

QUANTIFYING EFFICIENT TAX REFORM

Job Boerma and Ellen McGrattan

March 2020

- How large are welfare gains from efficient tax reform?
 - $\circ\,$ Baseline: positive economy matched to data
 - Reform: Pareto improvements on efficient frontier
- How sensitive is the answer to modeling choices?

Value for Household A, ν^{A}

- Solve equilibria for positive economy (\bullet)
 - Inputs: fiscal policy and wage processes
 - Outputs: values under current policy
- Solve planner problem next (•)
 - Inputs: values under current policy
 - $\circ~$ Outputs: labor and savings wedges and welfare gains
- Ultimate goal: use results to inform policy reform (\nearrow)

- Small open economy
- Overlapping generations
- Household heterogeneity in:
 - Age
 - Education (permanent type)
 - Productivity (private, stochastic)
- Taxes on consumption, labor income, assets
- Estimated with administrative data for the Netherlands

- Take key inputs from positive economy
 - Parameters of preferences and technologies
 - $\circ~$ Wage profiles and shock processes
 - Values under current policy
- Compute maximum consumption equivalent gain

- Maximum consumption equivalent gains:
 - $\circ~17\%$ for baseline parameterization
 - $\circ~14\text{--}19\%$ varying key parameters
- Comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - \circ Leisure: level \downarrow and variance \uparrow for all groups

- Theory and application of income tax design Vast body of work
- Theory behind dynamic taxation and redistribution Kapicka (2013), Farhi-Werning (2013), Golosov et al. (2016)
- Pareto-improving reforms with fixed types Hosseini-Shourideh (2019)
- What's new?
 - GE analysis linking positive economy to planner
 - $\circ\,$ Analysis of Pareto reforms with stochastic types
 - $\circ\,$ Application with administrative data for NL

- Theory
- Estimation
- Results

Theory

$$v_j(a,\epsilon;\Omega) = \max_{c,n,a'} \left\{ U(c,\ell) + \beta E[v_{j+1}(a',\epsilon';\Omega)|\epsilon] \right\}$$

s.t. $a' = (1+r)a - T_a(ra) + w\epsilon n - T_n(j, w\epsilon n) - (1+\tau_c)c$

where

j = age

a = financial assets

 $\epsilon =$ productivity shock

 Ω = prices and government policies

c = consumption

 $n = labor supply (n + \ell = 1)$

- For simplicity, assume:
 - $\circ\,$ Small open economy with constant prices, policies
 - $\circ~$ No initial assets
- Then, inputs to planner problem:

$$\vartheta(\epsilon^{j-1}) \equiv E[v_j(a,\epsilon;\Omega)|\epsilon_-]$$

including future generations $\vartheta(\epsilon_0) \equiv E[v_1(0,\epsilon;\Omega)|\epsilon_0]$

- First need:
 - $\circ~$ Notion of efficiency
 - $\circ~$ Clarification about which reform(s) to consider

- Our focus is Pareto-improving reforms:
 - There is no alternative allocation that is
 - Resource feasible (only so much to go around)
 - Incentive feasible (induces truthful reports)
 - $\circ\,$ making all better off and some strictly better off
- Will assume all HHs gain by same percentage

- Maximize present value of aggregate resources
- subject to
 - $\circ\,$ Incentive constraints for every household and history
 - Value delivered exceeds $\vartheta(\epsilon^{j-1})$

- Exploit separability to solve household by household
- Include only local downward incentive constraints
 Verify numerically that all ICs satisfied
- Solve recursively by introducing additional states:

$$\circ V =$$
promised value for truth telling

 $\circ \tilde{V} =$ threat value for local lie

Max present value of household resources

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \Big[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \Big]$$

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. Local downward incentive constraints

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

where
$$\ell_j^+(\epsilon_{i-1}) = 1 - n_j(\epsilon_{i-1})\epsilon_{i-1}/\epsilon_i$$

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$$

Deliver at least the promised value

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V_{-} \leq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$$

$$V_{-} \leq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Deliver no more than the threat value

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V_{-} \leq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\tilde{V}_{-} \geq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}^+) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$$

$$V_{-} \leq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

No threat value

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V_{-}, \tilde{V}_{-}, \epsilon_{-}) \equiv \max \sum_{\epsilon_{i} \in \mathcal{E}} \pi_{j}(\epsilon_{i} | \epsilon_{-}) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t.
$$U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$$

$$\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$$

$$V_{-} \leq \sum_{\epsilon_i \in \mathcal{E}} \pi_j(\epsilon_i | \epsilon_{-}) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Replace arbitrary V_{-} with $\vartheta(\epsilon_0) + \vartheta_{\Delta}$

- Welfare gains
 - $\circ~$ Total consumption equivalent
 - \circ Decomposition
- Wedges
 - Labor
 - Savings

Welfare Gain Decomposition

- If $U(c, \ell) = \gamma \log c + (1 \gamma) \log \ell$
- Consumption equivalent gain Δ :

$$\log(1 - \Delta) = \log((1 - \Delta_c^L)(1 - \Delta_c^D)) + (1 - \gamma)\log((1 - \Delta_\ell^L)(1 - \Delta_\ell^D))/\gamma$$

$$1 - \Delta_x^L = \frac{\sum \pi(\epsilon^j) \hat{x}(\epsilon^j)}{\sum \pi(\epsilon^j) x(\epsilon^j)}, \quad \hat{x}: \text{ positive, } x: \text{ planner}$$

$$1 - \Delta_x^D = \sum \beta^j \pi(\epsilon^j) \log \left(\frac{\hat{x}(\epsilon^j)}{\sum \pi(\epsilon^j) \hat{x}(\epsilon^j)} \right)$$
$$- \sum \beta^j \pi(\epsilon^j) \log \left(\frac{x(\epsilon^j)}{\sum \pi(\epsilon^j) x(\epsilon^j)} \right)$$

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon_j]}$$

• Labor wedge:

$$\tau_n(\epsilon^j) = 1 - \frac{1}{w} \frac{U_\ell(c(\epsilon^j), \ell(\epsilon^j))}{U_c(c(\epsilon^j), \ell(\epsilon^j))}$$

• Savings wedge:

$$\tau_a(\epsilon^j) = 1 - \frac{U_c(c(\epsilon^j), \ell(\epsilon^j))}{\beta RE[U_c(c(\epsilon^{j+1}), \ell(\epsilon^{j+1}))|\epsilon_j]}$$

\Rightarrow Hopefully informative for reforming current policy

Data

- Merged administrative data, 2006-2014
 - Earnings from tax authority
 - Hours from employer provided data
 - $\circ\,$ Education from population survey
- National accounts
- Tax schedules

Advantages over US Data

- Administrative data:
 - NL:

Individual earnings linked across HH members Individual hours linked across HH members Individual education linked across HH members

US:

Individual earnings not linked across HH members

- Survey data:
 - US:

Years of schooling linked across HH members Hours and wages linked across HH members

- Construct hourly wages W_{ijt} (j=age, t=time)
- Classify degrees:
 - $\circ\,$ High school or practical (Low)
 - University of applied sciences (Medium)
 - University (High)
- Bin households into 6 groups
 - $\circ\,$ Assign singles to LL, MM, or HH
 - Use average wage rates for couples
- Construct residual wages ω_{ijt} :

$$\log W_{ijt} = A_t + X_{ijt} + \omega_{ijt}$$

- Pool data across cohorts
- Estimate (for each education group):

$$\omega_{ij} = \epsilon_{ij} + \eta_{ij}$$

$$\epsilon_{ij} = \rho \epsilon_{ij-1} + u_{ij}$$

$$\eta_{ij} \sim \mathcal{N}(0, \sigma_{\eta}^2)$$

$$u_{ij} \sim \mathcal{N}(0, \sigma_u^2)$$

$$\epsilon_{i0} \sim \mathcal{N}(0, \sigma_{\epsilon_0}^2)$$

• Apply method of simulated moments:

 \circ Moments: variance, autocovariances of ω_{ij}

• Parameters: ρ , σ_u , σ_η , σ_{ϵ_0}

Wage Process Estimates

Group	$\hat{ ho}$	$\hat{\sigma}_u^2$
Low, Low	.9542	.0096
Low, Medium	.9660	.0087
Low, High	.9673	.0162
Medium, Medium	.9570	.0099
Medium, High	.9616	.0109
High, High	.9564	.0172

- Government:
 - \circ Can *ex-post* infer type from choices
 - $\circ~{\rm Can't}~ex\-ante$ observe type
- But, can design policy to *induce* truthful reporting of type

- Number of types $\epsilon_i \in \mathcal{E}$
- Preferences
- Status quo policy

Baseline: 20 types, log preferences, NL wages & policy

Baseline Results

- Consumption equivalent gain of 17%
- Comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - \circ Leisure: level \downarrow and variance \uparrow for all groups

- Consumption equivalent gain of 17%
- Comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - $\circ\,$ Leisure: level \downarrow and variance \uparrow for all groups

• Next, consider welfare decomposition...

	Consumption		Leisure	
Education group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
Low, Low	22	2	-11	4
Low, Medium	21	3	-12	5
Low, High	16	5	-10	6
Medium, Medium	21	3	-13	5
Medium, High	19	5	-14	6
High, High	17	8	-15	7

	Consumption		Leisure	
Education group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
Low, Low	22	2	-11	4
Low, Medium	21	3	-12	5
Low, High	16	5	-10	6
Medium, Medium	21	3	-13	5
Medium, High	19	5	-14	6
High, High	17	8	-15	7

Find significant gains for level increase in consumption

A Look Under the Hood: Group LL

$$\max \ \gamma \log c + (1 - \gamma) \log \ell$$

s.t. $c = (1 - \tau(\epsilon)) w \epsilon (1 - \ell)$

 $\max \ \gamma \log c + (1 - \gamma) \log \ell$ s.t. $c = (1 - \tau(\epsilon))w\epsilon(1 - \ell)$

 \Rightarrow variation in consumption, constant leisure

 $\max \ \gamma \log c + (1 - \gamma) \log \ell$ s.t. $c = (1 - \tau(\epsilon)) w \epsilon (1 - \ell)$ $\Rightarrow c(\epsilon) = \gamma w (1 - \tau(\epsilon)) \epsilon, \ \ell(\epsilon) = 1 - \gamma$

$$\max \ \gamma \log c + (1 - \gamma) \log \ell$$

s.t. $c = (1 - \tau(\epsilon))w\epsilon(1 - \ell)$
$$\Rightarrow c(\epsilon) = \gamma w(1 - \tau(\epsilon))\epsilon, \ \ell(\epsilon) = 1 - \gamma$$

• Full insurance:

$$\max \int [\gamma \log c(\epsilon) + (1 - \gamma) \log \ell(\epsilon)] dF(\epsilon)$$

s.t.
$$\int [c(\epsilon) - (1 - \tau(\epsilon)) w\epsilon (1 - \ell(\epsilon))] dF(\epsilon) \le 0$$

$$\max \ \gamma \log c + (1 - \gamma) \log \ell$$

s.t. $c = (1 - \tau(\epsilon)) w \epsilon (1 - \ell)$
$$\Rightarrow c(\epsilon) = \gamma w (1 - \tau(\epsilon)) \epsilon, \ \ell(\epsilon) = 1 - \gamma$$

• Full insurance:

$$\max \int [\gamma \log c(\epsilon) + (1 - \gamma) \log \ell(\epsilon)] dF(\epsilon)$$

s.t.
$$\int [c(\epsilon) - (1 - \tau(\epsilon)) w\epsilon (1 - \ell(\epsilon))] dF(\epsilon) \le 0$$

 \Rightarrow constant consumption, variation in leisure

$$\max \ \gamma \log c + (1 - \gamma) \log \ell$$

s.t. $c = (1 - \tau(\epsilon)) w \epsilon (1 - \ell)$
$$\Rightarrow c(\epsilon) = \gamma w (1 - \tau(\epsilon)) \epsilon, \ \ell(\epsilon) = 1 - \gamma$$

• Full insurance:

$$\max \int [\gamma \log c(\epsilon) + (1 - \gamma) \log \ell(\epsilon)] dF(\epsilon)$$

s.t.
$$\int [c(\epsilon) - (1 - \tau(\epsilon)) w\epsilon (1 - \ell(\epsilon))] dF(\epsilon) \le 0$$
$$\Rightarrow c(\epsilon) = \gamma w \int (1 - \tau(\epsilon)) \epsilon dF(\epsilon)$$
$$\ell(\epsilon) = (1 - \gamma) \int (1 - \tau(\epsilon)) \epsilon dF(\epsilon) / ((1 - \tau(\epsilon)\epsilon))$$

$$\max \ \gamma \log c + (1 - \gamma) \log \ell$$

s.t. $c = (1 - \tau(\epsilon)) w \epsilon (1 - \ell)$
$$\Rightarrow c(\epsilon) = \gamma w (1 - \tau(\epsilon)) \epsilon, \ \ell(\epsilon) = 1 - \gamma$$

• Full insurance:

$$\max \int [\gamma \log c(\epsilon) + (1 - \gamma) \log \ell(\epsilon)] dF(\epsilon)$$

s.t.
$$\int [c(\epsilon) - (1 - \tau(\epsilon)) w\epsilon (1 - \ell(\epsilon))] dF(\epsilon) \le 0$$
$$\Rightarrow c(\epsilon) = \gamma w \int (1 - \tau(\epsilon)) \epsilon dF(\epsilon)$$
$$\ell(\epsilon) = (1 - \gamma) \int (1 - \tau(\epsilon)) \epsilon dF(\epsilon) / ((1 - \tau(\epsilon)\epsilon))$$

 \Rightarrow c level \uparrow & variance $\downarrow,$ ℓ level \downarrow & variance \uparrow

- How do results change with
 - Number of types: $\epsilon_i \in \mathcal{E}$
 - Wage profile: varying or constant over lifecycle
 - Preferences: varying elasticity in $v(\ell)$
 - Wage process: choices of ρ , σ_u^2
- Compare welfare gains and allocations to baseline

- Little change in total gain: 16%
- Hardly any change in decomposition:

	Consumption		Leisure	
Group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
LL	22/22	2/1	-11/-11	4/4
LM	21/21	3/3	-12/-12	5/6
LH	16/17	5/5	-10/-13	6/7
MM	21/21	3/3	-13/-13	5/5
MH	19/20	5/5	-14/-15	6/7
HH	17/17	8/6	-15/-15	7/7

Double Number of Types: A Look at LL

• Consider alternative preferences:

$$U(c,\ell) = \gamma \log c - \kappa \frac{(1-\ell)^{\alpha}}{\alpha}$$

• Set $\alpha = 3 \Rightarrow$ lower labor elasticity of 1/2

- Lower overall gain: 14%
- No gain from lower dispersion in leisure:

	Consumption		Leisure	
Group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
LL	22/17	2/1	-11/-4	4/1
LM	21/15	3/2	-12/-4	5/1
LH	16/13	5/4	-10/-4	6/0
MM	21/16	3/2	-13/-5	5/1
MH	19/15	5/3	-14/-5	6/1
HH	17/13	8/6	-15/-6	7/1

- Lower overall gain: 14%
- No gain from lower dispersion:

	Consumption		Leisure	
Group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
LL	22/28	2/ <mark>0</mark>	-11/-9	4/1
LM	21/27	3/0	-12/-7	5/1
LH	16/25	5/0	-10/-5	6/1
MM	21/28	3/ <mark>0</mark>	-13/-8	5/1
MH	19/27	5/0	-14/-7	6/1
HH	17/25	8/1	-15/-6	7/1

- Higher overall gain: 19%
- Shows up mostly in levels:

	Consumption		Leisure	
Group	Δ_c^L	Δ_c^D	Δ^L_ℓ	Δ^D_ℓ
LL	22/26	2/1	-11/-12	4/4
LM	21/27	3/3	-12/-19	5/7
LH	16/25	5/6	-10/-21	6/8
$\mathbf{M}\mathbf{M}$	21/26	3/3	-13/-17	5/7
MH	19/26	5/6	-14/-21	6/8
HH	17/21	8/7	-15/-17	7/8

- Gains from efficient tax reform are large
- How sensitive is answer to modeling choices?
 - Found large gains across all trials
 - Found decomposition sensitive to key parameters
 - $\circ\,$ But more work needed
- Next step: Using results to inform policy reform