

QUANTIFYING EFFICIENT TAX REFORM

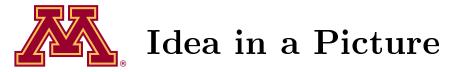
Job Boerma and Ellen McGrattan

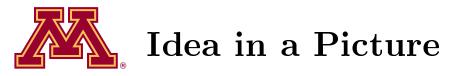
November 2020

• How large are welfare gains from efficient tax reform?

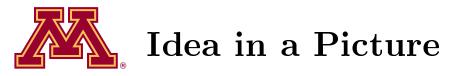
• Baseline:

- Positive economy matched to administrative data
- Reform:
 - Pareto improvements on efficient frontier (full)
 - Optima given set of policy tools (restricted)



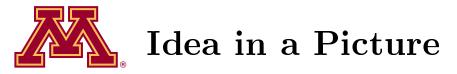


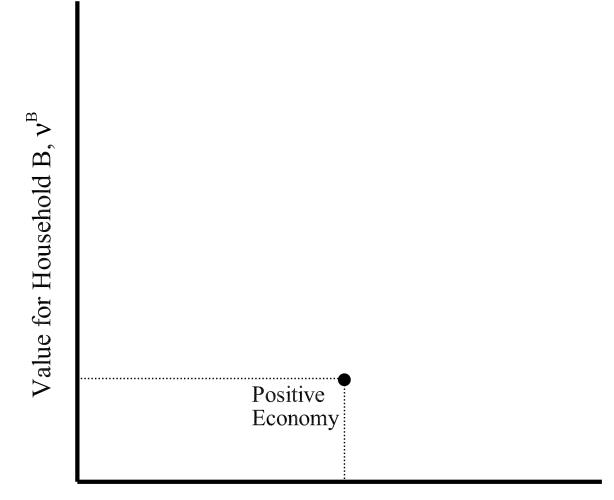
- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Consumption, labor supply, saving decisions
 - $\circ~$ Technology parameters and tax policies
- Compute remaining lifetime utilities (v_j)



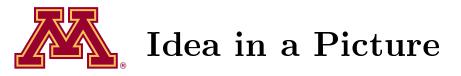
- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Consumption, labor supply, saving decisions
 - $\circ\,$ Technology parameters and tax policies
- Compute remaining lifetime utilities (v_j)

• Let's draw this for 2 households...



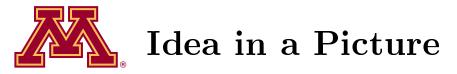


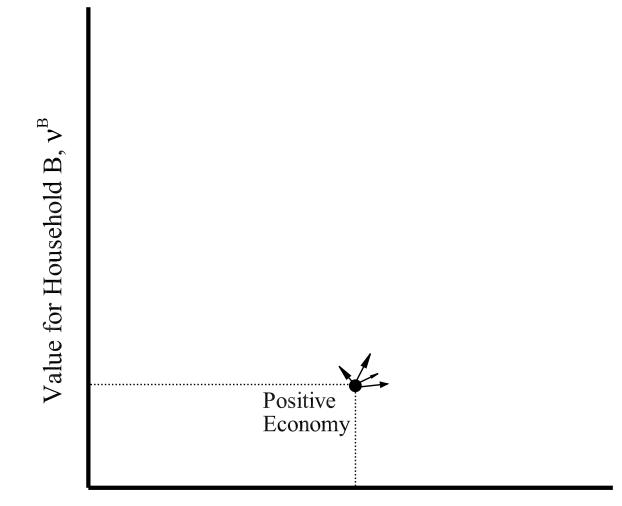
Value for Household A, ν^{A}

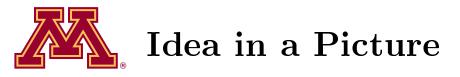


- Typical starting point for most analyses
 - With constraints on policy instruments
 - Do counterfactuals or restricted optimal ("Ramsey")

• Let's draw this in the picture

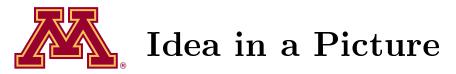


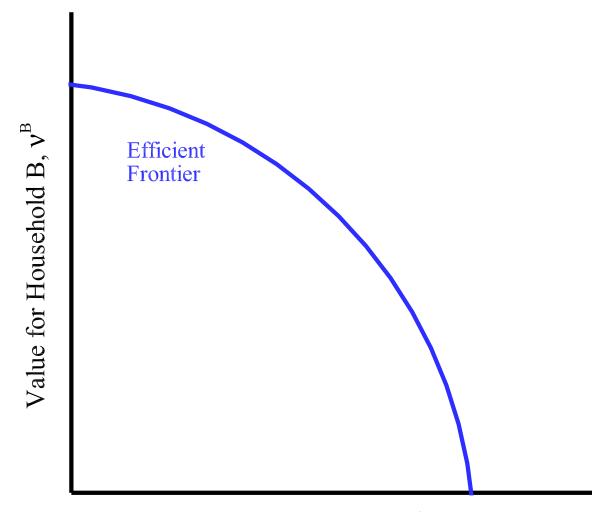




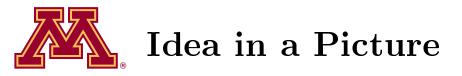
- Not typical starting point for studies in Mirrlees tradition
 - $\circ~$ With constraints on information sets
 - $\circ~$ Characterize efficient allocations and policy "wedges"

• Let's draw this in the picture

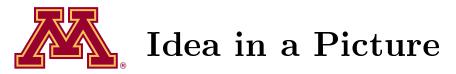


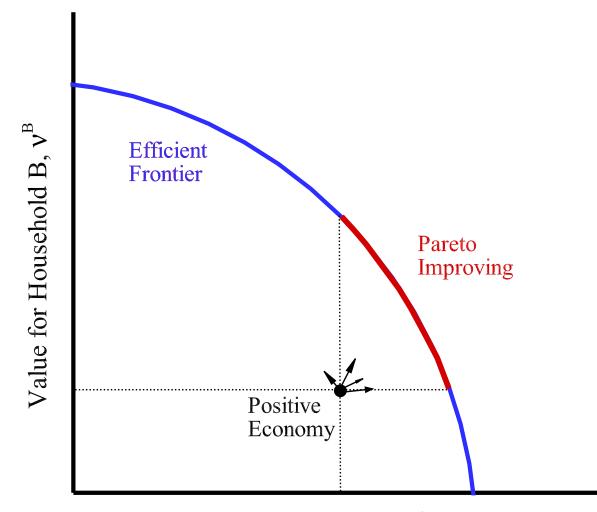


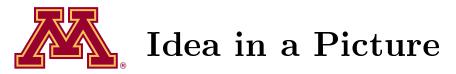
Value for Household A, ν^{A}

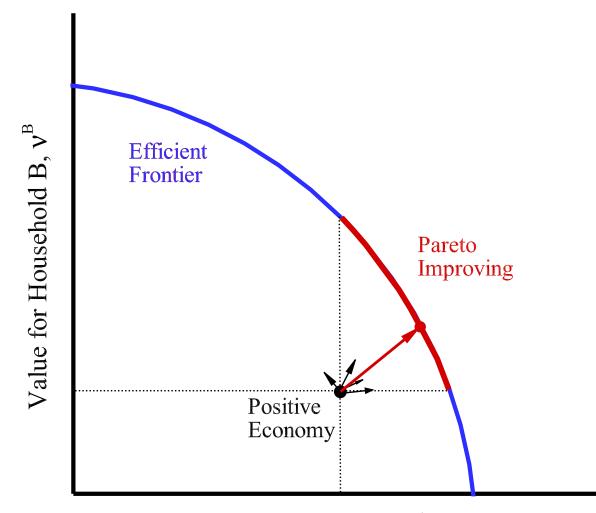


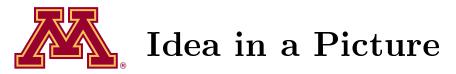
- This paper quantifies gains from:
 - Full Pareto-improving reform a la Mirrlees
 - Partial Pareto-improving reform a la Ramsey
 - Adding early-life transfer informed by Mirrlees
- Let's draw this in the picture

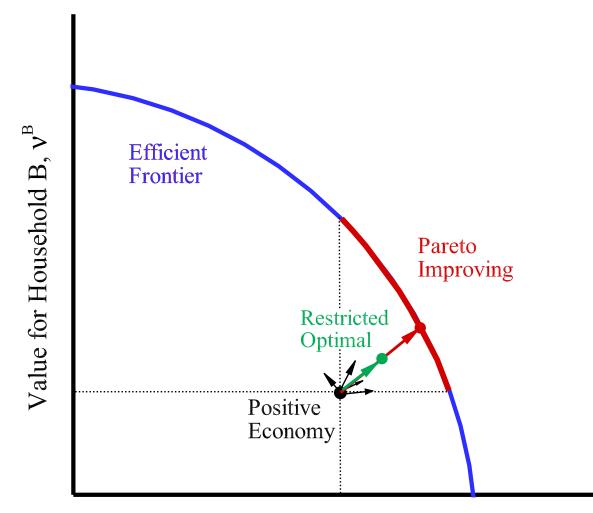












- Solve equilibrium for positive economy (\bullet)
 - $\circ\,$ Inputs: fiscal policy and wage processes
 - Outputs: values under current policy
- Solve planner problem next (•)
 - Inputs: values under current policy
 - Outputs: labor and savings wedges and welfare gains
- Use results to inform current policy and reforms (•)

- Maximum consumption equivalent gains (future cohorts):
 - $\circ~21\%$ starting at age 25
 - Comparisons made to utilitarian planner
- Decompose by comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - \circ Leisure: level \downarrow and variance \uparrow for all groups

Note: Currently computing transitions

- Informed by comparison of baseline (•) and full reform (•)
 Most gains in lifting consumption levels for young
 - \Rightarrow Exploring early-life transfers: adds $\approx 2\%$ gains

Note: Computer is still hillclimbing

Contributions to Literature

 \Rightarrow Using administrative data from NL, go to (•)

- Pareto-improving reforms with fixed types Hosseini-Shourideh (2019)
 - \Rightarrow Extend analysis to add dynamic risks
- Theory behind dynamic taxation and redistribution (•)
 Kapicka (2013), Farhi-Werning (2013), Golosov et al. (2016)

 \Rightarrow Link OLG (•) to planner (•) in full GE

- Open OLG economy a la Bewley
- Household heterogeneity in:
 - Age
 - \circ Education (observed, permanent)
 - Productivity (private, stochastic)
 - $\circ~$ Marital risk
 - Divorce risk (in progress)
 - Unemployment risk (in progress)
- Transfers and taxes on consumption, labor income, assets

• Household problem

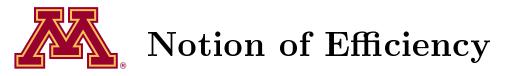
$$v_j(a,\epsilon;\Omega) = \max_{c,n,a'} \left\{ U(c,\ell) + \beta E[v_{j+1}(a',\epsilon';\Omega)|\epsilon] \right\}$$

s.t. $a' = (1+r)a - T_a(ra) + w\epsilon n - T_n(j,w\epsilon n) - (1+\tau_c)c$

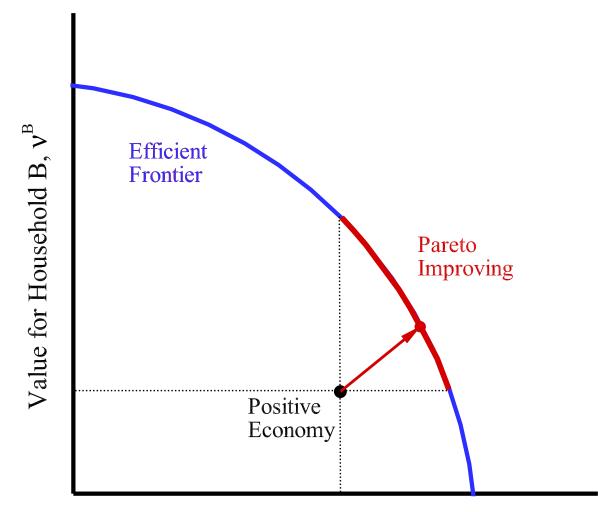
where

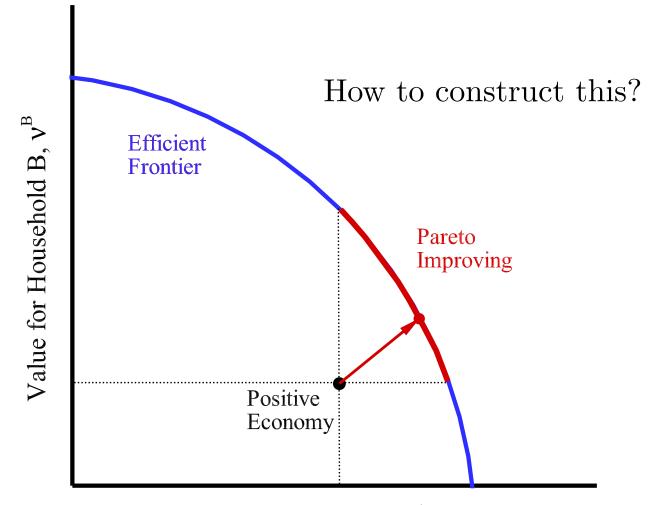
- $\circ j = age$
- $\circ a =$ financial assets
- ϵ = productivity shock
- $\circ \ \Omega =$ factor prices and tax policies
- $\circ c = consumption$
- $n = labor supply (n + \ell = 1)$

- Take inputs from positive economy:
 - Parameters for preferences and technologies
 - $\circ\,$ Wage profiles and shock processes
 - Values under current policy (v_A, v_B, \ldots)
- Compute maximum consumption equivalent gain



- Our focus is Pareto-improving reforms:
 - $\circ~$ There is no alternative allocation that is
 - Resource feasible
 - Incentive feasible
 - Making all better off and some strictly better off
- Will report gain assuming same percentage for all



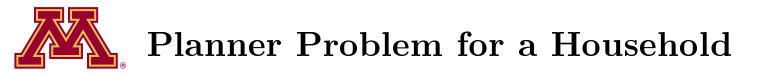


- Maximize present value of aggregate resources
- subject to
 - $\circ\,$ Incentive constraints for every household and history
 - $\circ\,$ Value delivered exceeds that of positive economy

- Exploit separability to solve household by household
- Include only local downward incentive constraints
 Verify numerically that constraints are satisfied
- Solve recursively by introducing additional states
 Promised value for truth telling
 - $\circ\,$ Threat value for local lie

- Exploit separability to solve household by household
- Include only local downward incentive constraints (IC)
 Verify numerically that all ICs satisfied
- Solve recursively by introducing additional states
 Promised value for truth telling (V)
 Threat value for local lie (V)

Max present value of resources



$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \text{future value} \right]$$

As in positive economy,

 $\circ j = age$

- ϵ = productivity shock
- $\circ c = consumption$
- \circ *n*= labor supply

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

Additionally, planner chooses

$$\circ V_j = \text{promise value}$$

$$\circ \widetilde{V}_j = \text{threat value}$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. Local downward incentive constraints

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

where
$$\ell_j^+(\epsilon_{i-1}) = 1 - n_j(\epsilon_{i-1})\epsilon_{i-1}/\epsilon_i$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$$

Deliver at least the promised value

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Deliver no more than the threat value

$$\Pi_{j}(V, \widetilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\widetilde{V} \ge \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon^+) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

No threat value

Planner Problem for Future Generation (j = 1)

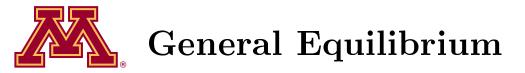
$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \widetilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \widetilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

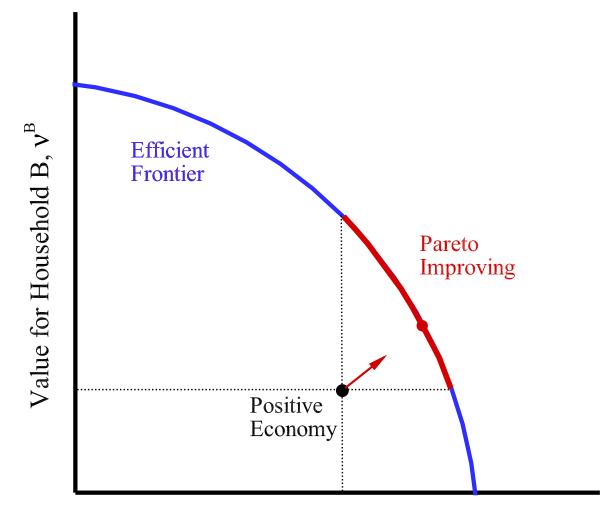
Replace arbitrary V with $\vartheta(\epsilon_0) + \vartheta_{\Delta}$



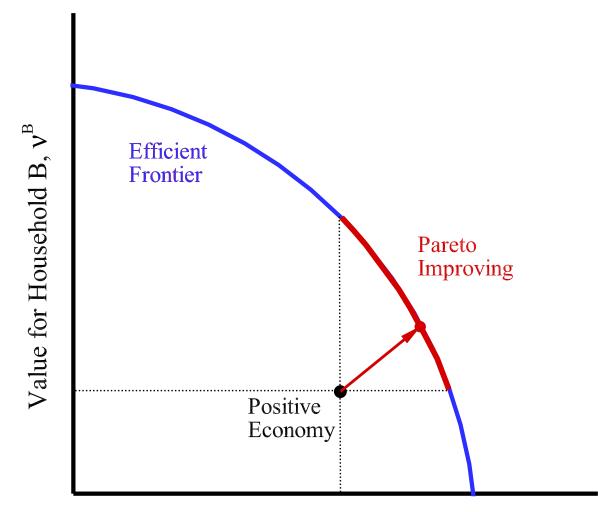
- Solve planner problem for positive economy values
- Evaluate resource constraints

$$C_t + I_t + G_t + B_{t+1} = F(K_t, N_t) + RB_t$$
$$\lim_{T \to \infty} \frac{1}{R^{T-1}} (B_T + K_T) \ge 0$$

• Increase ϑ_{Δ} until resources exhausted



Value for Household A, $\nu^{\rm A}$

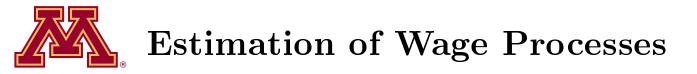


Value for Household A, $\nu^{\rm A}$

- 1. Data
- 2. Quantify efficient reform $(\bullet \rightarrow \bullet)$
- 3. Use answer to inform restricted reform $(\bullet \rightarrow \bullet)$

- Merged administrative data, 2006-2014
 - Earnings from tax authority
 - Hours from employer provided data
 - $\circ\,$ Education from population survey
- National accounts
- Tax schedules

Note: Big data advantage for estimating elasticities & shocks



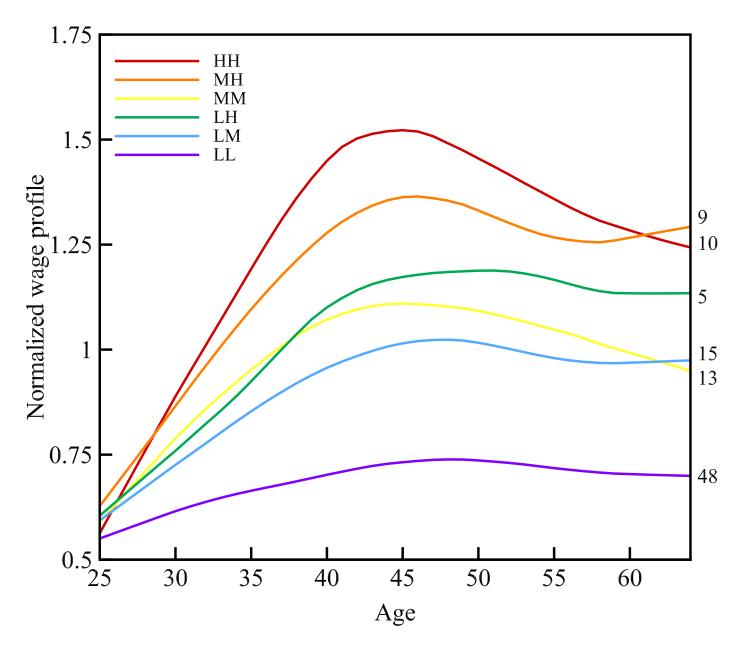
- Construct hourly wages W_{ijt} (j=age, t=time)
- Classify degrees:
 - \circ High school or practical (Low)
 - University of applied sciences (Medium)
 - University (High)
- Construct residual wages ω_{ijt} :
 - $\circ \log W_{ijt} = A_t + X_{ijt} + \omega_{ijt}$
 - \circ Estimate AR(1) process for idiosyncratic risk

Marriage and Household Structure

- In period 0, individuals are single
 - $\circ\,$ Different by education (L,M,H)
- After that, individuals either
 - $\circ\,$ Form a couple (LL,LM,LH,MM,MH,HH) or
 - Remain single (included with LL,MM,HH)

Note: Working on adding divorce risk

Wage Profiles



Wage Process Estimates

Group	$\hat{ ho}$	$\hat{\sigma}_u^2$
Low, Low	.9542	.0096
Low, Medium	.9660	.0087
Low, High	.9673	.0162
Medium, Medium	.9570	.0099
Medium, High	.9616	.0109
High, High	.9564	.0172

- Government:
 - \circ Can *ex-post* infer type from choices
 - $\circ~{\rm Can't}~ex\-ante$ observe type
- But, can design policy to *induce* truthful reporting of type

- Number of productivity types
- Preferences
- Status quo policy

Baseline: 20 types, log preferences, NL wages & policy

- Welfare gains
 - Total consumption equivalent (ϑ_{Δ})
 - $\circ\,$ Decomposition
- Wedges

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon^j]}$$

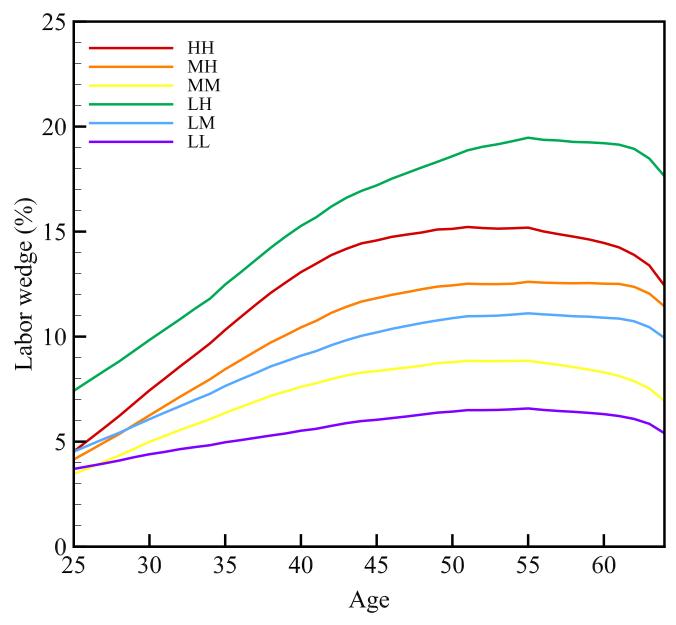
• Labor wedge:

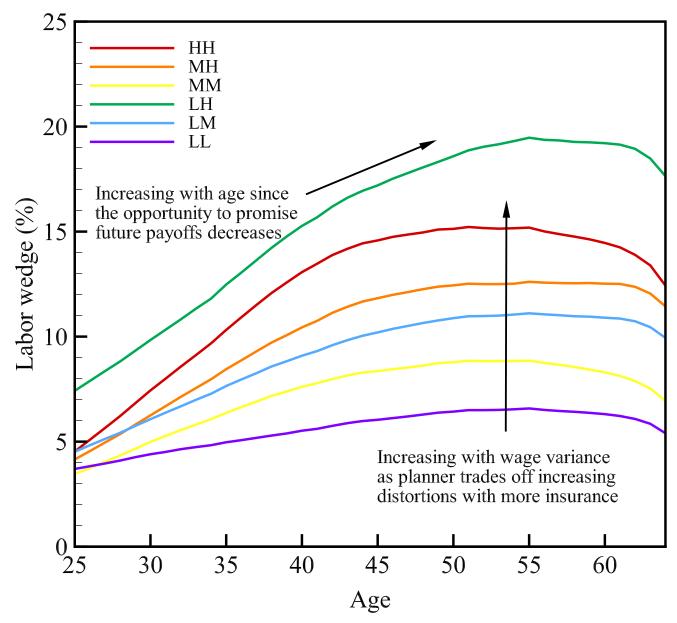
$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon_j]}$$

\Rightarrow Hopefully informative for reforming current policy





- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}$ rates in NL over 40%
 - $\circ~$ Tax wedges of planner in 4% to 20% range

- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}$ rates in NL over 40%
 - $\circ~{\rm Tax}$ wedges of planner in 4% to 20% range

• What are the implied Pareto weights?

• Could also have solved:

• max $\sum_i \omega_i V^i$

 $\circ\,$ subject to resource and incentive constraints

• What are the implied ω_i 's for L,M,H?

Pareto Weights and Welfare Gains

	Equal Gains		Equal Weights	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	21		
Medium	1.0	21		
High	1.2	21		

Pareto Weights and Welfare Gains

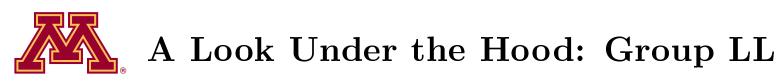
	Equal Gains		Equal Weights ^{\dagger}	
Education	ω_i	Δ_i	ω_i	Δ_i
Low	0.8	21	1	32
Medium	1.0	21	1	18
High	1.2	21	1	2

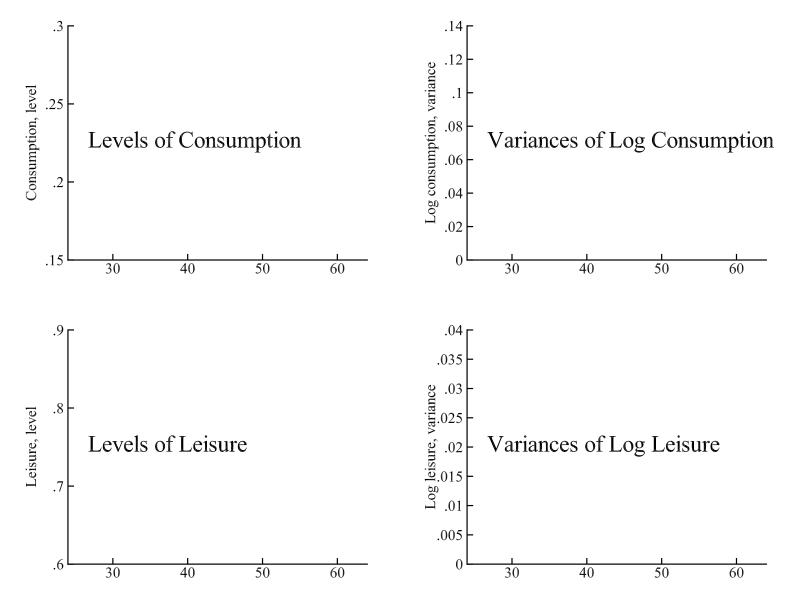
[†] Utilitarian planner with $V^H \ge V^M \ge V^L$

Comparing Allocations, (\bullet) vs (\bullet)

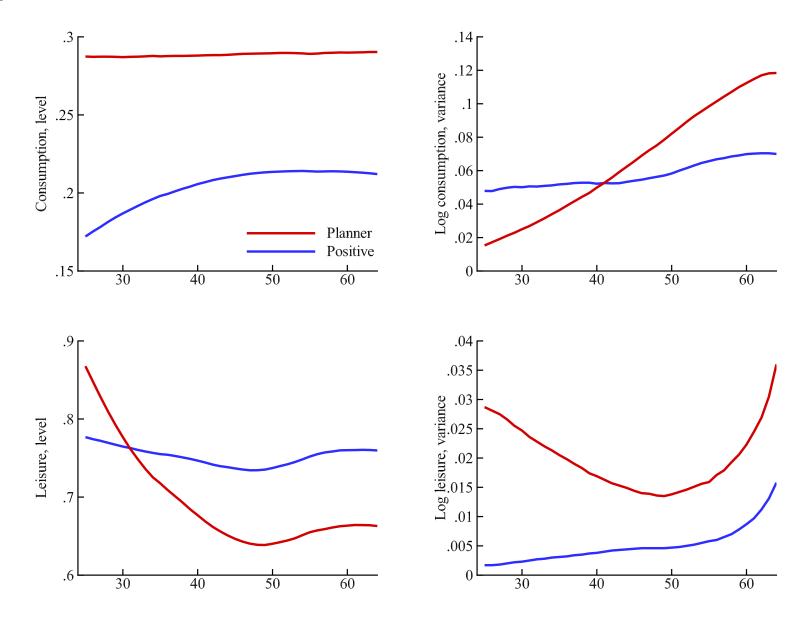
- Consumption: level \uparrow and variance \downarrow for all groups
- Leisure: level \downarrow and variance \uparrow for all groups
- Intuition from simple static model:
 - $\circ\,$ No insurance: c varies, ℓ constant
 - $\circ\,$ Full insurance: c constant, ℓ varies

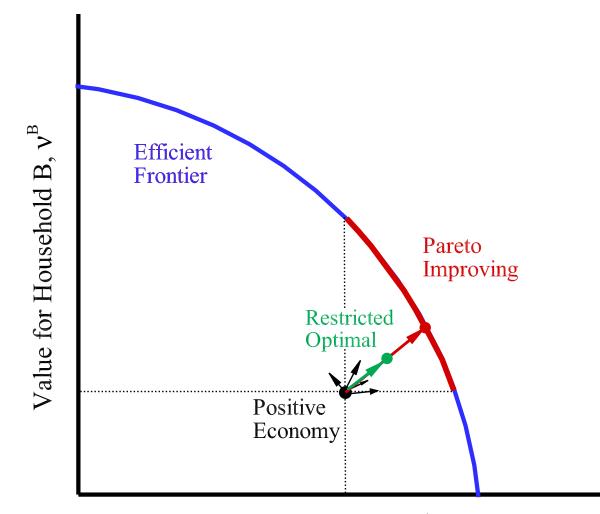
• What about magnitudes?





A Look Under the Hood: Group LL





Value for Household A, ν^A

- Results of planner problem suggest large gains to
 - Lower average marginal tax rates
 - Early life transfers

Note: our results on restricted gains still tentative

- Ultimate deliverables of project:
 - Estimates of gains for efficient reform
 - $\circ~$ Identification of sources of gains
 - Ideas for new policy instruments
 - Prototype for future analyses
- Stay tuned...