

Quantifying Efficient Tax Reform

Job Boerma and Ellen McGrattan

July 2021

- To quantify welfare gains from efficient tax reform
 - Baseline:
 - Positive economy matched to administrative data
 - Reform:
 - Pareto improvements on efficient frontier (full)
 - Optima given set of policy tools (restricted)

- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Differ in education levels of members
 - Face productivity, marital, unemployment risks
 - Decide on consumption, saving, hours
 - Technology parameters and tax policies
- Compute remaining lifetime utilities (v^j)
- Let's draw this for 2 households...

Value for Household A, v^A

- Typical starting point for most analyses
 - With constraints on policy instruments
 - Do counterfactuals or restricted optimal ("Ramsey")

• Let's draw this in the picture

Value for Household A, v^A

- Not typical starting point for studies in Mirrlees tradition
 - With constraints on information sets
 - Characterize efficient allocations and policy "wedges"

• Let's draw this in the picture

Value for Household A, v^A

- This paper quantifies gains from:
 - o Full Pareto-improving reform a la Mirrlees
 - o Partial Pareto-improving reform a la Ramsey
- Let's draw this in the picture

Value for Household A, v^A

Value for Household A, v^A

Value for Household A, v^A

Our Approach

- Solve equilibrium for positive economy (•)
 - o Inputs: fiscal policy and wage processes
 - Outputs: values under current policy
- Solve planner problem next (•)
 - Inputs: values under current policy
 - o Outputs: labor and savings wedges and welfare gains
- Use results to inform current policy and reforms (•)

- Open OLG economy a la Bewley
- Household heterogeneity in:
 - Age
 - Education (observed, permanent)
 - Productivity (private, stochastic)
 - Marital risk
 - Divorce risk (in progress)
 - Unemployment risk (in progress)
- Transfers and taxes on consumption, labor income, assets

• Household problem

$$v^{j}(a, \epsilon; \Omega) = \max_{c, n, a'} U(c, \ell) + \beta E[v^{j+1}(a', \epsilon'; \Omega) | \epsilon]$$

s.t.
$$a' = (1+r)a - T_a(ra) + w\epsilon n - T_n(j, w\epsilon n) - (1+\tau_c)c$$

where

- \circ j = age
- \circ a = financial assets
- $\circ \epsilon = \text{productivity shock}$
- $\circ \Omega$ = factor prices and tax policies
- \circ c = consumption
- $\circ n = \text{labor supply } (n + \ell = 1)$

• Firms:

- \circ Technology: $F(K,N) = K^{\alpha}N^{1-\alpha}$
- \circ Prices: r, w set internationally

• Government:

- Taxes: consumption, incomes, assets
- Borrows: at home and abroad

• In equilibrium:

$$C_t + I_t + G_t + B_{t+1} = F(K_t, N_t) + RB_t$$

$$\lim_{T \to \infty} \frac{1}{R^{T-1}} (B_T + K_T) \ge 0$$

• Then use answers as inputs into planner's problem

Reform Problem: Some specifics (•)

- Take inputs from positive economy:
 - Parameters for preferences and technologies
 - Wage profiles and shock processes
 - \circ Values under current policy (v^A, v^B, \ldots)
- Compute maximum consumption equivalent gain

Planner Problem (Primal)

- Maximize weighted sum of lifetime utilities
- subject to
 - Incentive constraints for every household and history
 - Resource constraints

• But, computationally easier to solve dual problem

Planner Problem (Dual)

- Maximize present value of aggregate resources
- subject to
 - Incentive constraints for every household and history
 - Value delivered exceeds that of positive economy

Planner Problem (Dual)

$$\max \sum_{h} \pi_0(h) \Pi_0(V^h, -, \epsilon)$$

subject to

- \circ Incentive constraints for all h
- $\circ V^h \ge v^h \text{ for all } h$

Quantitative Deliverables

- Wedges
- Welfare gains
 - Total consumption equivalent
 - Decomposition
- Implied Pareto weights
- Sensitivity to parameter choices
- Insight for restricted policy reforms

Wedges

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1})) | \epsilon^j]}$$

Application to Netherlands

Data from Netherlands

- Merged administrative data, 2006-2014
 - Earnings from tax authority
 - Hours from employer provided data
 - Education from population survey
- National accounts
- Tax schedules

 \Rightarrow Big data advantage for estimating elasticities & shocks

Estimation of Wage Processes

- Construct hourly wages W_{ijt} (j=age, t=time)
- Classify degrees:
 - High school or practical (Low)
 - University of applied sciences (Medium)
 - University (High)
- Construct residual wages ω_{ijt} :
 - $\circ \log W_{ijt} = A_t + X_{ijt} + \omega_{ijt}$
 - Estimate AR(1) process for idiosyncratic risk

Marriage and Household Structure

- In period 0, individuals are single
 - Different by education (L,M,H)
- After that, individuals either
 - Form a couple (LL,LM,LH,MM,MH,HH) or
 - Remain single (included with LL,MM,HH)

Note: Working on adding divorce risk

Other Key Parameters

- Number of productivity types (50)
- Status quo tax/transfers (NL)
- Preferences:

1.
$$U(c,\ell) = \gamma \log c + \kappa n^{\rho}$$

2.
$$U(c, \ell) = \gamma \log c + (1 - \gamma) \log \ell$$

with different labor elasticities (0.5 vs 3)

Results

Labor Wedges

Labor Wedges

Labor Wedges

What We Learn

- Wedges are suggestive of
 - Informational frictions
 - Insurance needs
- But,
 - Average wedges are not taxes
 - Averages mask significant variation

Labor Wedges for LL, HH

Labor Wedges for LL, HH

- Consumption equivalent gain of 15% for future cohorts
- Large but maybe not surprising given:
 - Tax rates in NL over 40%
 - Average tax wedges of planner in 6% to 21% range

- Consumption equivalent gain of 15% for future cohorts
- Large but maybe not surprising given:
 - Tax rates in NL over 40%
 - Average tax wedges of planner in 6% to 21% range

- Consumption equivalent gain of 15% for future cohorts
- Large but maybe not surprising given:
 - Tax rates in NL over 40%
 - Average tax wedges of planner in 6% to 21% range

• What are the implied Pareto weights?

Implied Pareto Weights

• Recall: could also have solved:

$$\circ \max \sum_i \pi_i \omega_i V^i$$

• subject to incentive and incentive constraints

Note: $\omega_i > 1 \Rightarrow$ overweight i relative to population share

Implied Pareto Weights

- Recall: could also have solved:
 - $\circ \max \sum_{i} \pi_{i} \omega_{i} V^{i}$
 - subject to incentive and incentive constraints
- What are the implied ω_i 's for L,M,H?

Pareto Weights and Welfare Gains

	Equal Gains		Equal Weights	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	15		
Medium	1.0	15		
High	1.3	15		

Pareto Weights and Welfare Gains

	Equal Gains		Equal Weights [†]	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	15	1	28
Medium	1.0	15	1	7
High	1.3	15	1	-5

[†] Utilitarian planner with $V^H \geq V^M \geq V^L$

Pareto Weights and Welfare Gains

- With log preferences
 - Essentially same consumption equivalent gain (16%)
 - Essentially same implied Pareto weights
 - All gain with equal weights (but 0.05 for high)
- But, surprisingly close given labor elasticities of 0.5 vs 3

Comparing Allocations, (•) vs (•)

- Consumption: level \(\ \) and variance \(\ \ \) for all groups
- Leisure: level ↓ and variance ↑ for all groups
- Intuition from simple static model:
 - \circ No insurance: c varies, ℓ constant
 - \circ Full insurance: c constant, ℓ varies

• What about magnitudes?

A Look Under the Hood: Group LL

A Look Under the Hood: Group LL

A Look Under the Hood: Group LL

Informing Counterfactuals (•)

Value for Household A, v^A

Informing Counterfactuals (•)

- Results of planner problem suggest large gains to
 - Lower average marginal tax rates
 - Early life transfers
 - Income-tested transfers

Note: our results on restricted gains still tentative

Informing Counterfactuals (•)

- Points to certain:
 - Early life transfers
 - Income-tested transfers

Summary

- Ultimate deliverables of project:
 - Estimates of gains for efficient reform
 - for any age in steady state
 - along the transition path
 - Identification of sources of gains
 - Ideas for new policy instruments
 - Prototype for future analyses
- Stay tuned...