owner dividends, V(s)
- SCF survey: price if sold business today, $\mathcal{P}(\kappa(s))$
- Both have clear model counterparts

Productivity	Transferable Share	Income Yield
Level (z)	$\mathcal{P}(\kappa(s))/V(s)$	[y(s) - C(heta(s))]/V(s)

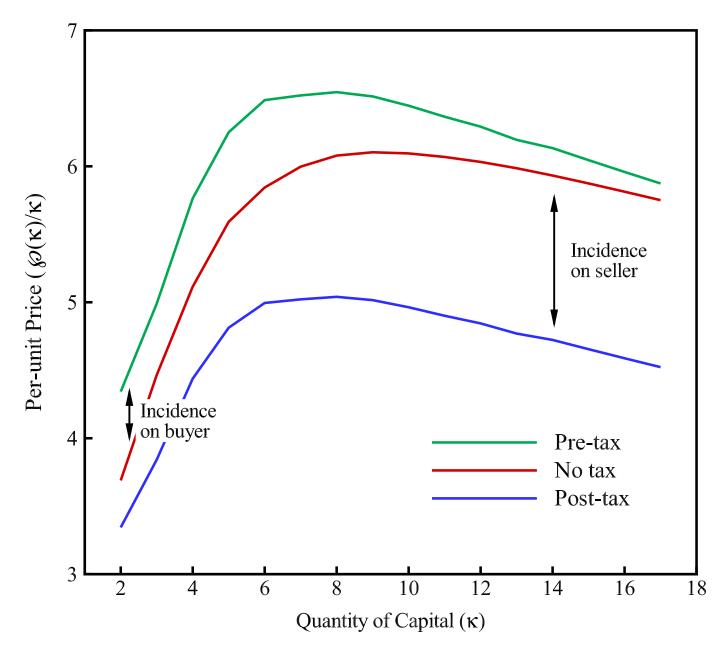
$\begin{array}{c} \text{Productivity} \\ \text{Level } (z) \end{array}$	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1.00	0.54	0.13
1.29	0.47	0.14
1.67	0.42	0.16
2.15	0.37	0.17
2.78	0.34	0.19
3.59	0.31	0.20
4.64	0.32	0.21
5.99	0.41	0.23
7.74	0.38	0.24
10.0	0.33	0.23
Avg	0.43	0.17

TAXING CAPITAL GAINS

- Introduce tax τ on gains
 - Seller receives $(1-\tau)p^m(s,\tilde{s})$
 - Government receives $\tau p^m(s, \tilde{s})$
- Use tricks to handle nontransferable utility case

- Fewer trades (obvious)
 - $\circ~{\rm Tax}$ eliminates trades where gains are small
- Heterogeneity in tax incidence
 - Larger on buyer if transacted quantity small
 - Larger on seller if transacted quantity large

- With tax, find larger distance between buyers/sellers
- For example, ratio of MPKs of buyer to seller:


Moments	au=0%	$\tau = 20\%$
Mean		
Standard deviation		
5^{th} percentile		
25^{th}		
50^{th}		
75^{th}		
95^{th}		

- With tax, find larger distance between buyers/sellers
- For example, ratio of MPKs of buyer to seller:

Moments	au=0%	$\tau = 20\%$
Mean	8.2	10.7
Standard deviation	1.8	1.7
$5^{\rm th}$ percentile	5.9	8.0
25^{th}	7.0	9.5
50^{th}	8.0	10.4
75^{th}	9.3	12.0
95^{th}	12.0	13.4

- Theory: add curvature and financing constraints
- Estimation: continue work with IRS data
- Applications: continue work studying capital taxation

APPENDIX: GALICHON-KOMINERS-WEBER

- Without capital gains tax
 - Labeling buyers/sellers a priori not necessary
 - Exploiting symmetry possible with MK
- With capital gains tax
 - Labeling buyers/sellers a priori is necessary
 - Exploiting MK requires complicated outer loop
- GKW's trick is to introduce small "preference shocks"
 - All types are buyers and sellers
 - Numerical objects are equations not inequalities