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This paper

• Assembles novel longitudinal database of business owners

• Estimates life-cycle income profiles for 35,000 groups

• Compares profiles for similar self- and paid-employed

◦ Growth and volatility patterns

◦ Analysis of entrepreneurial choice



Motivation

• Results inform:

◦ Entrepreneurial theories

◦ Tax administration

• Provides updated answers to:

◦ Does entrepreneurship pay?

◦ Is there scope for shrinking the tax gap?



Most Previous Work

• Uses surveys with

◦ Top-coding

◦ Short panels

• Concludes that SE (relative to peers)

◦ Flatter life-cycle profiles

◦ Enter SE with lower past labor income

◦ Enter with higher past asset income

• Motivates theories where entrepreneurs

◦ Earn large non-pecuniary benefits

◦ Are misfits

◦ Face liquidity constraints



In Contrast to Literature

• Use administrative data with

◦ No Top-coding

◦ Long panels

• Conclude that SE (relative to peers)

◦ Have significantly steeper life-cycle profiles

◦ Enter SE with higher past labor income

◦ Enter with lower past asset income

• Motivate theories where entrepreneurs

◦ Make significant investments in business

◦ Experiment to learn entrepreneurial productivity

◦ Face few liquidity constraints



Today’s talk

• Data

◦ Sample

◦ Income measures

◦ Skill and education imputations

• Life-cycle profile estimation

◦ Potential challenges

◦ Econometric approach

◦ Income and growth profiles by group

• Entrepreneurial choice

◦ Entry and exit

◦ Characteristics of entrants

• Theoretical predictions



Data



Sample

• Primary source: administrative IRS data

◦ Balanced panel of living individuals with US SSN

◦ Birth cohorts 1950-1975

◦ Available 1996-2015

• Merge in: Schedule C and K-1 data

◦ Owners of pass-through businesses

◦ Available 2000-present



Income Measures

• Self-employment (SE) income

◦ Schedule C net profit of sole proprietors

◦ Schedule K-1 ordinary business income of

— Individual partners

— S-corporation owners

◦ W-2 wages of S-corporation owners

• Paid-employment (PE) income

◦ W-2 wages of non-owner employees



Employment Status

• Self-employed (SE) in a given year if:

◦ |SE income| > 5,000 in 2012$ and

|SE income| > |PE income|
Share in business × employees ≥ 1
Share of gross profits > PE income

 At least
one

• Paid-employed (PE) in a given year if:

◦ Not SE

◦ W-2 earnings > 5,000 in 2012$

• Non-employed (NE) in a given year if:

◦ Not SE or PE



Skill and Education Measures

Skills:

• Individuals with occupation in e-filing

◦ Map entry to SOC code

◦ Map SOC to cognitive, interpersonal, and manual skills

• Individuals with missing codes

◦ Develop classifier code based on CPS

◦ Use regression results with IRS data

Education:

• Individuals classified as educated if

◦ Occupation listed as student

◦ Filed 1098-T

◦ CPS-based classifier indicates so



Sample Statistics

Total Attached Mostly Any
Statistic Sample PE SE Switching NE

Individuals (Mil) 65.0 35.4 1.9 2.2 24.8
Incomes (2012 $, Th.)

Mean income 53.5 65.6 154.4 103.3 22.2
Income, 10th pctl 6.7 23.7 17.3 17.9 2.1

50th 35.9 49.7 66.8 53.2 14.3
90th 99.7 110.9 334.8 206.2 44.8

Skills (%)
Educated 52.1 59.6 61.6 63.7 39.3
Cognitive 47.2 52.7 59.9 58.6 37.0
Interpersonal 56.1 63.1 58.7 62.8 45.0
Manual 32.3 31.1 32.7 30.1 34.2

Demographics
Male (%) 50.7 53.4 82.4 75.1 41.5
Mostly married (%) 67.6 70.3 79.1 75.4 61.9



Life-cycle Profile Estimation



Comparisons of Self- and Paid-Employed

• Central to the analysis is SE vs PE comparisons

• Idea:

◦ Only self-employed rewarded for firm-specific investment

◦ Can compare self- and paid-employed with

— Same demographics, industry, education, etc.

— Different investment opportunities

◦ Look for differences in life-cycle income growth profiles



Object of Interest

Income(Age | Individual and aggregate factors)



Challenges

• Selection

◦ Incomes driven by latent characteristics

⇒ Allow for unrestricted intercept

• Survival

◦ Income higher because successful remain

⇒ Study “attached” and “switchers” separately

• Identification

◦ Time and age effects not separately identified

⇒ Exploit overlapping cohorts

• Signs

◦ Business incomes can be negative

⇒ Estimate in levels with flexible error structure



Estimation Procedure

• Estimate time (β) and age (γ) effects for income:

yit = αi + βg(i),t +

a(i ,t)∑
a=a0

γac(i),g(i) + εi ,t

where

◦ i ∈ I is set of individuals

◦ t ∈ T is set of calendar dates

◦ c ∈ C is set of birth years

◦ a ∈ A is set of ages

◦ g ∈ G is set of groups partitioning I

• Requires assumptions to separately identify β and γ
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Identification

• Two identifying assumptions

◦ Age effects are same across cohorts, γac,g = γag

◦ Average time effect satisfies (where yg ,t0
is avg income for g):

∆βg
yg ,t0

=
µg
T

∑
t

(1 + µg )t

• Allows flexibility when set G large



A Practical Footnote: Easy to do

• Using least-squares approach

min
{∆βg ,γag}

∑
g∈G

∑
t∈T

∑
i∈I

(
∆yit −∆βg(i),t − γ

a(i ,t)
g(i)

)2

⇒ Solving small linear systems for each g



Population
Counts

for
different
ages and

times





∆β2001
g
...

∆β2015
g

γ26
g
...
γ65
g


=



Avg.
Incomes

at
different
ages and

times





Application: set G with 35,117 groups

• Employment attachment:

◦ Attached to SE (1.9 mil) or to PE (35.4 mil)

◦ Almost attached to SE (0.3 mil) or to PE (0.5 mil)

◦ Mostly switching (2.2 mil)

◦ Any NE (24.8 mil)

• Other observables:

◦ Cohort (50-59, 60-69, 70-75)

◦ Gender (M/F)

◦ Educated (yes/no)

◦ Skilled cognitively, interpersonally, mannually (yes/no’s)

◦ Industry (20 2-digit)

◦ Married (9 or more years, yes/no)

◦ Children (have/don’t have)



Empirical Results:
Time and Age Effects



Income Profiles
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• Does entrepreneurship pay? Yes



Estimated Time Effects Relative to Total
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• Flexible approach allows for differences in 2008-09



Estimated Age Effects for Attached SE and PE
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• Significantly higher and more persistent growth for SE



Disaggregating Trends

Rich data allows for disaggregated analysis

• For example:

◦ Men

◦ Married

◦ Work in professional services

◦ Educated

◦ Interpersonally skilled

◦ Not manually skilled

◦ Not cognitively skilled

◦ Attached to paid- or self-employment

Just two of our 35,117 groups
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Estimated Age Effects For the Detailed Group
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• Even more pronounced hump



Growth Gap Decomposition

Characteristics
Cumulative

Share Industry Male Married Educated Interpersonal Cognitive Manual

15.4

Health
√ √ √ √ √

26.7

Prof.
√ √ √ √
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Prof.
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Finance
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44.9

Health
√ √ √ √ √ √

49.3

Retail
√ √ √ √ √

53.5

Constr.
√ √ √ √ √

• Small number of groups account for most of growth gap



Growth Gap Decomposition

Characteristics
Cumulative

Share Industry Male Married Educated Interpersonal Cognitive Manual

15.4 Health

√ √ √ √ √

26.7 Prof.

√ √ √ √

33.1 Prof.

√ √ √ √ √

39.4 Finance

√ √ √ √

44.9 Health

√ √ √ √ √ √

49.3 Retail

√ √ √ √ √

53.5 Constr.

√ √ √ √ √

• Small number of groups account for most of growth gap



Growth Gap Decomposition

Characteristics
Cumulative

Share Industry Male Married Educated Interpersonal Cognitive Manual

15.4 Health
√ √

√ √ √

26.7 Prof.
√ √

√ √

33.1 Prof.
√ √

√ √ √

39.4 Finance
√ √

√ √

44.9 Health
√ √

√ √ √ √

49.3 Retail
√ √

√ √ √

53.5 Constr.
√ √

√ √ √

• Small number of groups account for most of growth gap



Growth Gap Decomposition

Characteristics
Cumulative

Share Industry Male Married Educated Interpersonal Cognitive Manual

15.4 Health
√ √ √ √

√

26.7 Prof.
√ √ √ √

33.1 Prof.
√ √ √ √

√

39.4 Finance
√ √ √ √

44.9 Health
√ √ √ √

√ √

49.3 Retail
√ √ √ √

√

53.5 Constr.
√ √ √ √

√

• Small number of groups account for most of growth gap



Growth Gap Decomposition

Characteristics
Cumulative

Share Industry Male Married Educated Interpersonal Cognitive Manual

15.4 Health
√ √ √ √ √

26.7 Prof.
√ √ √ √

33.1 Prof.
√ √ √ √ √

39.4 Finance
√ √ √ √

44.9 Health
√ √ √ √ √ √

49.3 Retail
√ √ √ √ √

53.5 Constr.
√ √ √ √ √

• Small number of groups account for most of growth gap



Empirical Results:
Tracking the Dollars



Tracking the Dollars

• For each industry, cohort, gender

◦ Rank individuals by average income

◦ Construct income shares by percentile

• Aggregate using population counts



Typical Dollar

Percentile Income Share
Group All Self Paid
< 10th 0.8 -1.5 1.1

10th to 25th 4.4 3.0 4.7

25th to 75th 36.8 18.6 39.9

75th to 90th 21.8 15.8 22.8

> 90th 36.2 64.1 31.5

• 80% of entrepreneurial income

◦ In 75+ percentile of income shares

◦ Not observable in top-coded survey samples



What is Observed in Surveys?

• Use same criteria for assigning SE vs PE

• Compare empirical moments for IRS vs CPS

◦ Medians for population

◦ Means for population

◦ Means for ”big-gap” guys



SE Median Income
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SE Mean Income
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”Big-Gap Guys” SE Mean
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Empirical Results:
Volatility Patterns



Volatility Patterns

• Two measures:

◦ Transition matrices on residuals ∆εi,t

◦ Percentiles of income changes ∆εi,a/|yi,a−1|

• Both show more volatility in SE but

◦ Decreasing across age

◦ Inconsistent with theories of risk

• Next, consider income changes at 10th and 90th percentile



Income Changes for Attached SE and PE
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• Around 2 to 3 times more volatility in SE



Entrepreneurial Choice:
Entry and Exit



Entry to and Exit from SE by Age

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40Switch
Frequency Exit

Entry

• Suggests early experimentation and learning



Entry to and Exit from SE by Year

2001 2003 2005 2007 2009 2011 2013 2015
0

5

10

15

20

25

30

35

40Switch
Frequency Exit

Entry

• Suggests SE not a hedge against unemployment risk



Entrepreneurial Choice:
Determinants of Self-Employment



Determinants of Self-Employment

• Compare outcomes of SE entrants to “similar” non-switchers

◦ One-time entrants into SE (“Treatment”)

◦ Non-switchers with same characteristics (“Control”)

• Assess “misfit” hypothesis for SE

◦ Have low past income

◦ Use SE as fallback option



Determinants of Self-Employment

• Idea:

◦ Compute average PE income before switch (3 years)

◦ Compare income of i with matched peers m(i)

◦ Use cohort, gender, NAICS for matches

• Compare differences:

∆it =
1

3

∑
j

yi ,t−j −
1

3Nm(i)

∑
m(i)

∑
j

ym(i),t−j (1)



Past Wage Income: Switchers vs Non-switchers
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• Suggests that SE have higher past wage income before entry



Repeat Exercise with Asset Income

• Assess “financial-friction” hypothesis

◦ Have high past income

◦ Need financing to start businesses

• Condition also on percentile of past income



Past Asset Income: Switchers vs Non-switchers
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• Suggests that SE have lower asset income before entry



Informing Theory



Empirically-Motivated Features

• Two features suggested by empirical results:

◦ Investment in self-created intangible assets

◦ Incomplete information about entrepreneurial productivity

• Why self-created intangibles needed?

◦ Owners invest time building customer-bases, brands, etc

◦ Investment implies high, persistent income growth

• Why incomplete information needed?

◦ Owners require time to learn their productivity

◦ Learning implies declining exit rates

⇒ Added to decision theoretic problem dynamic program



A Theoretical Case Study:
Young Entrepreneurs



Predictions for Young Entrepreneurs

• Choose parameters consistent with IRS micro data

• Simulate model time series over the life cycle

• Aggregate simulations using IRS counts and entry ages

• Construct growth profiles for young SE stayers/switchers

Let’s start with the data...
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1970-75 Cohort with 5+ Years SE Experience
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• Use results to construct growth differential for data



Growth Differential for Young Entrepreneurs
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Growth Differentials for Young Entrepreneurs
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Summary

• Assembled novel longitudinal database for business owners

• Estimated life-cycle income profiles for many groups

• Developed prototype model of entrepreneurs

• Studied model predictions for IRS data



Dynamic Program

Vk(s) = max
c,hy ,hκ,k,n,e

{U(c , `) + βEV (s ′)}

a′ = (1 + r)a + pez fy (κ, hy , k, n)−(r + δk)k−wn−e−c ≥ 0

κ′ = (1− δκ)κ+ fκ(hκ, e)

` = 1− hy − hκ
where

s = [a, κ, j , ε, z , µ]

j ′ = j + 1 and j is age

ε′ = a Markov chain given productivity

zj = z̄0 + ηj given ηj ∼ N(0, σ2
η) and productivity zj

µj = µj−1 + σ2
j−1(zj−1 − µj−1)/(σ2

j−1 + σ2
η)

σ2
j = σ2

j−1σ
2
η/(σ2

j−1 + σ2
η)

back



PE Median Income
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PE Mean Income
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”Big Gap Guys” PE Mean

25 30 35 40 45 50 55 60 65
0

40

80

120

160

Age

Thous.
2012$ IRS

CPS

Back


