A Theory of Business Transfers

Anmol Bhandari, Paolo Martellini, Ellen McGrattan

Motivation

- Privately-owned firms
- Account for $1 / 2$ of US business net income
- Relevant for growth, wealth, tax policy/compliance
- But pose challenge for theory and measurement

This Paper

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

This Paper

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
\dagger Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax
\dagger Still very much in progress

Private Business Capital: What is Known?

Private Business Capital: What is Known?

[^0]
Private Business Capital: What is Known?

- Transferred assets are primarily intangible

Private Business Capital: What is Known?

- Transferred assets are primarily intangible
\Rightarrow evidence in IRS Forms 8594, 8883 data shows intangible, non-liquid share is $\approx 60 \%$

Private Business Capital: What is Known?

- Transferred assets are primarily intangible
- Customer bases and client lists
- Non-compete covenants
- Licenses and permits
- Franchises, trademarks, tradenames
- Workforce in place
- IT and other know-how in place
- Goodwill and on-going concern value
\Rightarrow Classified as Section 197 intangibles by IRS

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable
- Sold as a group that makes up a business

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable
- Sold as a group that makes up a business
\Rightarrow evidence in IRS Forms 8594, 8883 data

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable
- Sold as a group that makes up a business
- Exchanged after timely search and brokered deals

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable
- Sold as a group that makes up a business
- Exchanged after timely search and brokered deals
\Rightarrow evidence in brokered sale data is ≈ 290 days

Private Business Capital: What is Known?

- Transferred assets are primarily
- Intangible and neither pledgeable nor rentable
- Sold as a group that makes up a business
- Exchanged after timely search and brokered deals
\Rightarrow Existing models unsuitable for studying business transfers

Today's Talk

- Study firm dynamics
- Characterize competitive equilibrium
- Estimate wealth and impact of capital gains tax

Today's Talk

- Study firm dynamics with
- Indivisible capital
- Bilaterally traded
- Requiring time to reallocate
- Characterize competitive equilibrium
- Estimate wealth and impact of capital gains tax

Today's Talk

- Study firm dynamics with
- Indivisible capital
- Bilaterally traded
- Requiring time to reallocate
- Characterize competitive equilibrium
- Who trades with whom?
- How are terms of trade determined?
- What are the properties?
- Estimate wealth and impact of capital gains tax

Theory

Environment: A Helicopter View

- Infinite horizon with discrete time
- Preferences: (for today) owners are risk-neutral
- Technology:
- Firms indexed by $s=(z, \kappa)$
- Produce $y(s)=z(s) \kappa(s)^{\alpha}=\max _{n} \hat{z}(s) \kappa(s)^{\hat{\alpha}} n^{\gamma}-w n$
z : non-transferable capital with $z^{\prime} \mid z$ exogenous
κ : transferable capital
n : all external rented factors
- Investment: $\theta=P\left\{\kappa\left(s^{\prime}\right)=\kappa(s)+1\right\}$ at $\operatorname{cost} C(\theta)$
- Birth/death: draw from $G(s)$ at $\operatorname{cost} c_{e}$ and die at rate δ

Timing of Decisions

Timing of Decisions

Timing of Decisions

- Terms of trade for pair (s, \tilde{s})
- Allocations: $\kappa^{m}(s, \tilde{s})$ is post-trade capital for s
- Prices: $p^{m}(s, \tilde{s})$ is payment by s to \tilde{s}

Timing of Decisions

- Terms of trade for pair (s, \tilde{s})
- Allocations: $\kappa^{m}(s, \tilde{s})$ is post-trade capital for s
- Prices: $p^{m}(s, \tilde{s})$ is payment by s to \tilde{s}

Timing of Decisions

Pre-trade value: W

Birth/death \&
Shocks
κ to $\kappa+1$ w.p. θ
z to z^{\prime}

$$
\begin{array}{cc}
\text { trading } & \text { production/ } \\
\kappa^{m}, p^{m} & \text { investment }
\end{array}
$$

- Terms of trade for pair (s, \tilde{s})
- Allocations: $\kappa^{m}(s, \tilde{s})$ is post-trade capital for s
- Prices: $p^{m}(s, \tilde{s})$ is payment by s to \tilde{s}

Dynamic Program of Incumbent Firms

- Given prices and allocations $\left\{p^{m}(s, \tilde{s}), \kappa^{m}(s, \tilde{s})\right\}_{s, \tilde{s}}$
- Compute values:

$$
\begin{aligned}
V(s) & =\max _{\theta \in[0,1]} z(s) \kappa(s)^{\alpha}-C(\theta)+(1-\delta) \beta \mathbb{E} W\left(s^{\prime}\right) \\
W\left(s^{\prime}\right) & =\max _{\substack{\lambda(\tilde{s}) \geq 0 \\
\lambda_{o} \geq 0}} \int \underbrace{\left[V\left(z\left(s^{\prime}\right), \kappa^{m}\left(s^{\prime}, \tilde{s}\right)\right)-p^{m}\left(s^{\prime}, \tilde{s}\right)\right] \lambda(\tilde{s})}_{\text {value of trading with } \tilde{s}}+\underbrace{V\left(s^{\prime}\right) \lambda_{o}}_{\text {being alone }}
\end{aligned}
$$

where $\left\{\lambda(\cdot), \lambda_{o}\right\}$ are probabilities over trading options

Aggregate Measures

- Measures:
- $\phi(s)$: firms of type s
- $\phi_{e}(s)$: entrants of type s
- $\Lambda(s, \tilde{s})=\lambda(\tilde{s} \mid s) \phi(s)$: matches between s, \tilde{s}
- $\Lambda_{o}(s)=\lambda_{o}(s) \phi(s)$: unmatched firms of type s
- Law of motion for ϕ :

$$
\phi^{\prime}(s)=\Gamma\left(\phi ; \lambda, \lambda_{o}, \theta, \phi_{e}, k^{m}\right)
$$

Recursive Equilibrium with Pairwise Stability

$$
\text { Objects: }\{\underbrace{V, W,}_{\substack{\text { value } \\ \text { functions }}} \underbrace{\kappa^{m}, p^{m}}_{\substack{\text { terms of of } \\ \text { trade }}} \underbrace{\phi, \Lambda, \Lambda_{o}, \phi_{e}}_{\text {measures }}\}
$$

such that

1. firms optimize and entrants make zero profits
2. bilateral trades are feasible and pairwise stable
3. measures are consistent with decisions and stationarity

Conditions 1) and 3) are standard. Next, consider 2)

Feasibility and Pairwise Stability

- Terms of trade satisfy
- Feasibility:

$$
\begin{aligned}
& \kappa^{m}(s, \tilde{s})+\kappa^{m}(\tilde{s}, s) \leq \kappa(s)+\kappa(\tilde{s}) \\
& p^{m}(s, \tilde{s})+p^{m}(\tilde{s}, s) \geq 0 \\
\text { where } & \kappa^{m}(s, \tilde{s}) \in\{\underbrace{\kappa(s)+\kappa(\tilde{s})}_{\text {buy }} \underbrace{\kappa(s),}_{\text {no trade }} \underbrace{0}_{\text {sell }}\}
\end{aligned}
$$

- Pairwise stability:
\nexists feasible trade for (s, \tilde{s}) increasing pair's welfare

Back to RE Definition

such that

1. V, W solve firms problems and entrants make zero profits
2. κ^{m}, p^{m} are feasible and pairwise stable
3. $\phi, \Lambda, \Lambda_{o}, \phi_{e}$ satisfy for all $A \subseteq \mathcal{S}, m \geq 0$:

$$
\begin{aligned}
\phi(A) & =\int \Lambda(d s \in A, d \tilde{s} \in \mathcal{S})+\Lambda_{o}(d s \in A) \\
\phi(A) & =\int \Lambda(d \tilde{s} \in \mathcal{S}, d \tilde{s} \in A)+\Lambda_{o}(d s \in A) \\
\phi_{e}(A) & =G(d s \in A) m \\
\phi^{\prime}(A) & =\Gamma\left(\phi ; \lambda, \lambda_{o}, \theta, \phi_{e}, k^{m}\right)(A)
\end{aligned}
$$

Discussion

- Relative to models with
- CES demand/ monopolistic competition
- Frictional labor or asset markets
- Framework delivers (with few a priori restrictions)
- Differentiated goods
- Rich heterogeneity in market participants
- Endogenously evolving matching sets

Characterizing Equilibria

Who Trades with Whom?

- Intuitive example:
- Productivity types: 20 with $z_{H}=1,10$ with $z_{L}=0$
- Capital pre-trade: all have $\kappa=1$
- Efficient reallocation:
- 10 low types sell to 10 of the high types

How are Terms of Trade Determined?

- Intuitive example:
- Productivity types: 20 with $z_{H}=1,10$ with $z_{L}=0$
- Capital pre-trade: all have $\kappa=1$
- Price leaves high types indifferent between:
- Trading, with $\kappa=2$ post-trade
- Not trading, with $\kappa=1$ post-trade

Equilibrium Policy Functions

- Intuitive example:
- Productivity types: 20 with $z_{H}=1,10$ with $z_{L}=0$
- Capital pre-trade: all have $\kappa=1$
- Capital allocations: $k^{m}\left(s_{H}, s_{L}\right)=2, k^{m}\left(s_{L}, s_{H}\right)=0$
- Prices: $p^{m}\left(s_{H}, s_{L}\right)=1, p^{m}\left(s_{L}, s_{H}\right)=-1$
- Choice probabilities:

$$
\lambda\left(s_{H} \mid s_{L}\right)=1, \lambda\left(s_{L} \mid s_{H}\right)=1 / 2, \lambda_{o}\left(s_{L}\right)=0, \lambda_{o}\left(s_{H}\right)=1 / 2
$$

More Generally Given (ϕ, V)

- Who trades with whom?
- Solve assignment problem maximizing total gains
- How are terms of trade determined?
- Compute shadow prices from assignment problem
- Can solve dynamic program iteratively
- Update: $(\phi, V) \rightarrow$ equilibrium objects $\rightarrow(\phi, V)$

Monge-Kantorovich Assignment Problem

- Imagine splitting our businesses in two

$$
\begin{array}{r}
5\left\{\begin{array}{cc}
z_{L} & z_{L} \\
z_{L} & z_{L} \\
z_{L} & z_{L} \\
z_{L} & z_{L} \\
z_{L} & z_{L}
\end{array}\right\} 5 \\
10\left\{\begin{array}{cc}
z_{H} & z_{H} \\
z_{H} & z_{H} \\
z_{H} & z_{H} \\
\vdots & \vdots \\
z_{H} & z_{H}
\end{array}\right\} 10
\end{array}
$$

Monge-Kantorovich Assignment Problem

$$
\begin{gathered}
Q(\phi, V)=\max _{\substack{\pi_{s}, \tilde{z} \geq 0 \\
\pi_{o}, \tilde{\pi}_{o} \geq 0}} \int X(s, \tilde{s}) \pi_{s, \tilde{s}}(d s, d \tilde{s})+V(s) \pi_{o}(d s)+V(\tilde{s}) \tilde{\pi}_{o}(d \tilde{s}) \\
\text { s.t. } \int \pi_{s, \tilde{s}}(d s \in A, d \tilde{s} \in \mathcal{S})+\pi_{o}(d s \in A)=\phi(A) / 2 \\
\int \pi_{s, \tilde{s}}(d s \in \mathcal{S}, d \tilde{s} \in A)+\tilde{\pi}_{o}(d s \in A)=\phi(A) / 2
\end{gathered}
$$

where the gains to trade are

$$
X(s, \tilde{s})=\max \{\underbrace{V(z(s), \kappa(s)+\kappa(\tilde{s})),}_{s \text { buys }} \underbrace{V(s)+V(\tilde{s}),}_{\text {no trade }} \underbrace{V(z(\tilde{s}), \kappa(s)+\kappa(\tilde{s}))}_{\tilde{s} \text { buys }}\}
$$

Role of MK Lagrange Multipliers

- Multipliers $\mu=\mu^{a}=\mu^{b}$ capture gains from trade

$$
\mu=\nabla_{\phi} Q
$$

- Prices implement optimal gains from trade:

$$
\underbrace{\mu(s)}_{\text {social }}=\underbrace{V\left(z(s), k^{m}(s, \tilde{s})\right)-p^{m}(s, \tilde{s})}_{=\text {private gains }}
$$

- Updates of ϕ, V are easy to compute:

$$
\begin{aligned}
& V(s)=\max y(s)-C(\theta)+(1-\delta) \beta \mathbb{E} \mu\left(s^{\prime}\right) \\
& \phi^{\prime}(s)=\Gamma\left(\phi ; \pi, \pi_{o}, \theta, \phi_{e}, k^{m}\right)
\end{aligned}
$$

Properties of Equilibrium

- Competitive allocations maximize

$$
\sum_{t} \beta^{t} \int \phi_{t}(s)\left[y(s)-C(\theta(s))-m_{t} c_{e}\right]
$$

- Competitive prices independent of z

Properties of Equilibrium

- Competitive allocations maximize

$$
\sum_{t} \beta^{t} \int \phi_{t}(s)\left[y(s)-C(\theta(s))-m_{t} c_{e}\right]
$$

- Competitive prices independent of z, eg,

$$
\begin{aligned}
& p^{m}(\tilde{s}, s)=V(z(\tilde{s}), \kappa(s)+\kappa(\tilde{s}))-\mu(\tilde{s}) \\
& p^{m}\left(\tilde{s}, s^{\prime}\right)=V\left(z(\tilde{s}), \kappa\left(s^{\prime}\right)+\kappa(\tilde{s})\right)-\mu(\tilde{s}) \\
\Rightarrow & p^{m}\left(\tilde{s}, s^{\prime}\right) \text { depends on } \kappa \text { but not } z
\end{aligned}
$$

Properties of Equilibrium

- Competitive allocations maximize

$$
\sum_{t} \beta^{t} \int \phi_{t}(s)\left[y(s)-C(\theta(s))-m_{t} c_{e}\right]
$$

- Competitive prices independent of z

$$
p^{m}(s, \tilde{s})=\mathcal{P}(\kappa(s))
$$

Quantitative Results

Model Parameters

Description	Values
Returns to scale	$\alpha=0.50$
Discount rate	$\beta=0.95$
Investment cost, $C(\theta)=A \theta^{\rho}$	$A=10, \rho=2.0$
Productivity, $z^{\prime} \mid z \operatorname{AR}(1)$	$\rho_{z}=0.90, \sigma_{z}=0.30$
Entrant distribution, $\operatorname{Zipf}(z)$	tail $=1.20$
Death rate	$\delta=0.20$

Patterns of Trade

- Statistics to be matched to IRS data:
- Roughly 4% of κ units traded each period
- Price is 4 to 7 times seller's income
- Buyer's income is 2 to 4 times seller's income
- Who trades with whom?

Patterns of Trade

Patterns of Trade

Capital Trades Upward in MPK Sense

Allocation of Capital

- Compare to "misallocation" literature benchmark
- Divisible versus indivisible capital
- Rental versus no rental markets
- Compute first-best:

$$
\begin{aligned}
& \kappa^{F B}(s) \in \operatorname{argmax} \int z(s)\left[\kappa^{F B}(s)\right]^{\alpha} \phi(s) d s \\
& \int \phi(s) \kappa^{F B}(s) d s=\int \phi(s) \kappa(s) d s
\end{aligned}
$$

Dispersion in MPKs without Frictions

Dispersion in Prices without Frictions

Dispersion in Prices without Frictions

Estimating Business Wealth

- Finance textbook: present value of owner dividends
- SCF survey: price if sold business today
- Both have clear model counterparts

Estimating Business Wealth

- Finance textbook: present value of owner dividends, $V(s)$
- SCF survey: price if sold business today, $\mathcal{P}(\kappa(s))$
- Both have clear model counterparts

Estimating Business Wealth

$$
\begin{array}{ccc}
\text { Productivity } & \text { Transferable Share } & \text { Income Yield } \\
\text { Level }(z) & \mathcal{P}(\kappa(s)) / V(s) & {[y(s)-C(\theta(s))] / V(s)} \\
\hline
\end{array}
$$

Estimating Business Wealth

Productivity Level (z)	Transferable Share $\mathcal{P}(\kappa(s)) / V(s)$	Income Yield $[y(s)-C(\theta(s))] / V(s)$
1.00	0.54	0.13
1.29	0.47	0.14
1.67	0.42	0.16
2.15	0.37	0.17
2.78	0.34	0.19
3.59	0.31	0.20
4.64	0.32	0.21
5.99	0.41	0.23
7.74	0.38	0.24
10.0	0.33	0.23
Avg	0.43	0.17

Taxing Capital Gains

Capital Gains Tax

- Introduce $\operatorname{tax} \tau$ on gains
- Seller receives $(1-\tau) p^{m}(s, \tilde{s})$
- Government receives $\tau p^{m}(s, \tilde{s})$
- Use tricks to handle nontransferable utility case

Effects of Tax

- Fewer trades (obvious)
- Tax eliminates trades where gains are small
- Heterogeneity in tax incidence
- Larger on buyer if transacted quantity small
- Larger on seller if transacted quantity large

Eliminates Small-Gain Trades

- With tax, find larger distance between buyers/sellers
- For example, ratio of MPKs of buyer to seller:
Moments
$\tau=0 \%$
$\tau=20 \%$

Mean
Standard deviation
$5^{\text {th }}$ percentile
$25^{\text {th }}$
$50^{\text {th }}$
$75^{\text {th }}$
$95^{\text {th }}$

Eliminates Small-Gain Trades

- With tax, find larger distance between buyers/sellers
- For example, ratio of MPKs of buyer to seller:

Moments	$\tau=0 \%$	$\tau=20 \%$
Mean	8.2	10.7
Standard deviation	1.8	1.7
$5^{\text {th }}$ percentile	5.9	8.0
$25^{\text {th }}$	7.0	9.5
$50^{\text {th }}$	8.0	10.4
$75^{\text {th }}$	9.3	12.0
$95^{\text {th }}$	12.0	13.4

Heterogeneity in Tax Incidence

Next Steps

- Theory: add curvature and financing constraints
- Estimation: continue work with IRS data
- Applications: continue work studying capital taxation

Appendix: Galichon-Kominers-Weber

Galichon-Kominers-Weber Tricks

- Without capital gains tax
- Labeling buyers/sellers a priori not necessary
- Exploiting symmetry possible with MK
- With capital gains tax
- Labeling buyers/sellers a priori is necessary
- Exploiting MK requires complicated outer loop
- GKW's trick is to introduce small "preference shocks"
- All types are buyers and sellers
- Numerical objects are equations not inequalities

[^0]: 6 In the purchase of the group of assets (or stock), did the purchaser also purchase a license or a covenant not to compete, or enter into a lease agreement, employment contract, management contract, or similar arrangement with the seller (or managers, directors, owners, or employees of the seller)?

 If "Yes," attach a statement that specifies (a) the type of agreement and (b) the maximum amount of consideration (not including interest) paid or to be paid under the agreement. See instructions.

