TECHNICAL APPENDIX

Solving the Stochastic Growth Model with a Finite Element Method

Ellen R. McGrattan
Federal Reserve Bank of Minneapolis

First Draft: January, 1993
Current Draft: August, 1993

Details of the calculation of approximate consumption functions for the stochastic growth model are provided below.

1. Initialization.

i. specify parameters of utility and production: $\beta, \delta, \tau, \rho, \alpha$, and σ_{ϵ};
ii. specify the grid on capital: $\vec{k}=\left[k_{1}, k_{2}, k_{3}, \ldots, k_{n_{k}}\right]$;
iii. specify the grid on technology: $\vec{\theta}=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{n_{\theta}}\right]$;
iv. specify an initial guess for consumption: $c\left(k_{i}, \theta_{j}\right)$ for each k_{i}, θ_{j} pair where $k_{i}, i=$ $1, \ldots n_{k}$, is an element of \vec{k} and $\theta_{j}, j=1, \ldots n_{\theta}$, is an element of θ_{j}; let c_{a} denote consumption at grid point (or node) a and \vec{c} is the vector with elements $c_{a}, a=$ $1, \ldots$, nnodes, nnodes $=n_{k} n_{\theta}$;
v. specify parameters for quadrature:
a. for integration with respect to ϵ, specify $[\underline{\epsilon}, \bar{\epsilon}]$ and m_{ϵ};
b. for integration with respect to k on interval $\left[k_{i}, k_{i+1}\right]$, specify $m_{k, i}$;
c. for integration with respect to θ on interval $\left[\theta_{i}, \theta_{i+1}\right]$, specify $m_{\theta, i}$;
vi. specify the maximum number of iterations of the Newton-Raphson algorithm and a criterion for stopping iterations (i.e., a norm $\|\cdot\|$ and a tolerance parameter).
2. Calculation of abscissas and weights for quadrature.
i. given parameters of step $1(v)$, calculate abscissas and weights for integration done in step 3. (See Press, et.al. (1986) for details.)
3. Main loop.
do $t=1$ to maximum number of iterations set $H=0, J=0$ where H is nnodes $\times 1$ and J is nnodes \times nnodes do $e=1$ to number of elements $\left(=\left(n_{k}-1\right)\left(n_{\theta}-1\right)\right)$
determine current intervals for k, θ in element e
determine the 4 global nodes for element e (call them nodes 1-4)
do $j=1$ to number of quadrature points for θ on element e do $i=1$ to number of quadrature points for k on element e calculate consumption c (for (i, j) th quadrature point in element e)
e.g., if (k, θ) are the current coordinates and element e is given by $\left[\underline{k}_{e}, \bar{k}_{e}\right] \times\left[\underline{\theta}_{e}, \bar{\theta}_{e}\right]$, then

$$
\begin{aligned}
c= & c_{\text {node } 1} \frac{\bar{k}_{e}-k}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\bar{\theta}_{e}-\theta}{\bar{\theta}_{e}-\underline{\theta}_{e}}+c_{\mathrm{node} 2} \frac{k-\underline{k}_{e}}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\bar{\theta}_{e}-\theta}{\bar{\theta}_{e}-\underline{\theta}_{e}}+ \\
& c_{\mathrm{node} 3} \frac{k-\underline{k}_{e}}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\theta-\underline{\theta}_{e}}{\bar{\theta}_{e}-\underline{\theta}_{e}}+c_{\mathrm{node} 4} \frac{\bar{k}_{e}-k}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\theta-\underline{\theta}_{e}}{\bar{\theta}_{e}-\underline{\theta}_{e}}
\end{aligned}
$$

calculate next period capital, $K=\theta k^{\alpha}-c+(1-\delta) k$
calculate next period's marginal product of capital $m p_{K}=\alpha K^{\alpha-1}$
set $s=0$
do $l=1$ to m_{ϵ}
set ϵ equal to the l th quadrature point (calculated in step $1(v)$ a)
calculate the next period shock, $\Theta=\theta^{\rho} \exp (\epsilon)$
determine the element that includes point (K, Θ) and call it E
determine the 4 global nodes for element E (denote by NODEs 1-4) calculate next period consumption C,
e.g., if (K, Θ) are the coordinates and E is the element, then

$$
\begin{aligned}
C= & c_{\mathrm{NODE} 1} \frac{\bar{k}_{E}-K}{\bar{k}_{E}-\underline{k}_{E}} \cdot \frac{\bar{\theta}_{E}-\Theta}{\bar{\theta}_{E}-\underline{\theta}_{E}}+c_{\mathrm{NODE} 2} \frac{K-\underline{k}_{E}}{\bar{k}_{E}-\underline{k}_{E}} \cdot \frac{\bar{\theta}_{E}-\Theta}{\bar{\theta}_{E}-\underline{\theta}_{E}}+ \\
& c_{\mathrm{NODE} 3} \frac{K-\underline{k}_{E}}{\bar{k}_{E}-\underline{k}_{E}} \cdot \frac{\Theta-\underline{\theta}_{E}}{\bar{\theta}_{E}-\underline{\theta}_{E}}+c_{\mathrm{NODE} 4} \frac{\bar{k}_{E}-K}{\bar{k}_{E}-\underline{k}_{E}} \cdot \frac{\Theta-\underline{\theta}_{E}}{\bar{\theta}_{E}-\underline{\theta}_{E}}
\end{aligned}
$$

calculate next period's marginal utility ($m u=\beta C^{-\tau}$)
add ($m u \times \Theta m p_{K}+1-\delta \times \mathrm{f}(\epsilon) \times l$ th quadrature weight) to s calculate derivatives of s with respect to c_{a} for all nodes a end loop over l
compute residual: $R=s-c^{-\tau}$
update elements of H associated with global nodes for element e,
e.g., if (k, θ) are the current coordinates, if element e is given by $\left[\underline{k}_{e}, \bar{k}_{e}\right] \times\left[\underline{\theta}_{e}, \bar{\theta}_{e}\right]$, and if $\omega_{i, j}$ are the (i, j) quadrature weights, then

$$
H(\text { node } 1)=H(\text { node } 1)+\omega_{i, j} \times R \times \frac{\bar{k}_{e}-k}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\overline{\bar{\theta}}_{e}-\theta}{\bar{\theta}_{e}-\underline{\theta}_{e}}
$$

$$
\begin{aligned}
& H(\text { node } 2)=H(\text { node } 2)+\omega_{i, j} \times R \times \frac{k-\underline{k}_{e}}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\bar{\theta}_{e}-\theta}{\bar{\theta}_{e}-\underline{\theta}_{e}} \\
& H(\text { node } 3)=H(\text { node } 3)+\omega_{i, j} \times R \times \frac{k-\underline{k}_{e}}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\theta-\underline{\theta}_{e}}{\bar{\theta}_{e}-\underline{\theta}_{e}} \\
& H(\text { node } 4)=H(\text { node } 4)+\omega_{i, j} \times R \times \frac{\bar{k}_{e}-k}{\bar{k}_{e}-\underline{k}_{e}} \cdot \frac{\theta-\underline{\theta}_{e}}{\overline{\theta_{e}-\underline{\theta}_{e}}}
\end{aligned}
$$

$$
\text { calculate derivatives of } H \text { (node } l \text {), } l=1,2,3,4 \text { with respect to } \ldots
$$ unknowns c_{a} for all nodes a and put the answer in the node l th \ldots row of J (this calculation uses the derivatives of s and $c^{-\tau}$) end loops over i, j

end loop over e
if $k_{1}=0$, enforce $c(0, \theta)=0$, i.e., eliminate elements for $k=0$ nodes from H and J solve $J x=H$ for x and update the consumption vector: $\vec{c}=\vec{c}-x$ if $\|x\|<$ tolerance, go to step 4
end loop over t
4. Print results.

