

QUANTIFYING EFFICIENT TAX REFORM

Job Boerma and Ellen McGrattan

September 2020

• How large are welfare gains from efficient tax reform?

• Baseline:

- Positive economy matched to administrative data
- Reform:
 - Pareto improvements on efficient frontier (full)
 - Optima given set of policy tools (partial)

- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Consumption, labor, saving decisions
 - Parameters/policies for actual economy
- Compute remaining lifetime utilities (v_j)

- Start with baseline OLG economy:
 - Incomplete markets
 - Heterogeneous households
 - Consumption, labor, saving decisions
 - Parameters/policies for actual economy
- Compute remaining lifetime utilities (v_j)

• Let's draw this for 2 households...

Value for Household A, ν^{A}

- Typical starting point for most analyses
 - With constraints on policy instruments
 - Do counterfactuals or restricted optimal ("Ramsey")

• Let's draw this in the picture

- Not typical starting point for studies in Mirrlees tradition
 - $\circ~$ With constraints on information sets
 - $\circ~$ Characterize efficient allocations and policy "wedges"

• Let's draw this in the picture

Value for Household A, ν^{A}

- This paper quantifies gains from:
 - Full Pareto-improving reform a la Mirrlees
 - Partial Pareto-improving reform a la Ramsey
 - Adding early-life transfer informed by Mirrlees
- Let's draw this in the picture

- Solve equilibria for positive economy (\bullet)
 - Inputs: fiscal policy and wage processes
 - Outputs: values under current policy
- Solve planner problem next (•)
 - Inputs: values under current policy
 - Outputs: labor and savings wedges and welfare gains
- Use results to inform current policy and reforms (•)

- Maximum consumption equivalent gains (future cohorts):
 - $\circ~21\%$ for baseline parameterization ($\bullet)$
 - $\circ~5\%$ attained with current policies $({\blue}{\rightarrow})$
 - $\circ~7\%$ attained with early-life transfer ($\bullet)$
- Decompose by comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - $\circ\,$ Leisure: level \downarrow and variance \uparrow for all groups

Note: Working on computing gains for all cohorts

- Maximum consumption equivalent gains (future cohorts):
 - $\circ~21\%$ for baseline parameterization ($\bullet)$
 - $\circ~5\%$ attained with current policies (still hill climbing)
 - $\circ~7\%$ attained with early-life transfer (still hill climbing)
- Decompose by comparing allocations:
 - $\circ\,$ Consumption: level \uparrow and variance \downarrow for all groups
 - \circ Leisure: level \downarrow and variance \uparrow for all groups

Note: Working on computing gains for all cohorts

Contributions to Literature

 \Rightarrow Using administrative data from NL, go to (•)

- Pareto-improving reforms with fixed types Hosseini-Shourideh (2019)
 - \Rightarrow Extend analysis to add dynamic risks
- Theory behind dynamic taxation and redistribution (•)
 Kapicka (2013), Farhi-Werning (2013), Golosov et al. (2016)

 \Rightarrow Link OLG (•) to planner (•) in full GE

- Open OLG economy a la Bewley
- Household heterogeneity in:
 - Age
 - Education (observed, permanent)
 - Productivity (private, stochastic)
 - Unemployment risk (in progress)
 - Marriage and divorce risk (in progress)
- Transfers and taxes on consumption, labor income, assets

- Open OLG economy a la Bewley
- Household heterogeneity in:
 - Age
 - Education (observed, permanent)
 - Productivity (private, stochastic)
 - Unemployment risk (in progress)
 - Marriage and divorce risk (in progress)
- Transfers and taxes on consumption, labor income, assets
- \Rightarrow Estimated with administrative data for the Netherlands

- Take inputs from positive economy:
 - Parameters of preferences and technologies
 - $\circ\,$ Wage profiles and shock processes
 - Values under current policy (v_A, v_B, \ldots)
- Compute maximum consumption equivalent gain

- Our focus is Pareto-improving reforms:
 - There is no alternative allocation that is
 - Resource feasible (only so much to go around)
 - Incentive feasible (induces truthful reports)
 - $\circ~$ Making all better off and some strictly better off
- Will report gain assuming same percentage for all

- Maximize present value of aggregate resources
- subject to
 - $\circ\,$ Incentive constraints for every household and history
 - Values delivered exceed that of positive economy

• GE: total resources \leq to that in positive economy

- Exploit separability to solve household by household
- Include only local downward incentive constraints
- Verify numerically that all ICs satisfied
- Solve recursively by introducing additional states:
 - Promised value for truth telling
 - $\circ\,$ Threat value for local lie

- Welfare gains
 - $\circ~$ Total consumption equivalent
 - \circ Decomposition
- Wedges

Note: Working on sensitivity of planner results

- Merged administrative data, 2006-2014
 - Earnings from tax authority
 - Hours from employer provided data
 - $\circ\,$ Education from population survey
- National accounts
- Tax schedules

Note: Big advantage is data for computing shocks

- Construct hourly wages W_{ijt} (j=age, t=time)
- Classify degrees:
 - $\circ\,$ High school or practical (Low)
 - University of applied sciences (Medium)
 - University (High)
- Bin households into 6 groups (HH,HM,...)
- Construct residual wages ω_{ijt} :
 - $\circ \log W_{ijt} = A_t + X_{ijt} + \omega_{ijt}$
 - $\circ\,$ Estimate AR(1) process for idiosyncratic risk

Wage Profiles

(See paper for estimated wage processes)

- Government:
 - \circ Can *ex-post* infer type from choices
 - $\circ~{\rm Can't}~ex\-ante$ observe type
- But, can design policy to *induce* truthful reporting of type

- Number of productivity types
- Preferences
- Status quo policy

Baseline: 20 types, log preferences, NL wages & policy

Results

- Consumption equivalent gain of 21% for future cohorts
- Large but maybe not surprising given:
 - $\circ~{\rm Tax}~{\rm rates}~{\rm in}~{\rm NL}~{\rm over}~40\%$
 - $\circ~$ Tax wedges of planner in 4% to 20% range

Comparing Allocations, (\bullet) vs (\bullet)

- Consumption: level \uparrow and variance \downarrow for all groups
- Leisure: level \downarrow and variance \uparrow for all groups
- Intuition from simple static model:
 - $\circ\,$ With no insurance: c varies, ℓ constant
 - $\circ\,$ With full insurance: c constant, ℓ varies

• What about magnitudes?

A Look Under the Hood: Group LL

- Main source of gains:
 - $\circ\,$ Increased consumption early in life
- Suggests large gains to early-life transfer

 Without it, found restricted gains of 5%
 With it, found restricted gains of 7%

 out of total of 21%

Note: Estimates of restricted gains still tentative

- Ultimate goals of project:
 - $\circ\,$ Estimates of gains for efficient reform
 - $\circ~$ Identification of sources of gains
 - Ideas for new policy instruments
 - Prototype for future analyses
- Stay tuned...

Mathematical Appendix

$$v_j(a,\epsilon;\Omega) = \max_{c,n,a'} \left\{ U(c,\ell) + \beta E[v_{j+1}(a',\epsilon';\Omega)|\epsilon] \right\}$$

s.t. $a' = (1+r)a - T_a(ra) + w\epsilon n - T_n(j, w\epsilon n) - (1+\tau_c)c$

where

j = age

a = financial assets

 $\epsilon =$ productivity shock

 Ω = factor prices and tax policies

c = consumption

 $n = labor supply (n + \ell = 1)$

Max present value of resources

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \right]$$

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. Local downward incentive constraints

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

where
$$\ell_j^+(\epsilon_{i-1}) = 1 - n_j(\epsilon_{i-1})\epsilon_{i-1}/\epsilon_i$$

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

Deliver at least the promised value

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \right]$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Deliver no more than the threat value

$$\Pi_{j}(V, \tilde{V}, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i})/R \right]$$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

$$\tilde{V} \ge \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon^+) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

No threat value

Planner Problem for Future Generation (j = 1)

$$\Pi_{j}(V, -, \epsilon) \equiv \max \sum_{\epsilon_{i}} \pi_{j}(\epsilon_{i} | \epsilon) \left[w \epsilon_{i} n_{j}(\epsilon_{i}) - c_{j}(\epsilon_{i}) + \Pi_{j+1}(V_{j}(\epsilon_{i}), \tilde{V}_{j}(\epsilon_{i+1}), \epsilon_{i}) / R \right]$$

s.t. $U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i)$

 $\geq U(c_j(\epsilon_{i-1}), \ell_j^+(\epsilon_{i-1})) + \beta \tilde{V}_j(\epsilon_i), \ i \geq 2$

$$V \leq \sum_{\epsilon_i} \pi_j(\epsilon_i | \epsilon) \left[U(c_j(\epsilon_i), \ell_j(\epsilon_i)) + \beta V_j(\epsilon_i) \right]$$

Replace arbitrary V with $\vartheta(\epsilon_0) + \vartheta_{\Delta}$