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1. Introduction

In these notes, we provide additional details for the results reported in our paper, ‘Open-

ness, Technology Capital, and Development.’

2. Aggregate Production with Foreign Technology Capital

We start by motivating the aggregate production technology that we use in the paper.

Consider maximizing output in a country that has a composite input Z (e.g., a composite

of capital and labor), technology capital of domestic multinationals Md, technology capital

of foreign multinationals Mf , and N locations. Let Y be the maximal output,

Y = max
zd,zf

ANMd (zd)
1−φ

+AσNMf (zf )
1−φ

subject to NMdzd +NMfzf ≤ Z

where NMd are the number of location-technologies where zd can be used and NMf are

the number where zf can be used. The parameter A being the level of technology in the

country and σ ≤ 1 implies there can be a cost on foreign producers. Writing out the

Lagrangian and differentiating with respect to zd and zf implies

zd =
Z

NMd + σ
1
φNMf

zf =
σ

1
φZ

NMd + σ
1
φNMf

and therefore,

Y = A
(

NMd + σ
1
φNMf

)φ

Z1−φ.

There is another way to write this problem. Assume that fraction ω of the foreign

technology capital can be used domestically. Then the maximal output is

Y = max
zd,zf

ANMd (zd)
1−φ

+ ANωMf (zf )
1−φ

subject to NMdzd +NωMfzf ≤ Z.

Writing out the Lagrangian and differentiating with respect to zd and zf implies zd = zf =

Z/(NMd +NωMf ) and

Y = A (NMd +NωMf )
φ
Z1−φ = A

(

NM̂
)φ

Z1−φ
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where M̂ is the effective technology capital used in domestic production. Notice that

if ω = 0, then no foreign technology capital can be used and M̂ = Md. If all foreign

technology capital can be used (ω = 1), then M̂ = Md +Mf .

Next, consider adding capital and labor. Let Z = KαL1−α, where K is capital and L

is labor. In this case, aggregate output in country i is

Yi = Ai

(

NiM̂i

)φ
(

Kα
i L

1−α
i

)1−φ

where M̂i = Mi + ωi

∑

j 6=iMj .

3. Our Model Economy

There are I countries. Households in country i own technology capital of companies

incorporated in country i, Mi, and nontechnology capital used in i, Ki. They choose

investments in these stocks, Xim and Xik, consumption Ci and labor Li to maximize

max
∑

t

βtU (Cit/Nit, Lit/Nit)Nit (3.1)

subject to

Cit +Xikt +Ximt +NXit = Yit

Yit = Ait

(

NitM̂it

)φ
(

Kα
itL

1−α
it

)1−φ

M̂it = Mit + ωit

∑

j 6=i

Mjt

Ki,t+1 = (1 − δk)Kit +Xikt

Mi,t+1 = (1 − δm)Mit +Ximt

NXit +
∑

j 6=i

rj
itMit −

∑

j 6=i

ri
jtMjt = 0

Mit ≥ 0 ∀i

Nit = (1 + γN )
t
Ni0

Ki0;Mi0; {Ait, ωit} ∀i, t; {Mjt} ∀j 6= i, t; {rj
it} ∀i, j, t given.

The price rj
it is the rental rate paid in t by multinationals in j for technology capital from

country i. So, the rents on Mi from country j are equal to rj
itMit. In equilibrium, these

prices are related to the marginal products of the M ’s,

rj
it = φωjtYjt/M̂jt.
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We derive two types of results for this model economy. First, we analytically derive

steady state results for the case where labor is inelastically supplied, there is no growth,

and ω is independent of i. Second, we compute transition paths relaxing these assumptions.

On the transition path, we allow for changes in σit = ωφ
it and Ait.

4. Steady State Results

This section derives formulas for the following cases of our model economy with labor

inelastically supplied, no growth, and common ω. We then extend the results to allow for

elastically supplied labor and growth.

• Proposition 1 concerns output per capita (Yi/Ni) in a two-country world when only

populations differ and N1 > N2;

• Proposition 2 concerns output per capita in a I-country world when populations differ

and N1 > · · · > NI ;

• Proposition 3 concerns output per effective person in a I-country world when popu-

lations and TFPs differ and A1N1 > · · · > AINI .

At the end of the section, we specify asset ownership in order to derive predictions for

consumption and then apply our formulas as we vary σ.

4.1. Proposition 1.

There are two countries, that both have the same degree of openness. We assume that

ω < 1 (and hence σ < 1) and consider limiting economies as ω approaches one. At ω = 1,

there is an indeterminacy.

There are two categories of steady state: (i) both countries have positive stocks of

technology capital; (ii) only the country with the largest population has a positive stock

of technology capital. The category depends on the size of the parameter ω, which is the

amount of foreign technology capital allowed into any country. Let ω∗ = (N2/N1)
1−α(1−φ)

(1−α)(1−φ) .

If ω < ω∗, both countries have positive stocks of technology capital and

Yi

Ni
∝ [Ni (1 + ω)]

φ

(1−α)(1−φ) , i = 1, 2. (4.1)

In (4.1) and throughout these notes, we assume that the constants of proportionality do

not depend on ω or the vector of populations. If ω > ω∗, then only the country with the
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largest population has a stock of technology capital and

Y1

N1
∝
[

N1 + ω
φ

1−α(1−φ)N2

]

φ

(1−α)(1−φ)

Y2

N2
∝
[

N1 + ω
φ

1−α(1−φ)N2

]

φ

(1−α)(1−φ)

ω
φ

1−α(1−φ) . (4.2)

Proof. The steady state of our economy is the solution of the following equations:

ρ+ δk = α (1 − φ)
Yi

Ki
, i = 1, 2 (4.3)

ρ+ δm ≥ φ

(

Y1

M1 + ωM2
+ ω

Y2

M2 + ωM1

)

, with = if M1 > 0 (4.4)

ρ+ δm ≥ φ

(

Y2

M2 + ωM1
+ ω

Y1

M1 + ωM2

)

, with = if M2 > 0 (4.5)

Li = Ni, i = 1, 2 (4.6)

Yi = ANφ
i (Mi + ωM−i)

φ (
Kα

i L
1−α
i

)1−φ
, i = 1, 2 (4.7)

where M−i is the foreign capital used in country i.

Equations (4.3) equate the rental price to the return on K. Equations (4.4) and (4.5)

are not standard. Here, the return is equal to the sum of domestic and foreign returns

because the same technology capital can be used simultaneously in domestic and foreign

production. Equation (4.6) is the assumption that labor is inelastic, and (4.7) is the

production technology.

From (4.3) we have

Ki ∝ Yi, i = 1, 2. (4.8)

Using (4.8) and (4.6), equation (4.7) implies

Yi ∝ Ni (Mi + ωMj)
φ

1−α(1−φ) . (4.9)

Next, we need to derive expressions for the M ’s. We know from (4.4) and (4.5) that

if the inequality constraints on the M ’s are not binding, then the ratios of output relative

to the total technology capital used are equal, that is

Y1

M1 + ωM2
=

Y2

M2 + ωM1
=

1

1 + ω

(

ρ+ δm
φ

)

. (4.10)
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Using (4.10) along with the production function (4.9),

Yi

Ni
=
(

Aκα(1−φ)
)

1
(1−α)(1−φ)

(

(1 + ω)Ni
Yi

Ni

)

φ

1−α(1−φ)

∝

(

(1 + ω)Ni
Yi

Ni

)
φ

1−α(1−φ)

(4.11)

where κ is the capital output ratio. Equation (4.11) is the first result of the proposition.

(See (4.1).)

Another finding is that the constraint M2 ≥ 0 will be binding for sufficiently large ω.

To see this, solve for M1 and M2 using the relations in (4.10):

M1 =
φ

ρ+ δm

Y1 − ωY2

1 − ω

M2 =
φ

ρ+ δm

Y2 − ωY1

1 − ω
. (4.12)

For ω = 0, Mi is proportional to Yi as in the case with tangible capital.

Lemma. There is a unique ω such that M2 = 0.

Proof. Substitute the equilibrium output in the unconstrained case from (4.1) into (4.12)

to get

M2 ∝
(1 + ω)

φ

(1−α)(1−φ)

1 − ω

(

N
1−α(1−φ)

(1−α)(1−φ)

2 − ωN
1−α(1−φ)

(1−α)(1−φ)

1

)

(4.13)

which can be written M2 = a(ω)(1 − ωx) where x is greater than 1 and a(ω) is strictly

positive for all ω. Thus, M2 has a unique zero at ω = ω∗:

ω∗ =

(

N2

N1

)

1−α(1−φ)
(1−α)(1−φ)

. (4.14)

Now consider the case ω > ω∗ where the nonnegativity constraint on M2 binds. In

this case, (4.4) can be rewritten,

ρ+ δm = φ (Y1 + Y2) /M1 (4.15)

so that technology capital in country 1 (which is the total capital stock) is proportional to

world output. Using (4.15) in (4.9), we get

Y1 ∝ N1 (Y1 + Y2)
φ

1−α(1−φ)

Y2 ∝ N2ω
φ

1−α(1−φ) (Y1 + Y2)
φ

1−α(1−φ) .
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We sum these expressions for outputs and solve for world output Y1 + Y2. The result can

be substituted back in to yield (4.2).

If we did not constrain the openness parameters to be the same, the result is com-

plicated by the fact that both size and openness affect the relative productivities. To see

this, assume that ω1 6= ω2. If the parameters are sufficiently small, then the nonnegativity

constraints on Mi don’t bind and the solution has

Yi

Ni
= a

(

Ni
1 − ωiω−i

1 − ω−i

)
φ

1−α(1−φ)

Mi = (1 − ωiω−i)
φ

(1−α)(1−φ)

(

φa

ρ+ δm

)





(

Ni

1 − ω−i

)

1−α(1−φ)
(1−α)(1−φ)

− ωi

(

N−i

1 − ωi

)

1−α(1−φ)
(1−α)(1−φ)





where a = (Aκα(1−φ))1/[(1−α)(1−φ)] If ω1 < ω2, then the solution involves a cutoff for ω2:

if ω2 exceeds this cutoff, then M2 = 0. If ω1 > ω2, then the relative population sizes and

relative openness both play a role in determining whether country 1 or country 2 has their

technology capital stock go to zero.

4.2. Proposition 2.

Next we generalize the result of proposition 1 to I countries. In our proof, we assume that

(1) technology capital investment increases with population so that we can order countries

by size, and (2) the cut-off is country n with Mi > 0 for i = 1, . . . , n and Mi = 0 for

i = n + 1, . . . , I. Assumption (1) is actually a result, but we don’t prove it here. We

simply characterize the steady state given (1) and (2) are true and then show that it is

consistent with (1) and (2).

We sort the populations of the I countries as follows: N1 > N2 > ... > NI . We can

characterize the steady state per capita output, given ω, for countries 1 through n with

positive stocks of technology capital and countries n+1 through I with zero. In this case,

the steady state per capita outputs and world stock of technology capital are given by:

Yi

Ni
∝

(

Nµ
i

∑n
j=1N

µ
j

(1 + ω (n− 1))Mw

)θ

, i = 1, . . . , n (4.16)

Yi

Ni
∝ (ωMw)

θ
, i = n+ 1, . . . , I (4.17)
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Mw ∝



(1 + ω (n− 1))
θ

[

n
∑

i=1

Nµ
i

]
1
µ

+ ωθ
I
∑

i=n+1

Ni





µ

(4.18)

where Mw =
∑

iMi is the world stock of technology capital and

θ =
φ

1 − α (1 − φ)
, µ =

1 − α (1 − φ)

(1 − α) (1 − φ)
. (4.19)

Proof. For convenience of notation, let M̂i = Mi +ω
∑

j 6=iMj be the effective technology

capital for country i. In the system of steady state equations, replace (4.4)–(4.5) for the

two-country case with the following I equations

ρ+ δm = φ

(

Y1

M̂1

+ ω
Y2

M̂2

+ . . .+ ω
Yn

M̂n

+
Yn+1 + . . .+ YI

Mw

)

ρ+ δm = φ

(

ω
Y1

M̂1

+
Y2

M̂2

+ . . .+ ω
Yn

M̂n

+
Yn+1 + . . .+ YI

Mw

)

...

ρ+ δm = φ

(

ω
Y1

M̂1

+ ω
Y2

M̂2

+ . . .+
Yn

M̂n

+
Yn+1 + . . .+ YI

Mw

)

(4.20)

where the remaining equations are: Mn+1 = Mn+2 = . . . = MI = 0.

With ω < 1 the same for all countries, it is easy to see from the equations in (4.20)

that
Y1

M̂1

=
Y2

M̂2

= . . . =
Yn

M̂n

=
Y1 + . . .+ Yn

Mw (1 + ω (n− 1))
. (4.21)

Since only the first n technology capital stocks are positive, we have Mw = M1 + . . .Mn.

As in the two-country case, output in each country can be written in terms of popu-

lation and technology capital used in the country,

Yi ∝ NiM̂
φ/[1−α(1−φ)]
i . (4.22)

To derive an expression for per-capita output, we need M̂i for all countries. This is done

in several steps.

The first step involves computing the world stock Mw. Using the results in (4.21) we

can rewrite the first equation in (4.20) as

(ρ+ δm) /φ = (1 + ω (n− 1))
Y1 + . . . Yn

Mw (1 + ω (n− 1))
+
Yn+1 + . . . YI

Mw

=
Y1 + . . . Yn

Mw
+
Yn+1 + . . . YI

Mw

≡
Yu + Yc

Mw
(4.23)
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where Yu is the sum of the output of the countries with no binding constraint (Mi > 0)

and Yc is the sum of the output of the countries with a binding constraint (Mi = 0).

Next, we write the sum of the outputs as functions of known populations and Mw,

which we use to boil the problem down to one equation in one unknown: Mw. Equation

(4.21) implies

M̂i = (1 + ω (n− 1))
MwYi
∑n

j=1 Yj
, i = 1, . . . n (4.24)

which can be substituted into (4.22):

Yi ∝ Ni

(

(1 + ω (n− 1))
MwYi
∑n

j=1 Yj

)
φ

1−α(1−φ)

∝ N
1−α(1−φ)

(1−α)(1−φ)

i

(

(1 + ω (n− 1))
Mw

∑n
j=1 Yj

)

φ

(1−α)(1−φ)

, i = 1, . . . n. (4.25)

Summing the Yi’s for i = 1, . . . n and solving for Yu yields

Yu ∝ ((1 + ω (n− 1))Mw)
φ

1−α(1−φ)

[

n
∑

i=1

N
1−α(1−φ)

(1−α)(1−φ)

i

]

(1−α)(1−φ)
1−α(1−φ)

. (4.26)

Substituting Yu (4.26) in for
∑

j Yj in (4.25) and dividing by Ni yields

Yi

Ni
∝







N
1−α(1−φ)

(1−α)(1−φ)

i

∑n
j=1N

1−α(1−φ)
(1−α)(1−φ)

j

(1 + ω (n− 1))Mw







φ

1−α(1−φ)

(4.27)

which is the same as (4.16) above. Notice that the output is increasing in Ni. Since

M̂i is proportional to Yi, then the result is consistent with our original assumption that

technology capital is also increasing in Ni.

Next, consider the constrained countries indexed by n+1, . . . , I. As in the case of the

unconstrained, we can substitute the M̂i’s into (4.22) to get output. Since M̂i = ωMw,

the per capita output of the constrained countries is

Yi

Ni
∝ (ωMw)

φ

1−α(1−φ) , i = n+1, . . . I (4.28)

which is the result in (4.17).
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Expressions for Yu and Yc can be used in (4.23) to derive an expression for Mw in

terms of country populations. The expression for Yu is given in (4.26). The expression for

Yc is:

Yc ∝ (ωMw)
φ

1−α(1−φ)

I
∑

i=n+1

Ni. (4.29)

Substituting these into (4.23) yields,

Mw ∝

(

(1 + ω (n− 1))
φ

1−α(1−φ)

[

n
∑

i=1

N
1−α(1−φ)

(1−α)(1−φ)

i

]

(1−α)(1−φ)
1−α(1−φ)

+ ω
φ

1−α(1−φ)

I
∑

i=n+1

Ni

)

1−α(1−φ)
(1−α)(1−φ)

(4.30)

which is the same as (4.30).

To check that we made the right assumption about which countries were constrained

(i > n), we can evaluate Mn+1 using the formulas above for the unconstrained technology

capital stocks to see if it is less than or equal to zero.

To derive the cut-off ω that implies Mn > 0 while Mn+1 = 0, we can equate the

expression for the unconstrained output and the constrained output for i = n+1, because

this is the point where Mn+1 is just constrained. This implies the following cut-off for ω:

ω∗ =
Nµ

n+1
∑n+1

j=1 N
µ
j − nNµ

n+1

, µ =
1 − α (1 − φ)

(1 − α) (1 − φ)
. (4.31)

4.3. Proposition 3

We now generalize this result by allowing for differences in TFP. To make the math simpler,

we replace (4.7) with

Yi = (AiNi)
φ

(Mi + ωM−i)
φ
K

α(1−φ)
i (AiLi)

(1−α)(1−φ)

and let TFP be Ai = A
1−α(1−φ)
i . Our notion of country size is now AN .

Assume there are I countries with A1N1 > A2N2 > ... > AINI . As before, we assume

that countries 1 through n have positive stocks of technology capital while countries n+1
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through I are constrained with stocks equal to zero. In this case, the steady state per

capita outputs and world stock of technology capital are given by:

Yi

AiNi
∝

(

(AiNi)
µ

∑n
j=1 (AjNj)

µ (1 + ω (n− 1))Mw

)θ

, i = 1, . . . , n (4.32)

Yi

AiNi
∝ (ωMw)

θ
, i = n+ 1, . . . , I (4.33)

Mw ∝



(1 + ω (n− 1))
θ

[

n
∑

i=1

(AiNi)
µ

]
1
µ

+ ωθ
I
∑

i=n+1

AiNi





µ

(4.34)

where Mw =
∑

iMi is the world stock of technology capital as before and θ, µ are defined

in (4.19).

Proof. After substituting out the tangible capital-output ratios and labor (using (4.3) and

(4.6)), the set of equations have A and N appearing everywhere as a product. Therefore, in

the proof of Proposition 2, we replace populations Ni for each i with size AiNi. Everything

goes through as before.

4.4. Determining Consumption

To derive expressions for consumption, we assume that (i) households in i own Ki and Mi

and (ii) the current account balance is zero (so net exports plus net factor income is zero).

In this case, we append to our earlier system the following equations:

Ci + δkKi + δmMi +NXi = Yi

NXi +
∑

j 6=i

Rj
i −

∑

j 6=i

Ri
j = 0

Rj
i ≡ φωYjMi/ (Mj + ωM−j)

Ri
j ≡ φωYiMj/ (Mi + ωM−i)

where M−i =
∑

j 6=iMj . The term Rj
i is the rent on Mi from country j.

We start with the two-country case with A = A1−α(1−φ) constant. First, assume that

ω is such that M2 > 0. Then,

C1 + δkakY1 + δmam
Y1 − ωY2

1 − ω
+ φω

(

Y1M2

M1 + ωM2
−

Y2M1

M2 + ωM1

)

= Y1

10



C2 + δkakY2 + δmam
Y2 − ωY1

1 − ω
+ φω

(

Y2M1

M2 + ωM1
−

Y1M2

M1 + ωM2

)

= Y2

where ak = α(1−φ)/(ρ+ δk) and am = φ/(ρ+ δm). Note that summing the consumptions

yields implies that the world-wide resource constraint holds,

C1 + C2 = (1 − δkak − δmam) (Y1 + Y2) .

We rewrite per capita consumption in terms of the world populations (or size if we

allow TFPs to vary) as follows:

Ci

Ni
=

[

1 − δkak − (δmam − ωφ)
1

1 − ω

]

Yi

Ni
+ (δmam − φ)

ω

1 − ω

Y−i

Ni

= ay

{

[

1 − δkak − (δmam − ωφ)
1

1 − ω

]

N
φ

(1−α)(1−φ)

i

+ (δmam − φ)
ω

1 − ω

N−i

Ni
N

φ

(1−α)(1−φ)

−i

}

(1 + ω)
φ

(1−α)(1−φ)

where ay is the constant in front of equilibrium output.

Next consider the region of ω such that M2 = 0. In this case,

M1 =
φ

ρ+ δm
(Y1 + Y2)

and

C1 = (1 − δkakδmam)Y1 + (φ− δmam)Y2

C2 = (1 − δkak − φ)Y2.

The ratio of per-capita consumptions in this constrained region (with M2 = 0) is equal to

c1
c2

=
(1 − δkak − δmam)ω−

φ

1−α(1−φ) + φ− δkak

1 − δkak − φ

where ci = Ci/Ni. This is true because the ratio of per capita outputs y1/y2 is equal to

ω−φ/(1−α(1−φ)).

What happens to country 2 when they integrate with country 1? When closed, country

2 has per capita equal to

cc2 = ay (1 − δkak − δmam)N
φ

(1−α)(1−φ)

2 .

11



If country 2 joins country 1 in an economic union but finds it optimal to set M2 = 0, then

co2 = ay (1 − φ− δkak)
(

N1 + ω
φ

(1−α)(1−φ)N2

)

φ

(1−α)(1−φ)

ω
φ

1−α(1−φ) .

This is the case if ω is large enough to make it worthwhile to use country 1’s technology

capital. As ω approaches 1, country 2’s per capita consumption approaches:

co2 (ω → 1) = ay (1 − δkak − φ) (N1 +N2)
φ

(1−α)(1−φ) .

Next, we parameterize the model to see how large the gains to opening are.

4.5. Applications

We now apply the formulas above. We choose parameters to get a tangible capital output

ratio of 3, a technology capital output ratio of 1/2, a labor share of 66 percent and a real

interest rate of 4 percent. Specifically we use: α = .3, δk = .053, δm = .1, ρ = .04, and

φ = .07.

The United States and Canada. Suppose that country 1 (the United States) is 10 times

bigger than country 2 (Canada). The critical degree of openness σ∗ = (ω∗)φ in this case

is 0.84 (=.078.07). If σ < σ∗, then y1/y2 = 10.108 = 1.28 at all points σ ∈ [0, σ∗] where yi

is per capital output. If σ > σ∗, then y1/y2 = σ−1.39, which monotonically decreases to 1

as σ approaches 1. When completely integrated, the gain in per capita output for Canada

is 11.108=1.294.

What about consumption? In this case, the ratio of the small country’s per capita

consumption when completely open to the per capita consumption when completely closed

is co2(ω → 1)/cc2 = 1.26, which is close to the relative productivities.

The European Union. Suppose we model Europe as I similar sized countries with the same

levels of TFP and Ni normalized to 1. The per capita outputs of economically integrated

European countries is I .108 times their per capita output when closed. For example, if

I = 10, the per-capita gain is 28 percent. Thus, being a large union of countries is like

being a large country.

Europe and the United States. Now suppose that 10 European countries with Ni = 1 and

the United States with Ni = 10 integrate. In this case, only U.S. technology capital is

nonzero if σ is sufficiently large. The critical point here is again σ∗ = 0.84. (as in the
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example of Canada versus the United States). The relative per capita output of the United

States and any of the Europeans is 1.28 for all values σ ∈ [0, σ∗]. For σ > σ∗, the degree

of openness does affect the result. As σ approaches 1, the per capita output of the United

States relative to any of the European countries approaches 1. When the union is formed,

it has a population of size 20 and per capita output equal to 20.108 or 1.38 times that of

the closed European country prior to joining.

5. Transition Results

We turn now to computing balanced growth results and transitional paths. We allow for

growth, elastically supplied labor, and country-specific measures of openness. We also

impose nonnegativity restrictions on investments in both technology capital and tangible

capital.

We start by deriving the growth rate of output on the balanced growth path. Using

the production relation in the problem (3.1), we can relate the growth rate of total output

to the growth rates of TFP (γA) and population (γN ):

1 + γY = (1 + γA) (1 + γN )
φ

(1 + γY )
φ

(1 + γY )
α(1−φ)

(1 + γN )
(1−α)(1−φ)

= (1 + γA)
1

(1−α)(1−φ) (1 + γN )
φα

(1−α)(1−φ)

using the fact that K and M grow at the same rate as Y and L grows at the same rate

as N . Later, we will use these growth rates to transform all variables and make them

stationary.

Next, we need the dynamic first-order conditions of our model which are given by

βtNit/Cit = pit

βtψLit = pit (1 − α) (1 − φ) (1 − Lit/Nit)Yit

pit = pi,t+1

[

1 − δk + α (1 − φ)
Yi,t+1

Ki,t+1

]

pit = pi,t+1



1 − δm + φ
Yi,t+1

M̂i,t+1

+
∑

j 6=i

ωj,t+1
Yj,t+1

M̂j,t+1





Yit = AitN
φ
it (Mit + ωitM−it)

φ
(Kit)

α(1−φ)
L

(1−α)(1−φ)
it

13



Xikt = Ki,t+1 − (1 − δk)Ki,t, Xikt ≥ 0

Ximt = Mi,t+1 − (1 − δm)Mi,t, Ximt ≥ 0.

The notation M−it means the total technology capital outside of country i.

We want to rewrite the first-order equations so that all variables are stationary. Define

the following intermediate variables,

cit =
Cit

Nit (1 + γy)
t =

Cit

Ni0 (1 + γY )
t

xikt =
Xikt

Nit (1 + γy)
t =

Xikt

Ni0 (1 + γY )
t

kit =
Kit

Nit (1 + γy)
t =

Kit

Ni0 (1 + γY )
t

yit =
Yit

Nit (1 + γy)
t =

Yit

Ni0 (1 + γY )
t

lit =
Lit

Nit

ximt =
Ximt

(1 + γY )
t

mit =
Mit

(1 + γY )
t

ait =
Ait

(1 + γA)
t

where γY is the growth of output and γy is the growth of per-capita output.

After detrending and substituting out pit, the first-order conditions can be written as

follows:

ψcitlit = (1 − α) (1 − φ) (1 − lit) yit (5.1)

1 =
β

1 + γy

cit
cit+1

[

1 − δk + α (1 − φ)
yi,t+1

ki,t+1

]

(5.2)

1 =
β

1 + γy

cit
cit+1



1 − δm + φ





Ni0yi,t+1

m̂i,t+1
+
∑

j 6=i

ωjt+1
Nj0yjt+1

m̂jt+1







 (5.3)
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yit = aitm̂
φ
itk

α(1−φ)
it l

(1−α)(1−φ)
it (5.4)

m̂it = mit + ωitm−it (5.5)

Ni0cit +Ni0xikt + ximt + φωitNi0yit/m̂it

∑

j 6=i

mjt (5.6)

= Ni0yit + φmit

∑

j 6=i

ωjtNj0yjt/m̂jt

xikt = (1 + γY ) ki,t+1 − (1 − δk) kit (5.7)

ximt = (1 + γY )mi,t+1 − (1 − δm)mit (5.8)

for i = 1 . . . I and t = 0, . . . T − 1. Equations (5.7) and (5.8) are replaced by xikt = 0

or ximt = 0 if constraints on investment bind. If we include the terminal conditions,

kiT = kiT−1 and miT = miT−1, and initial conditions for ki0 and mi0, then the system of

equations has 8 × I × T equations and 8 × I × T unknowns, {cit, lit, yit, xikt, ximt, kit,

mit, m̂it}, i = 1, . . . I, t = 0, . . . , T − 1.
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