

A THEORY OF BUSINESS TRANSFERS

Anmol Bhandari Paolo Martellini Ellen McGrattan Minnesota

WISCONSIN

Minnesota

- Privately-owned firms
 - \circ Account for 1/2 of US business net income
 - Relevant for growth, wealth, tax policy/compliance
- But pose challenge for theory and measurement

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- † Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

† Still in progress

- Transferred assets are primarily intangible
 - \Rightarrow evidence in IRS Forms 8594, 8883 data shows intangible share is $\approx 60\%$

Form 8594 (Rev. November 2021) Department of the Treasury	nt of the Treasury			OMB No. 1545-0074 Attachment Sequence No. 169	_	
Internal Revenue Service Name as shown	v	s and the	Identifying number as shown		-	
	x that identifies you:				_	
Purchaser	Seller				-	
	r party to the transaction		Other party's identifying num	ber	-	
Address (num	ber, street, and room or suite no.)				-	
City or town,	state, and ZIP code					
2 Date of sale	3 1	Total sales	s price (consideration)			
Part II Origina	al Statement of Assets Transferred				_	
4 Assets	Aggregate fair market value (actual amount for Class I)		Allocation of sales p	ice	_	
Class I	\$	\$				
		•			K	
Class II	\$	\$			_	Coal / comition
Class III	\$	\$				Cash/securities
		•			\leftarrow	Inventories
Class IV	\$	\$				
Class V	\$	\$			\leftarrow	Fixed assets
Class VI and VII	\$	\$			\leftarrow	Sec. 197 intangibles
Total	\$	\$				0
5 Did the purch written docum If "Yes," are th	aser and seller provide for an allocation of the sales prid nent signed by both parties?		sses I, II, III, IV, V, VI, and VI	Yes No	_	
not to compe	se of the group of assets (or stock), did the purchaser al te, or enter into a lease agreement, employment contra with the seller (or managers, directors, owners, or employ	act, man	agement contract, or simila		_	
	h a statement that specifies (a) the type of agreement and (not including interest) paid or to be paid under the agree					

- Transferred assets are primarily intangible
 - $\circ\,$ Customer bases and client lists
 - Non-compete covenants
 - Licenses and permits
 - $\circ\,$ Franchises, trademarks, tradenames
 - Workforce in place
 - IT and other know-how in place
 - Goodwill and on-going concern value

 \Rightarrow Classified as Section 197 intangibles by IRS

- Transferred assets are primarily
 - $\circ~$ Intangible and neither rentable nor pledgeable

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - \Rightarrow evidence in seller's business tax filings shows little activity after sale

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
 - \Rightarrow evidence in brokered sale data is \approx 290 days

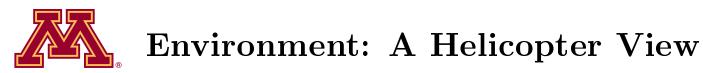
- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
- \Rightarrow Existing models unsuitable for studying business transfers

• Study firm dynamics

• Characterize competitive equilibrium

• Estimate wealth and impact of capital gains tax

- Study firm dynamics with
 - $\circ~$ Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium


• Estimate wealth and impact of capital gains tax

- Study firm dynamics with
 - $\circ~$ Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium
 - Who trades with whom?
 - How are terms of trade determined?
 - What are the properties?
- Estimate wealth and impact of capital gains tax

THEORY

- Infinite horizon with continuous time
- Business type indexed by $s = (z, \kappa)$
 - $\circ~z$: non-transferable capital/owner productivity
 - $\circ~\kappa$: transferable and accumulable capital
- Key decisions for owners
 - Production
 - \circ Investment
 - Transfers

• Technology:

$$y(s) = \max_{n} y(s, n)$$

$$\equiv \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} - wn$$

$$\equiv z(s)\kappa(s)^{\alpha}$$

where

- \hat{z} : non-transferable capital/owner productivity
- $\kappa:$ transferable and accumulable capital
- n: all external rented factors
- *Idea*: \hat{z} is owner-specific, κ is self-created intangibles

• Technology:

$$y(s) = \max_{n} y(s, n)$$

$$\equiv \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} - wn$$

$$\equiv z(s)\kappa(s)^{\alpha}$$

where

- \hat{z} : non-transferable capital/owner productivity
- $\kappa:$ transferable and accumulable capital
- n: all external rented factors
- *Idea*: \hat{z} is owner-specific, κ is self-created intangibles

- Entry $\rightarrow (z, \kappa)$
- Shocks to productivity $z \to z'$
- Investment $\kappa \to \kappa'$
- Capital transfer $\kappa \to \kappa'$
- Exit $(z,\kappa) \rightarrow$

• Entry and exit:

G(s) = initial distribution of type

$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

• Entry and exit:

G(s) = initial distribution of type

$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate

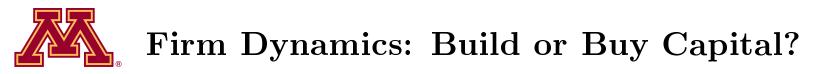
• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

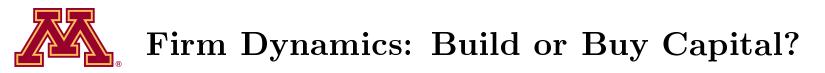
Note: just standard Hopenhayn so far

• Entry and exit:

G(s) = initial distribution of type


$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate


• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Next: add self-created intangibles and transfers

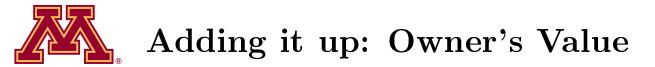
- Given decreasing returns to scale
- \Rightarrow Owners build to optimal size through
 - $\circ~$ Internal investment or
 - Business transfers

- Investment
- Transfers

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Transfers

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Transfers between s, \tilde{s} :

Firm Dynamics: Build or Buy Capital?


- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Transfers between s, \tilde{s} :
 - $\circ\,$ Bilateral meeting rate: $\eta\,$
 - $\circ \text{ Allocation: } \kappa^m(s,\tilde{s}) \in \{\kappa(s)+\kappa(\tilde{s}),0\}$

• Price: $p^m(s, \tilde{s})$

Firm Dynamics: Build or Buy Capital?

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Transfers between s, \tilde{s} :
 - $\circ\,$ Bilateral meeting rate: $\eta\,$
 - † Allocation: $\kappa^m(s, \tilde{s}) \in \{\kappa(s) + \kappa(\tilde{s}), 0\}$
 - Price: $p^m(s, \tilde{s})$


† More general specifications also explored

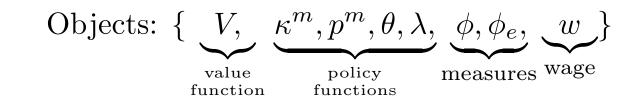
$$(r+\delta)V(s) = \underbrace{\max_{n} y(s,n)}_{\text{production}} + \underbrace{\mu(z)\partial_z V(s) + \frac{1}{2}\sigma^2(z)\partial_{zz}V(s)}_{\text{shocks to productivity}} + \underbrace{\max_{\theta} \partial_\kappa V(s)(\theta - \delta_k) - C(\theta)}_{\text{investment}} + \underbrace{\max_{\lambda} \eta W(s;\lambda)}_{\text{transfer}}$$

where expected gain from transfer is:

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z,\kappa^m(s,\tilde{s})]) - V(s) - p^m(s,\tilde{s}) \right\} \underbrace{\lambda(s,\tilde{s})}_{\substack{\text{Partner}\\\text{Distribution}}}$$

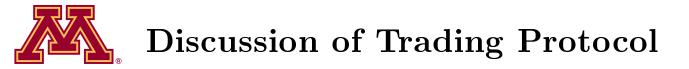
• Free entry condition

 $\int V(s) dG(s) \le c_e$


where measure of entrants is $\phi_e(s) = mG(s) > 0$

• Evolution of types:

 $\dot{\phi} = \Gamma(\theta, \lambda; \phi) + \phi_e$


induced by drivers of firm dynamics

that satisfy

- 1. business owners' optimality
- 2. market clearing
- 3. consistency of measures

- Relative to models with
 - CES demand/ monopolistic competition
 - Frictional labor or asset markets
- Framework delivers (with few a priori restrictions)
 - Differentiated goods
 - Rich heterogeneity in market participants
 - Endogenously evolving matching sets

CHARACTERIZING EQUILIBRIA

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Efficient reallocation:
 - $\circ~10$ low types sell to 10 of the high types

How are Terms of Trade Determined?

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Price leaves high types indifferent between:

• Trading, with $\kappa = 2$ post-trade

• Not trading, with $\kappa = 1$ post-trade

- Intuitive example:
 - Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - $\circ~$ Capital pre-trade: all have $\kappa=1$
- Capital allocations: $k^m(s_H, s_L) = 2, k^m(s_L, s_H) = 0$
- Prices: $p^m(s_H, s_L) = 1, p^m(s_L, s_H) = -1$
- Choice probabilities:

$$\lambda(s_H|s_L) = 1, \ \lambda(s_L|s_H) = 1/2, \ \lambda_o(s_L) = 0, \ \lambda_o(s_H) = 1/2$$

- Who trades with whom?
 - Solve planner problem maximizing total gains
- How are terms of trade determined?
 - Compute shadow prices from planner problem
- Can solve dynamic program iteratively

• Update: $(\phi, V) \rightarrow \text{static planner} \rightarrow (\phi, V)$

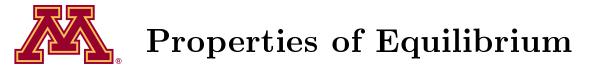
• Let $X(s, \tilde{s})$ be match surplus given by

$$\max_{\kappa^m \in \{\kappa(s) + \kappa(\tilde{s}), 0\}} \left\{ V([z(s), \kappa^m]) + V([z(\tilde{s}), \kappa(s) + \kappa(\tilde{s}) - \kappa^m]) \right\} - V(s) - V(s)$$

• Define total gains $Q(\phi)$ as

$$Q(\phi) = \max_{\pi \ge 0} \sum_{s,\tilde{s}} \pi(s,\tilde{s}) X(s,\tilde{s})$$

s.t.
$$\sum_{\tilde{s}} \pi(s,\tilde{s}) + \pi(s,0) = \phi(s)/2 \quad \forall s \qquad [\mu^a(s)]$$
$$\sum_{\tilde{s}} \pi(\tilde{s},s) + \pi(0,s) = \phi(s)/2 \quad \forall s \qquad [\mu^b(s)]$$


• Multipliers $\mu = \mu^a = \mu^b$ capture gains from trade

$$\mu(s) = \frac{\partial Q}{\partial \phi(s)}$$

• Prices implement optimal gains from trade:

$$\underbrace{\mu(s)}_{\text{social}} = \underbrace{V([z, \kappa^m(s, \tilde{s})]) - V(s) - p^m(s, \tilde{s})}_{= \text{private gains}}$$

• Updates of ϕ, V are then easy to compute

- Competitive allocations maximize $\int e^{-rt} \sum_{s} [y(s) - C(\theta(s, t)) - m(t)c_e] \phi(s, t) dt$ $\Rightarrow \text{ achieves efficiency}$
- Competitive prices independent of z

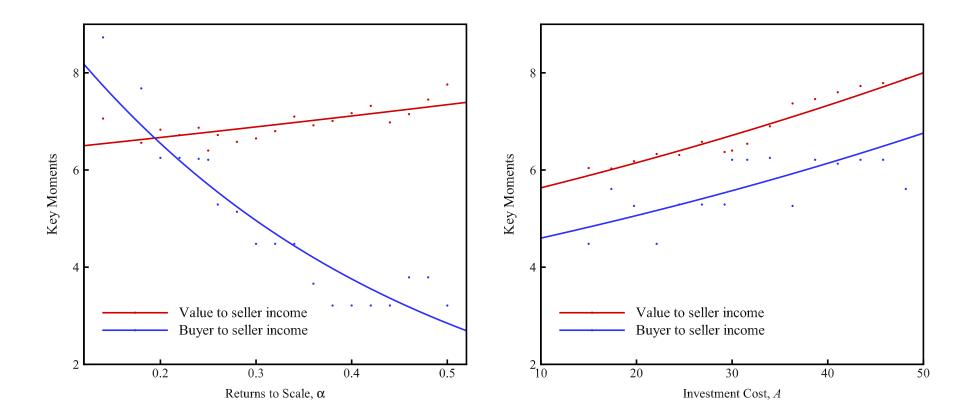
 $p^m(s,\tilde{s}) = \mathcal{P}(\kappa(\tilde{s}))$

 \Rightarrow same good sold at same price

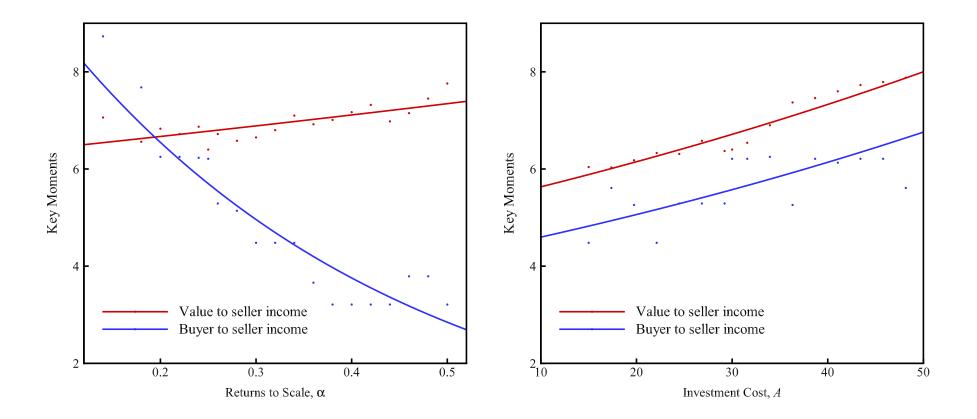
• Bilateral trades are pairwise stable

 $\not\exists$ feasible trade for (s, \tilde{s}) making pair strictly better off

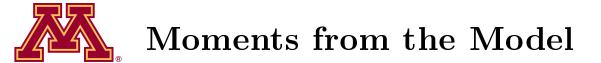
QUANTITATIVE RESULTS


Description	Values
Returns to scale	$\alpha = 0.45$
Discount rate	r = 0.06
Investment $\cos t^{\dagger}$	$A = 30, \rho = 2.0$
Productivity	$\mu=0, \sigma=0.25$
Entrant distribution	mass at $z = z_0, \kappa = 1$
Death rate	$\delta = 0.10$
Depreciation rate	$\delta_{\kappa} = 0.058$
Bilateral meeting rate	$\eta = 0.20$

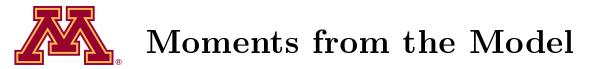
 $^{\dagger} C(\theta) = A\theta^{\rho}$

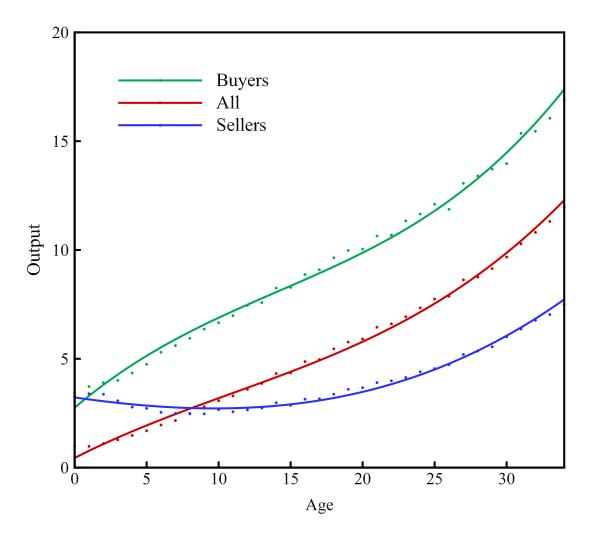

- Key parameters
 - $\circ~$ Meeting rate η
 - Investment costs $C(\theta) = A\theta^{\rho}$
 - Returns to scale in $y = z \kappa^{\alpha}$
- Key moments from IRS (8594 and annual filings)
 - Frequency of business transfers
 - Ratio of business price to seller income
 - Ratio of buyer to seller income

 α : key driver for who trades with whom A: key driver for terms of trade



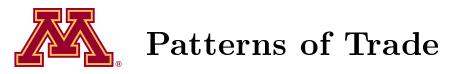
Next: Use IRS data to validate model

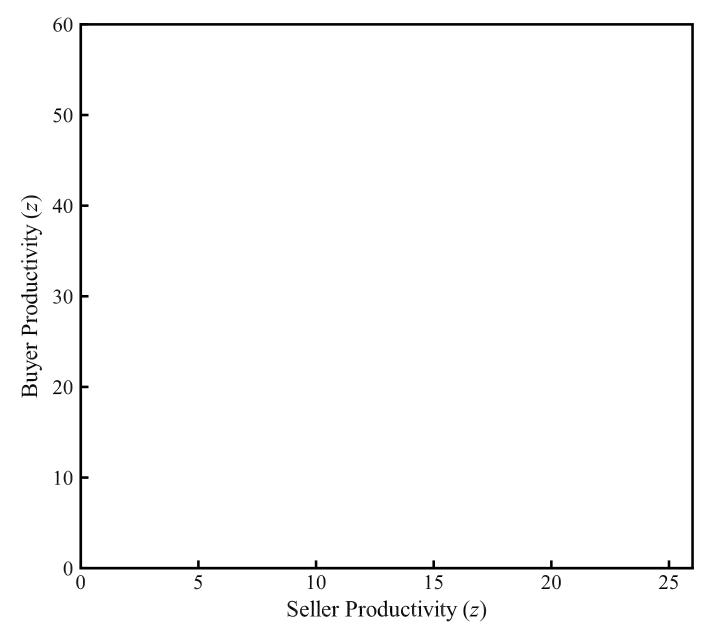


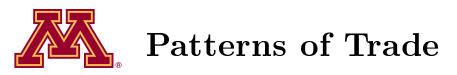

- Varying age of buyer:
 - Ratio of business price to seller income constant
 - Ratio of buyer to seller income rising
 - \Rightarrow same in model and data

		Age ((years)	
	1-5	5-10	10-25	25 +
	Buyer			
Price to seller income	6.9	7.5	7.1	6.9
Relative buyer/seller size	2.8	3.8	4.9	5.3
		Se	ller	
Price to seller income	5.9	7.3	8.6	9.6
Relative buyer/seller size	2.8	3.9	4.3	3.9

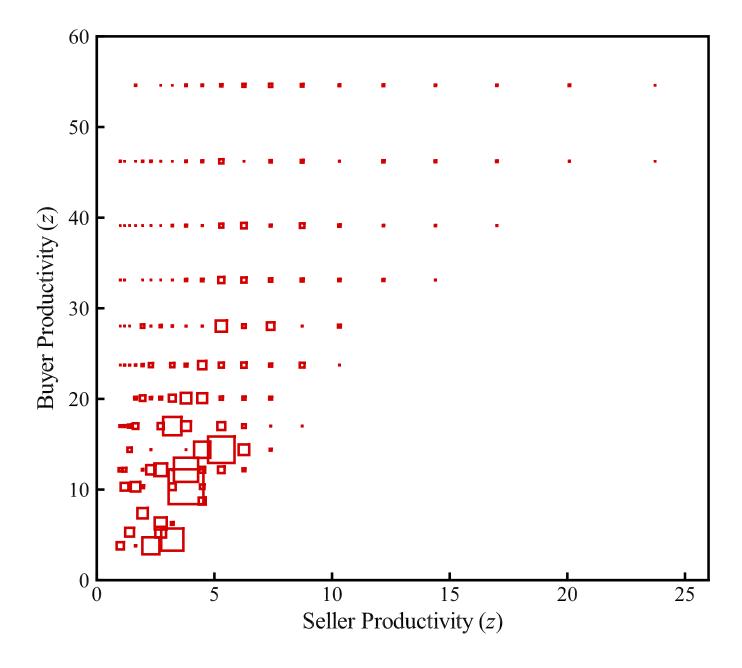
- Model: older sellers have high κ and low z
- Data: still investigating reasons for sale



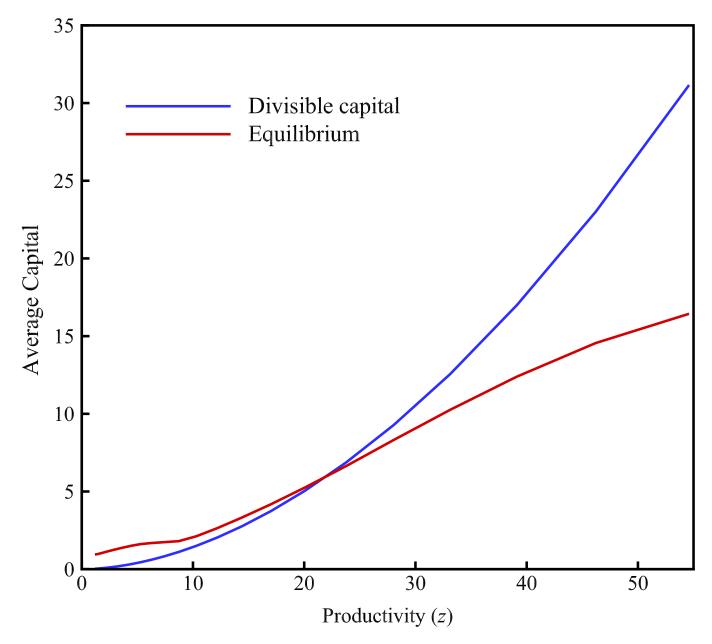



 \Rightarrow Buyers larger than average firm Sellers profile relatively flat

PATTERNS OF TRADE



Capital Trades Upward in MPK Sense



- Compare to "misallocation" literature benchmark
 - Divisible versus indivisible capital
 - Rental versus no rental markets
- Compute *first-best*:

$$\kappa^{FB}(s) \in \operatorname{argmax} \int z(s) [\kappa^{FB}(s)]^{\alpha} \phi(s) ds$$
$$\int \phi(s) \kappa^{FB}(s) ds = \int \phi(s) \kappa(s) ds$$

- Finance textbook: present value of owner dividends
- SCF survey: price if sold business today
- \Rightarrow Both have clear model counterparts

- Finance textbook: present value of owner dividends, V(s)
- SCF survey: price if sold business today, $\mathcal{P}(\kappa(s))$

Productivity	Transferable Share	Income Yield
Level (z)	$\mathcal{P}(\kappa(s))/V(s)$	$[y(s) - C(\theta(s))]/V(s)$

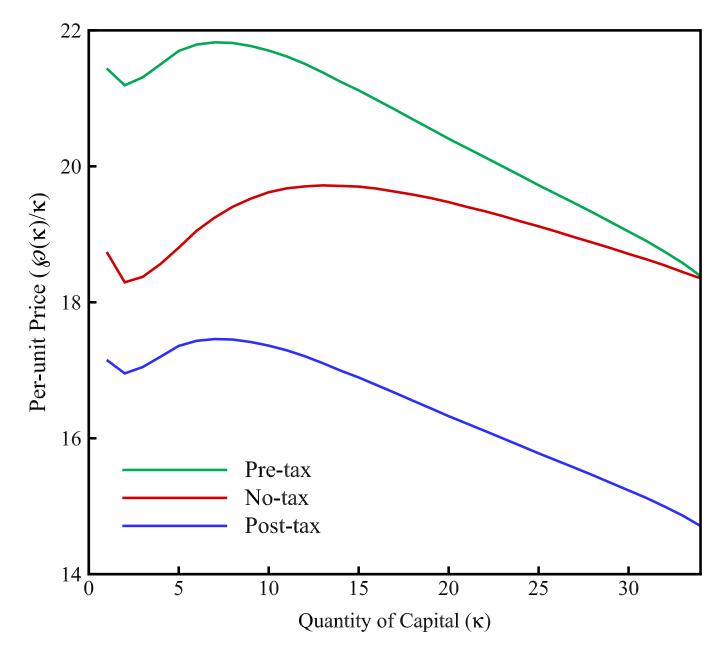
$\begin{array}{c} \text{Productivity} \\ \text{Level} \ (z) \end{array}$	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	
2	0.50	
4	0.44	
8	0.30	
40	0.34	

$\begin{array}{c} \text{Productivity} \\ \text{Level } (z) \end{array}$	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	-0.09
2	0.50	-0.03
4	0.44	0.04
8	0.30	0.07
40	0.34	0.16

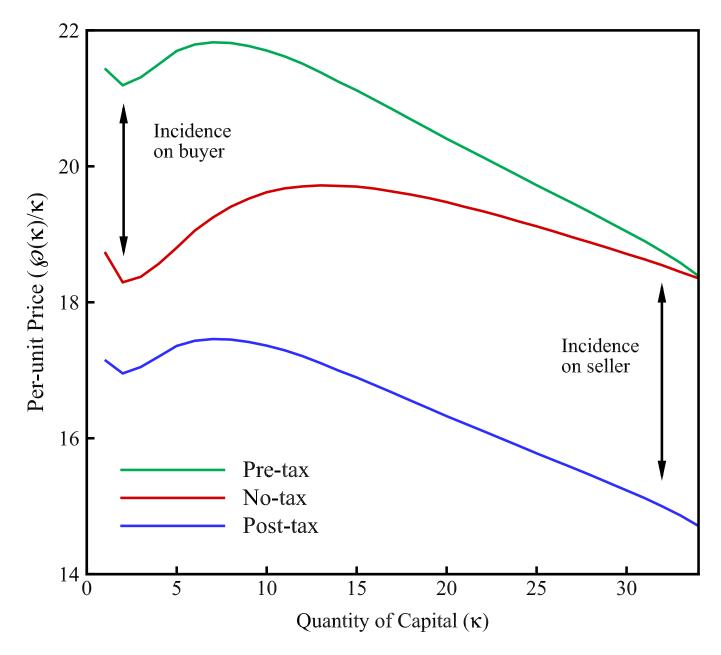
$\begin{array}{c} \text{Productivity} \\ \text{Level } (z) \end{array}$	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	-0.09
2	0.50	-0.03
4	0.44	0.04
8	0.30	0.07
40	0.34	0.16

 \Rightarrow Significant transferable share and heterogeneity in returns

TAXING CAPITAL GAINS



- Introduce tax τ on gains
 - Seller receives $(1-\tau)p^m(s,\tilde{s})$
 - Government receives $\tau p^m(s, \tilde{s})$
- Positive tax base due to κ (not in Hopenhayn)



- Fewer trades (obvious)
 - $\circ~{\rm Tax}$ eliminates trades where gains are small
- Lower investment and entry (obvious)
 - $\circ~$ Tax introduces lock-in effect
- Heterogeneity in tax incidence
 - Larger on buyer if transacted quantity small
 - Larger on seller if transacted quantity large

- Theory: add curvature and financing constraints
- Estimation: continue work with IRS data
- Applications: continue work on intangible capital
 - \circ Reallocation
 - Valuation
 - Taxation

Appendix

$$Q(\phi) = \max_{\mu^a, \mu^b \ge 0} \frac{1}{2} \sum_{s} (\mu^a(s) + \mu^b(s))\phi(s)$$

s.t. $\mu^a(s) + \mu^b(s) \ge X(s, \tilde{s}) \quad \forall s, \tilde{s} \qquad [\pi(s, \tilde{s})]$

 \Rightarrow Multipliers in primal are choice variables in dual

With Non-transferable Utility

- Add extreme value "preference shock" (Galichon et al. 2019)
- Assume all types buy/sell from all others
- Modify slightly the computation of gains to trade W
- Drive preference shock to 0

• After-trade values for buyers (v_b) and sellers (v_s)

$$v_b(s,\tilde{s}) = V([z,\kappa(s) + \kappa(\tilde{s})]) - p^m(s,\tilde{s})$$
$$v_s(s,\tilde{s}) = V(\tilde{s},0) + (1-\tau)p^m(s,\tilde{s})$$

• Matching probability

$$\lambda(s, \tilde{s}) = \exp([v_b(s, \tilde{s}) - W(s)]/\sigma)$$
$$\lambda(\tilde{s}, s) = \exp([v_s(\tilde{s}, s) - W(s)]/\sigma)$$

• Gains from trade

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z,\kappa^m(s,\tilde{s})]) - V(s) - p^m(s,\tilde{s}) \right\} \lambda(s,\tilde{s}) - \sigma \lambda(s,\tilde{s}) \log \lambda(s,\tilde{s})$$