Why Are Returns to Private Business Wealth So Dispersed?

by C. Boar, D. Gorea, and V. Midrigan

Discussion by E. McGrattan

EFG, February 2023

Motivation

Q: Why are private business accounting returns dispersed?

A: BGM investigate

- Partial insurance for business income risk
- Collateral constraints limiting borrowing
\Rightarrow Factor misallocation

Main Exercise

- Parameterize model of entrepreneurial dynamics
- Ensure model predicts enough dispersion in ROEs
- Quantify roles of uninsurable risk and limited borrowing

Main Exercise

- Parameterize model of entrepreneurial dynamics
- Ensure model predicts enough dispersion in ROEs
- Quantify roles of uninsurable risk and limited borrowing

Next, consider BGM model of business owner

Problem of BGM Business Owner

$\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta}$
st $c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}}$

$$
\leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income }, \pi_{t}}
$$

$$
b_{t+1} \leq \xi k_{t+1}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} & \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t} & +\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} & \leq \xi k_{t+1}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Let's Take a Closer Look...

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} & \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t} & +\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} & \leq \xi k_{t+1}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \leftarrow \text { Only } 1 \text { owner } \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \xi k_{t+1} \\
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
\end{gathered}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} & \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t} & +\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\nwarrow} \\
b_{t+1} & \leq \xi k_{t+1} \text { Wet income, } \pi_{t}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} & \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t} & +\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \quad \begin{array}{c}
\text { With only } \\
\text { business } \\
\text { income }
\end{array} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} & \leq \xi k_{t+1}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
& \max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
& \text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {Wet income, } \pi_{t}} \\
& \text { incomesiness } \\
& \text { income }
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta}$
st $c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}}$
With only
$\leftarrow \quad$ business

$$
\leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income } \pi_{t}}
$$

$$
b_{t+1} \leq \xi k_{t+1}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\left.\begin{array}{c}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \xi k_{t+1} \\
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
\end{array} \begin{array}{c}
\text { Without } \\
\text { bankruptcy } \\
\text { or default }
\end{array}\right]
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} & \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t} & +\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}}
\end{aligned}
$$

$$
b_{t+1} \leq \xi k_{t+1}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \begin{array}{c}
\text { Without } \\
\operatorname{lnc} k_{t+1} \\
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
\end{array}
\end{gathered}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \text { Without }_{\xi k_{t+1}}^{\log z_{t+1}=\rho \log z_{t}+u_{t+1}}
\end{gathered}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \xi k_{t+1} \\
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
\end{gathered}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
\quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}} \\
b_{t+1} \leq \xi k_{t+1} \\
\log z_{t+1}=\rho \log z_{t}+u_{t+1} \quad \text { Without }
\end{gathered}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{gathered}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \quad \begin{array}{c}
\text { Without } \\
\text { possibility of } \\
\text { paid-employment } \\
\downarrow
\end{array} \\
\leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}}+\ldots
\end{gathered} b_{t+1} \leq k_{t+1}^{\xi k_{t+1}} \begin{aligned}
& \log z_{t+1}=\rho \log z_{t}+u_{t+1} \\
& \operatorname{plus} \text { timing assumption : choose } k, l \text { before shocks }
\end{aligned}
$$

Problem of BGM Business Owner

$\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta}$
$\begin{array}{cc}\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} & \begin{array}{c}\text { Without } \\ \text { government } \\ \text { help } \\ \downarrow\end{array} \\ \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}}+\ldots\end{array}$
$b_{t+1} \leq k_{t+1}^{\xi k_{t+1}}$
$\log z_{t+1}=\rho \log z_{t}+u_{t+1}$
plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
& \max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} \\
& \text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} \\
& \quad \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}}+\cdots \\
& \\
& b_{t+1} \leq \xi k_{t+1}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Problem of BGM Business Owner

$$
\begin{aligned}
\max E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\theta}}{1-\theta} & \\
\text { st } c_{t}+\underbrace{k_{t+1}-b_{t+1}-\left(k_{t}-b_{t}\right)}_{\text {change in equity, } a_{t+1}-a_{t}} & \begin{array}{c}
\text { Without } \\
\text { Mom's } \\
\text { basement! } \\
\downarrow
\end{array} \\
& \leq \underbrace{z_{t} \epsilon_{t}\left(k_{t}^{\alpha} l_{t}^{1-\alpha}\right)^{\eta}-W l_{t}-\delta k_{t}-r b_{t}}_{\text {net income, } \pi_{t}}+\ldots \\
b_{t+1} & \leq \xi k_{t+1}
\end{aligned}
$$

$$
\log z_{t+1}=\rho \log z_{t}+u_{t+1}
$$

plus timing assumption : choose k, l before shocks

Quantitative Findings

Eliminating Collateral Constraints

- Increases
- Productivity 0.02%
- Output 0.15\%
- Wages 0.02\%
\Rightarrow Almost no change

Eliminating Collateral Constraints

- Increases
- Productivity 0.02%
- Output 0.15\%
- Wages 0.02\%

Is this surprising?

Eliminating Collateral Constraints

- Increases
- Productivity 0.02%
- Output 0.15\%
- Wages 0.02\%

Is this surprising? Not really

Insuring Risk

- Increases
- Productivity 5.7\%
- Output 8.2\%
- Wages 15.5\%
- Value of businesses by 700%
\Rightarrow Huge changes

Insuring Risk

- Increases
- Productivity 5.7\%
- Output 8.2\%
- Wages 15.5\%
- Value of businesses by 700%

Is this surprising?

Surprising?

- Perhaps given
- Magnitudes are so large
- Impact of risk on saving/investment not obvious
- Perhaps not given
- Few sources of insurance in the model
- Owners have small-scale operations to avoid losses
- Only firm-level data used for calibration

A Look at Data from US

In Related Work

- Assembled longitudinal database of business owners
- Estimated life-cycle income profiles for 35,000 groups
- Compared similar self- and paid-employed (SE\&PE)
- Growth and volatility patterns
- Determinants of entrpreneurial choice

See: On the Nature of Entrepeneurship
(Bhandari, Kass, May, McGrattan, and Schulz)

Of Particular Relevance for BGM

- Comparisons of attached SE and PE
- Same employment status for $12+$ years
- Fewer than 2 switches in status during sample
- No intermediate non-employment years
- Information from individual filings
- All income sources (plus W2s,K1s, etc)
- Plus related family incomes
- Information from business filings
- Income statements
- Balance sheets (if large enough)
- Links to employees/other businesses/other owners

Relevant Findings

- For individual i, time t, cohort c, age a, group g, estimate:

$$
y_{i t}=\alpha_{i}+\beta_{g(i), t}+\sum_{a} \gamma_{c(i), g(i)}^{a}+\epsilon_{i t}
$$

- Find:
- Attached SE:
- Start out similarly to PE peers, but
- Have higher and more persistent growth
- Have losses and incomes 3 times more volatile
- Entrants to SE (including non-attached):
- Have lower asset income before entry
- How possible without some insurance?

Estimated Income Profiles

- SE start out similarly but grow much faster

Estimated Growth

Thous.
2012\$

- SE rewarded for early firm-specific investments

Income Changes for Attached SE/PE

- Volatility in SE about 3 times that of PE

Difference in Past Asset Incomes

Thous. 2012\$

- Past asset incomes lower for entrants

How Possible?

- Spousal wages provide insurance
- Businesses have multiple owners
- Owners have multiple businesses
- Rental/labor markets are fluid
- Debt financing not always needed
- Public listing always an option
- Paid-employment always an option

How Possible?

- Spousal wages provide insurance
- Businesses have multiple owners
- Owners have multiple businesses
- Rental/labor markets are fluid
- Debt financing not always needed
- Public listing always an option
- Paid-employment always an option
- And...there is always Mom!

Disclaimer

The authors thank Anne Parker and Barry Johnson for facilitating this project through the Joint Statistical Research Program of the Statistics of Income Division of the United States Internal Revenue Service. May and McGrattan are IRS employees without pay under an agreement made possible by the Intragovernmental Personnel Act of 1970 (5 U.S.C. 3371-3376). Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the Internal Revenue Service or the U.S. Department of the Treasury, or the National Science Foundation. All results have been reviewed to ensure that no confidential information is disclosed. All data work for this project involving confidential taxpayer information was done at IRS facilities, on IRS computers, by IRS employees, and at no time was confidential taxpayer data ever outside of the IRS computing environment.

