

QUANTIFYING EFFICIENT TAX REFORM

Job Boerma and Ellen McGrattan

December 2020

• How large are welfare gains from efficient tax reform?

• Baseline:

- Positive economy matched to administrative data
- Reform:
 - Pareto improvements on efficient frontier (full)
 - Optima given set of policy tools (restricted)

- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Differing in education levels by individual
 - Facing productivity, marital, unemployment risks
 - Deciding on consumption, saving, hours
 - $\circ\,$ Technology parameters and tax policies
- Compute remaining lifetime utilities (v_j)

- Start with baseline OLG economy:
 - \circ Incomplete markets
 - Heterogeneous households
 - Differing in education levels by individual
 - Facing productivity, marital, unemployment risks
 - Deciding on consumption, saving, hours
 - $\circ~$ Technology parameters and tax policies
- Compute remaining lifetime utilities (v_j)
- Let's draw this for 2 households...

Value for Household A, ν^{A}

- Typical starting point for most analyses
 - With constraints on policy instruments
 - Do counterfactuals or restricted optimal ("Ramsey")

• Let's draw this in the picture

- Not typical starting point for studies in Mirrlees tradition
 - $\circ~$ With constraints on information sets
 - $\circ~$ Characterize efficient allocations and policy "wedges"

• Let's draw this in the picture

Value for Household A, ν^{A}

- This paper quantifies gains from:
 - Full Pareto-improving reform a la Mirrlees
 - Partial Pareto-improving reform a la Ramsey
 - Adding early-life transfer informed by Mirrlees
- Let's draw this in the picture

- Solve equilibrium for positive economy (\bullet)
 - $\circ\,$ Inputs: fiscal policy and wage processes
 - Outputs: values under current policy
- Solve planner problem next (•)
 - Inputs: values under current policy
 - Outputs: labor and savings wedges and welfare gains
- Use results to inform current policy and reforms (•)

- Maximum consumption equivalent gains (future cohorts):
 - $\circ~21\%$ starting at age 25
 - Comparisons made to utilitarian planner
- Decompose by comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - \circ Leisure: level \downarrow and variance \uparrow for all groups

Note: Currently computing transitions

- $\bullet\,$ Informed by comparison of baseline ($\bullet)$ and full reform ($\bullet)$
 - $\circ~{\rm Most}$ gains in lifting consumption levels for young
 - \Rightarrow Exploring early-life transfers

Note: Computer is still hillclimbing

Contributions to Literature

 \Rightarrow Using administrative data from NL, go to (•)

- Pareto-improving reforms with fixed types Hosseini-Shourideh (2019)
 - \Rightarrow Extend analysis to add dynamic risks
- Theory behind dynamic taxation and redistribution (•)
 Kapicka (2013), Farhi-Werning (2013), Golosov et al. (2016)

 \Rightarrow Link OLG (•) to planner (•) in full GE

Positive Economy

- Open OLG economy a la Bewley
- Household heterogeneity in:
 - Age
 - \circ Education (observed, permanent)
 - Productivity (private, stochastic)
 - $\circ~$ Marital risk
 - Divorce risk (in progress)
 - Unemployment risk (in progress)
- Transfers and taxes on consumption, labor income, assets

• Household problem

$$v_j(a,\epsilon;\Omega) = \max_{c,n,a'} \left\{ U(c,\ell) + \beta E[v_{j+1}(a',\epsilon';\Omega)|\epsilon] \right\}$$

s.t. $a' = (1+r)a - T_a(ra) + w\epsilon n - T_n(j,w\epsilon n) - (1+\tau_c)c$

where

- $\circ j = age$
- $\circ a =$ financial assets
- ϵ = productivity shock
- $\circ \ \Omega =$ factor prices and tax policies
- $\circ c = consumption$
- $n = labor supply (n + \ell = 1)$

- Firms:
 - Technology: $F(K, N) = K^{\alpha} N^{1-\alpha}$
 - \circ Prices: r, w set internationally
- Government:
 - Taxes: consumption, incomes, assets
 - Borrows: at home and abroad

• Add it up:

$$C_t + I_t + G_t + B_{t+1} = F(K_t, N_t) + RB_t$$
$$\lim_{T \to \infty} \frac{1}{R^{T-1}} (B_T + K_T) \ge 0$$

• Then use answers as inputs into planner's problem

- Merged administrative data, 2006-2014
 - Earnings from tax authority
 - $\circ\,$ Hours from employer provided data
 - $\circ\,$ Education from population survey
- National accounts
- Tax schedules

 $\Rightarrow\,$ Big data advantage for estimating elasticities & shocks

- Construct hourly wages W_{ijt} (j=age, t=time)
- Classify degrees:
 - $\circ~$ High school or practical (Low)
 - University of applied sciences (Medium)
 - University (High)
- Construct residual wages ω_{ijt} :
 - $\circ \log W_{ijt} = A_t + X_{ijt} + \omega_{ijt}$
 - $\circ\,$ Estimate AR(1) process for idiosyncratic risk

Marriage and Household Structure

- In period 0, individuals are single
 - $\circ\,$ Different by education (L,M,H)
- After that, individuals either
 - $\circ\,$ Form a couple (LL,LM,LH,MM,MH,HH) or
 - Remain single (included with LL,MM,HH)

Note: Working on adding divorce risk

Wage Process Estimates

Group	$\hat{ ho}$	$\hat{\sigma}_u^2$
Low, Low	.9542	.0096
Low, Medium	.9660	.0087
Low, High	.9673	.0162
Medium, Medium	.9570	.0099
Medium, High	.9616	.0109
High, High	.9564	.0172

Reform Problem

- Take inputs from positive economy:
 - Parameters for preferences and technologies
 - $\circ\,$ Wage profiles and shock processes
 - Values under current policy (v_A, v_B, \ldots)
- Compute maximum consumption equivalent gain

- Our focus is Pareto-improving reforms:
 - There is no alternative allocation that is
 - Resource feasible
 - Incentive feasible
 - Making all better off and some strictly better off
- Will report gain assuming same percentage for all

- Maximize weighted sum of lifetime utilities
- subject to
 - $\circ\,$ Incentive constraints for every household and history
 - Resource constraints

- Maximize weighted sum of lifetime utilities
- subject to
 - $\circ\,$ Incentive constraints for every household and history
 - Resource constraints

• Computationally easier to solve dual problem

- Maximize present value of aggregate resources
- subject to
 - Incentive constraints for every household and history
 - Value delivered exceeds that of positive economy

$$\max \sum_{h} \pi_0(h) \Pi_0(V^h, -, \epsilon)$$

subject to

 $\circ\,$ Incentive constraints for all h

 $\circ \ V^h \ge \vartheta^h \text{ for all } h$

$$\max \sum_{h} \pi_0(h) \Pi_0(V^h, -, \epsilon)$$

subject to

 $\circ\,$ Incentive constraints for all h

 $\circ \ V^h \ge \vartheta^h \text{ for all } h$

 \Rightarrow Exploit separability to solve household by household

- Exploit separability to solve household by household
- Include only local downward incentive constraints
 Verify numerically that constraints are satisfied
- Solve recursively by introducing additional states
 Promised value for truth telling
 - $\circ\,$ Threat value for local lie

- Exploit separability to solve household by household
- Include only local downward incentive constraints
 Verify numerically that constraints are satisfied
- Solve recursively by introducing additional states
 Promised value for truth telling (V)
 Threat value for local lie (V)

- Government:
 - \circ Can *ex-post* infer type from choices
 - $\circ~{\rm Can't}~ex\-ante$ observe type
- But, can design policy to *induce* truthful reporting of type

Max present value of resources

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \text{future value} \right]$$

As in positive economy,

 $\circ j = age$

- ϵ = productivity shock
- $\circ c = consumption$
- \circ *n*= labor supply

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

Additionally, planner chooses

$$\circ V_j = \text{promise value}$$

$$\circ \widetilde{V}_j = \text{threat value}$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. Local downward incentive constraints

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

where
$$\ell_j^+(\epsilon_{i-1}) = 1 - n_j(\epsilon_{i-1})\epsilon_{i-1}/\epsilon_i$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$$

Deliver at least the promised value

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Deliver no more than the threat value

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\widetilde{V} \ge \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon^+) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

No threat value

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Replace arbitrary V with $\vartheta(\epsilon_0) + \vartheta_{\Delta}$

- Solve planner problem for positive economy values
- Evaluate resource constraints

$$C_t + I_t + G_t + B_{t+1} = F(K_t, N_t) + RB_t$$
$$\lim_{T \to \infty} \frac{1}{R^{T-1}} (B_T + K_T) \ge 0$$

• Increase ϑ_{Δ} until resources exhausted

Value for Household A, $\nu^{\rm A}$

Value for Household A, $\nu^{\rm A}$

Putting this on the computer...

- 1. Quantify efficient reform $(\bullet \rightarrow \bullet)$
- 2. Use answer to inform restricted reform $(\bullet \rightarrow \bullet)$

- Number of productivity types
- Preferences
- Status quo policy

Baseline: 20 types, log preferences, NL wages & policy

- Welfare gains
 - Total consumption equivalent (ϑ_{Δ})
 - $\circ\,$ Decomposition
- Wedges

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon^j]}$$

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon_j]}$$

\Rightarrow Hopefully informative for reforming current policy

Results

- Wedges are suggestive of
 - \circ Informational frictions
 - $\circ~$ Insurance needs
- But,
 - $\circ\,$ Wedges are not taxes
 - Averages mask significant variation

- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}$ rates in NL over 40%
 - $\circ~$ Tax wedges of planner in 4% to 20% range

- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}$ rates in NL over 40%
 - $\circ~$ Tax wedges of planner in 4% to 20% range

- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}$ rates in NL over 40%
 - $\circ~{\rm Tax}$ wedges of planner in 4% to 20% range

• What are the implied Pareto weights?

• Recall: could also have solved:

• max $\sum_i \pi_i \omega_i V^i$

• subject to incentive and incentive constraints

Note: $\omega_i > 1 \Rightarrow$ overweight *i* relative to population share

• Recall: could also have solved:

• max $\sum_i \pi_i \omega_i V^i$

 $\circ\,$ subject to incentive and incentive constraints

• What are the implied ω_i 's for L,M,H?

Pareto Weights and Welfare Gains

	Equal Gains		Equal Weights	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	21		
Medium	1.0	21		
High	1.2	21		

Pareto Weights and Welfare Gains

	Equal Gains		Equal Weights [†]	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	21	1	32
Medium	1.0	21	1	18
High	1.2	21	1	2

[†] Utilitarian planner with $V^H \ge V^M \ge V^L$

Comparing Allocations, (\bullet) vs (\bullet)

- Consumption: level \uparrow and variance \downarrow for all groups
- Leisure: level \downarrow and variance \uparrow for all groups
- Intuition from simple static model:
 - $\circ\,$ No insurance: c varies, ℓ constant
 - $\circ\,$ Full insurance: c constant, ℓ varies

• What about magnitudes?

A Look Under the Hood: Group LL

Value for Household A, ν^A

- Results of planner problem suggest large gains to
 - Lower average marginal tax rates
 - Early life transfers
 - Income-tested transfers

Note: our results on restricted gains still tentative

- Points to certain:
 - Early life transfers
 - $\circ\,$ Income-tested transfers

- Ultimate deliverables of project:
 - Estimates of gains for efficient reform
 - $\circ~$ Identification of sources of gains
 - Ideas for new policy instruments
 - Prototype for future analyses
- Stay tuned...

Appendix Slides

Scaled Planner Problem
$$(\beta_j = 1 + \beta + \ldots + \beta^{J-j})$$

$$\hat{\Pi}_{j}(\hat{V},\hat{\widetilde{V}},\epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i}|\epsilon) \Big(\frac{1}{\beta_{j}} \big(w\epsilon_{i}n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i})\big) \\ + \frac{\beta_{j+1}}{\beta_{j}} \hat{\Pi}_{j+1}(\hat{V}_{j}(\epsilon_{i}),\hat{\widetilde{V}}_{j}(\epsilon_{i+1}),\epsilon_{i})/R\Big)$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta \beta_{j+1} \hat{V}_j(\epsilon_i)$$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \beta_{j+1} \hat{\widetilde{V}}_j(\epsilon_i), \ i \geq 2$$

$$\hat{V} \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[\frac{1}{\beta_j} U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta \frac{\beta_{j+1}}{\beta_j} \hat{V}_j(\epsilon_i) \right]$$

$$\hat{\widetilde{V}} \ge \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon^+) \left[\frac{1}{\beta_j} U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta \frac{\beta_{j+1}}{\beta_j} \hat{V}_j(\epsilon_i) \right]$$

- Map to multiplier grid
- Envelope conditions

$$-\nu_{j} = \hat{\Pi}_{j,1}(\hat{V}_{-}, \hat{\tilde{V}}_{-}, \epsilon_{-})$$
$$\mu_{j} = \hat{\Pi}_{j,2}(\hat{V}_{-}, \hat{\tilde{V}}_{-}, \epsilon_{-})$$

• \hat{V}_{-} and $\hat{\tilde{V}}_{-}$ residually determined by FOC

Optimality Conditions and Unknowns (5I-2)

$$\pi_j(\epsilon_i|\epsilon_-) = \left(\nu_j \pi_j(\epsilon_i|\epsilon_-) + q_j(\epsilon_i) - \mu_j \pi_j(\epsilon_i|\epsilon_-^+)\right) u_c(c_j(\epsilon_i))$$
$$- q_j(\epsilon_{i+1}) u_c(c_j(\epsilon_i))$$

$$w\pi_j(\epsilon_i|\epsilon_-) = \left(\nu_j\pi_j(\epsilon_i|\epsilon_-) + q_j(\epsilon_i) - \mu_j\pi_j(\epsilon_i|\epsilon_-^+)\right) \frac{v_\ell(\ell_j(\epsilon_i))}{\epsilon_i} - q_j(\epsilon_{i+1}) \frac{v_\ell(\ell_j^+(\epsilon_i))}{\epsilon_{i+1}}$$

 $\nu_{j+1}(\epsilon_i) = \beta R(\nu_j \pi_j(\epsilon_i | \epsilon_-) - \mu_j \pi_j(\epsilon_i | \epsilon_-) + q_j(\epsilon_i)) / \pi_j(\epsilon_i | \epsilon_-)$

$$\mu_{j+1}(\epsilon_i) = \beta R q_j(\epsilon_{i+1}) / \pi_j(\epsilon_i | \epsilon_-)$$

and the incentive constraints

Newton-Raphson Algorithm

- Guess consumption $\{c_i\}_1^{I-1}$
- Optimality condition $\{c_i\} \to c_N, \{q_i\}$
- Optimality condition $\{\hat{V}_j(\epsilon_i), \hat{\widetilde{V}}_j(\epsilon_i)\} \to \{\nu_i, \mu_i\}$
- Optimality condition y_I and incentive constraints $\rightarrow \{y_i\}$
- Residual equations are optimality conditions $\{y_i\}_1^{I-1}$

Observe guess in terms of consumption and parallelizable