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e Goals: measure data and knowledge production

e Why data?
o An endogenous source of productivity gains
o Likely
— Innovation policy relevant

— Fiscal policy relevant
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/M\@ AV’s Magic Trick

e Measuring data (D;;) and knowledge production (f;;)

= fit( {Lgt} )
e Without observations on
o Yj; or revenues
o {K7,} or capital rents
o {M?} or material costs

o D;; or data prices
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e Note: No other inputs or differences in TFPs
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e T'wo technologies in firm i:

Vgt = APT DL

VA = AP DL
e Data manager’s labor produces D;;

e (Claim: o > 7 suggests Al is “transformative innovation”

e What do AV do to test this?
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e Use Burning Glass data:

o Skill descriptions for analysts and data managers
o Job postings = L{t, 3 =0T,AI, DM

o Wage across postings = w! (same for all i!)

e Solve problem of financial firm

o Allocate analysts and managers to maximize profits
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e Use Burning Glass data:

o Skill descriptions for analysts and data managers
o Job postings = L{t, 3 =0T,AI, DM

o Wage across postings = w! (same for all i!)

e Solve problem of financial firm

o Allocate analysts and managers to maximize profits

e How do AV identify a, ~7
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e Implication of theory:
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= No variation 1n cross-section

= Cannot identify both TFPs and shares
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e Implication of theory:
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= No variation 1n cross-section

= Cannot identify both TFPs and shares

e If variation observed, need new theory

e What about time dimension?



/M\@ Need Variation Over Time

e Implication of theory:

o Shadow price of data = marginal product of data

o Manipulate this condition to get:

@8

Aw;f” Lﬁl + _T Aw? TL,gT

Ag(Diy, Dips1) —
9(Dit, Dit1) = 77— T

e Suppose D o wages for data managers

= Differential AI, OT earnings growth identifies «, ~
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/M\@ Idea Behind Identification
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/M\@ Significant Overlap of Skills
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/M\@ Most Analysts are Neither OT nor Al
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e Using AV’s criteria for 2017, we found

o 110+ SOC codes for OT,AILDM

o 92% of analysts are neither OT nor Al

= Not obvious that distinct technologies being used
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e Using AV’s criteria for 2017, we found

o 110+ SOC codes for OT,AILDM

o 92% of analysts are neither OT nor Al

= Not obvious that distinct technologies being used

e What can we learn from BLS aggregates?



/M\@ BLS Aggregates with AV Sample Weights

e Compute BLS earnings growth with AV
o Industries

o Occupation weights from Burning Glass

e With and without:

o SOC 15-1199, Computer Occuptions, All Other
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/M\@ Back to Big Picture

e Good data measurement important for policy

e Need:
o Broader scope (beyond financial services)

o More information on production

o Surveys like the NSF for R&D



