

A THEORY OF BUSINESS TRANSFERS

Anmol Bhandari Paolo Martellini Ellen McGrattan Minnesota

WISCONSIN

Minnesota

- Privately-owned firms
 - \circ Account for 1/2 of US business net income
 - Relevant for growth, wealth, tax policy/compliance
- But pose challenge for theory and measurement

- Propose theory of firm dynamics and capital reallocation
 - Add transfers to model of firm dynamics
 - Add self-created intangibles as productive capital
- Use administrative IRS data to discipline theory

- IRS data make study of business transfers possible
- New theory is needed to analyze these data
- Theory provides insights for tax policy/administration

IRS DATA MAKE STUDY OF BUSINESS TRANSFERS POSSIBLE

- Seller <u>and</u> buyer both report sale
 - Seller has to pay capital gains
 - Buyer has to report depreciable assets
- Price allocated across asset types
 - $\circ\,$ Seller wants to allocate to long-term
 - Buyer wants to allocate to short-term
- \Rightarrow Conflicts of interest and thus consistent reporting

- Transferred assets are primarily intangible
 - $\circ\,$ Customer bases and client lists
 - Non-compete covenants
 - Licenses and permits
 - Franchises, trademarks, tradenames
 - Workforce in place
 - $\circ~{\rm IT}$ and other know-how in place
 - Goodwill and on-going concern value
 - Consulting contracts during transition
- Transferred assets are sold as a group

- From other tax filings before/after sale
 - Characteristics and business filings for buyers/sellers
 - Characteristics and individual filings for all owners
- From brokered sales
 - Time between listing and sale

New theory is needed to analyze these data

- Model of firm dynamics with self-created intangibles
 - Indivisible and nonrentable capital
 - **Bilaterally-traded** assets making up business
 - **Requiring time** to find buyers/negotiate allocations
- \Rightarrow Adds intangible investment and transfers to Hopenhayn

- Infinite horizon with continuous time
- Business type indexed by $s = (z, \kappa)$
 - $\circ~z$: non-transferable capital/owner productivity
 - $\circ~\kappa$: transferable and accumulable capital
- Key decisions for owners
 - Production
 - \circ Investment
 - Transfers

• Technology:

$$y(s) = \max_{n} y(s, n)$$

$$\equiv \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} - wn$$

$$\equiv z(s)\kappa(s)^{\alpha}$$

where

- \hat{z} : non-transferable capital/owner productivity
- $\kappa:$ transferable and accumulable capital
- n: all external rented factors
- *Idea*: \hat{z} is owner-specific, κ is self-created intangibles

- Entry $\rightarrow (z, \kappa)$
- Shocks to productivity $z \to z'$
- Investment $\kappa \to \kappa'$
- Capital transfer $\kappa \to \kappa'$
- Exit $(z,\kappa) \rightarrow$

• Entry and exit:

G(s) = initial distribution of type

$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

• Entry and exit:

G(s) =initial distribution of type

$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Note: just standard Hopenhayn so far

• Entry and exit:

G(s) = initial distribution of type

$$c_e = \text{entry cost}$$

$$\delta$$
 = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Next: add self-created intangibles and transfers

- Given decreasing returns to scale
- \Rightarrow Owners build to optimal size through
 - $\circ~$ Internal investment or
 - Business transfers

Firm Dynamics: Build or Buy Capital?

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Transfers between s, \tilde{s} :
 - $\circ\,$ Bilateral meeting rate: $\eta\,$
 - † Allocation: $\kappa^m(s, \tilde{s}) \in \{\kappa(s) + \kappa(\tilde{s}), 0\}$
 - Price: $p^m(s, \tilde{s})$

† More general specifications also explored

$$(r+\delta)V(s) = \underbrace{\max_{n} y(s,n)}_{\text{production}} + \underbrace{\mu(z)\partial_z V(s) + \frac{1}{2}\sigma^2(z)\partial_{zz}V(s)}_{\text{shocks to productivity}} + \underbrace{\max_{\theta} \partial_{\kappa}V(s)(\theta - \delta_k) - C(\theta)}_{\text{investment}} + \underbrace{\max_{\lambda} \eta W(s;\lambda)}_{\text{transfer}}$$

where expected gain from transfer is:

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z,\kappa^m(s,\tilde{s})]) - V(s) - p^m(s,\tilde{s}) \right\} \underbrace{\lambda(s,\tilde{s})}_{\substack{\text{Partner}\\\text{Distribution}}}$$

• Free entry condition

 $\int V(s) dG(s) \le c_e$

where measure of entrants is $\phi_e(s) = mG(s) > 0$

• Evolution of types:

 $\dot{\phi} = \Gamma(\theta, \lambda; \phi) + \phi_e$

induced by drivers of firm dynamics

that satisfy

- 1. business owners' optimality
- 2. market clearing
- 3. consistency of measures
- Can solve dynamic program iteratively

 $\circ \text{ Update: } (\phi, V) \to \text{static planner} \to (\phi, V)$

- Competitive allocations maximize $\int e^{-rt} \sum_{s} [y(s) - C(\theta(s, t)) - m(t)c_e] \phi(s, t) dt$ $\Rightarrow \text{ achieves efficiency}$
- Competitive prices independent of z

 $p^m(s,\tilde{s}) = \mathcal{P}(\kappa(\tilde{s}))$

 \Rightarrow same good sold at same price

• Bilateral trades are pairwise stable

 $\not\exists$ feasible trade for (s, \tilde{s}) making pair strictly better off

- Who trades with whom?
- What are the terms of trade?
- What is the implied dispersion in MPKs?
- How do financing constraints affect predictions?

- Who trades with whom?
- What are the terms of trade?
- What is the implied dispersion in MPKs?
- How do financing constraints affect predictions?

Let's simulate the model and find out...

Description	Values
Returns to scale	$\alpha = 0.5$
Discount rate	r = 0.06
Investment $\cos t^{\dagger}$	$A = 20, \rho = 2.0$
Productivity	$\mu=0, \sigma=0.25$
Entrant distribution	mass at $z = z_0, \kappa = 1$
Death rate	$\delta = 0.10$
Depreciation rate	$\delta_{\kappa} = 0.058$
Bilateral meeting rate	$\eta = 0.40$

 $^{\dagger} C(\theta) = A\theta^{\rho}$

- Key parameters
 - $\circ~$ Meeting rate η
 - $\circ~\mbox{Investment costs}~C(\theta) = A \theta^{\rho}$
 - Returns to scale in $y = z \kappa^{\alpha}$
- Key moments from IRS (8594 and annual filings)
 - Frequency of business transfers
 - Growth in business net income
 - $\circ~$ Quantile regressions of y on $\mathcal P$

- Size of square proportional to number of transactions
- Shows capital trading upward in MPK sense
- \bullet Suggests that unit prices would be higher at low κ

What is the Implied Dispersion in MPKs?

- Compare to "misallocation" literature benchmark
 - Divisible versus indivisible capital
 - Rental versus no rental markets
- Compute *first-best*:

$$\kappa^{FB}(s) \in \operatorname{argmax} \int z(s) [\kappa^{FB}(s)]^{\alpha} \phi(s) ds$$
$$\int \phi(s) \kappa^{FB}(s) ds = \int \phi(s) \kappa(s) ds$$

- Add constraint: $p^m \leq$ year's income
- Main effects:
 - $\circ~$ No sales with small buyers
 - $\circ\,$ Large drop in price for big- κ sales

Predictions with Financing Constraints

THEORY PROVIDES INSIGHTS FOR TAX POLICY/ADMINISTRATION

- Most value in business is κ
- How is it taxed?
 - Income taxes on business owner
 - Capital gains taxes on realized gains
 - Biden proposal: taxes on unrealized gains
- What is the implied tax incidence?

- Relevant input to analysis is business wealth
- Three different concepts:
 - $\circ~$ Price if sold business today
 - Present value of owner dividends
 - Capitalized income
- \Rightarrow All have model counterparts

- Relevant input to analysis is business wealth
- Three different concepts:
 - Price if sold business today, $\mathcal{P}(\kappa(s))$
 - Present value of owner dividends, V(s)
 - $\circ~$ Capitalized income, $\hat{V}(s) = y(s)/~{\rm constant}~R$
- \Rightarrow All have model counterparts

Distribution Percentile	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
5	0.00	-0.16
25	0.25	0.06
50	0.37	0.09
75	0.50	0.12
95	0.68	0.13
99	0.82	0.15

Distribution Percentile	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
5	0.00	-0.16
25	0.25	0.06
50	0.37	0.09
75	0.50	0.12
95	0.68	0.13
99	0.82	0.15

- Two insights:
 - $\circ \ \mathcal{P}/\mathcal{V}$ large: relevant for tax elasticities
 - $\circ~(y-C)/V$ dispersed: relevant for capitalizing income

Incidence When Taxing Realized Gains

- Introduce tax τ on realized gains
 - Seller receives $(1-\tau)p^m(s,\tilde{s})$
 - Government receives $\tau p^m(s, \tilde{s})$
- Positive tax base due to κ (not in Hopenhayn)

- Fewer trades (obvious)
 - $\circ~{\rm Tax}$ eliminates trades where gains are small
- Lower investment and entry (obvious)
 - \circ Tax introduces lock-in effect
- Heterogeneity in tax incidence
 - Nonmonotonic in size of business sold
 - Larger on seller for small and large quantities

- IRS data make study of business transfers possible
- New theory is needed to analyze these data
- Theory provides insights for tax policy/administration