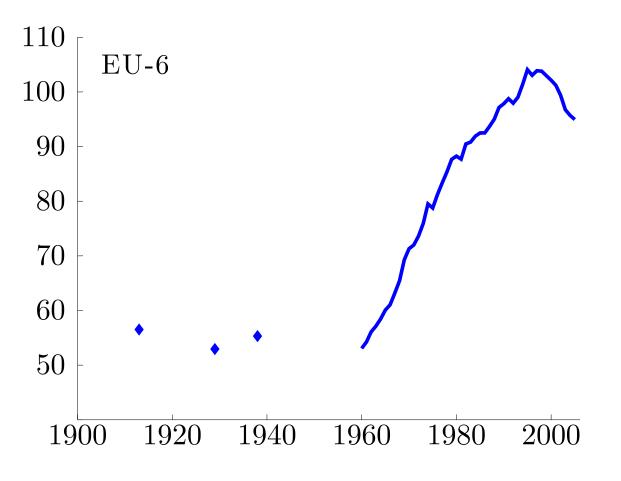
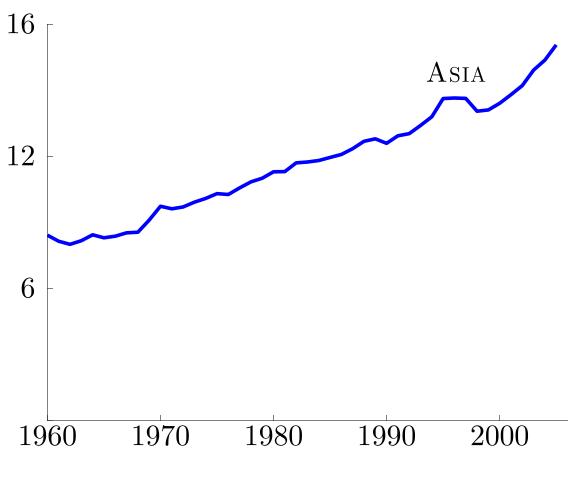


OPENNESS, TECHNOLOGY CAPITAL, AND DEVELOPMENT


Ellen McGrattan and Edward Prescott

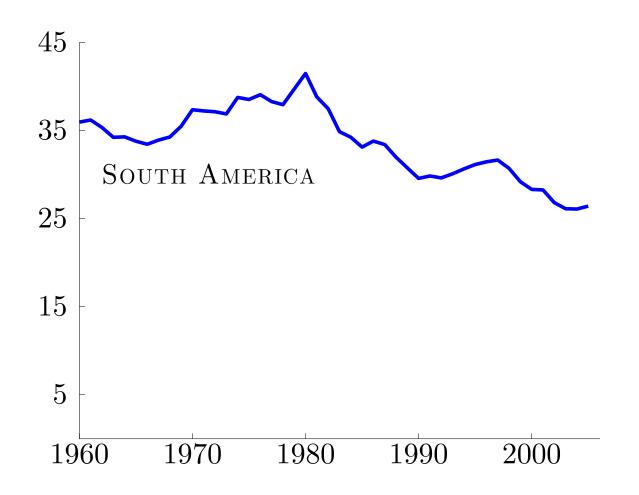
April 2007

Why Did the EU-6 Catch Up?



EU-6 Labor Productivity as % of US

Why is Asia Starting to Catch Up?



Asian Labor Productivity as % of US

WHILE SOUTH AMERICA IS LOSING GROUND?

South American Labor Productivity as % of US

- Why did the EU-6 catch up?
- Why is Asia starting to catch up?
- Why is South America losing ground?

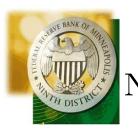
Answer: Open countries gain, closed countries lose


Our Notion of Openness

• Openness can mean many things

 \bullet We mean foreign multinationals' $technology\ capital\ permitted$

• We find big gains to openness



TECHNOLOGY CAPITAL

- Is accumulated know-how from investments in
 - R&D
 - Brands
 - Organization know-how

which can be used in as many locations as firms choose

NEW AVENUE FOR GAINS

• Countries are measures of locations

• Technology capital can be used in multiple locations

- Implying gains to openness
 - Without increasing returns
 - $\circ~$ Without factor endowment differences

THEORY

CLOSED-ECONOMY AGGREGATE OUTPUT

$$Y = A(NM)^{1-\phi} Z^{\phi}$$

- M = units of *technology capital*
- Z = composite of other factors, $K^{\alpha}L^{1-\alpha}$
- N = number of production *locations*
- A = the technology parameter
- $\phi{=}$ the income share parameter

which is the result of maximizing plant-level output

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

We assume $g(z) = Az^{\phi}$, increasing and strictly concave

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 \Rightarrow optimal to split Z evenly across location-technologies

A MICRO FOUNDATION FOR AGGREGATE FUNCTION

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N,M,Z) = NMg(Z/NM) = A(NM)^{1-\phi}Z^{\phi}$

A MICRO FOUNDATION FOR AGGREGATE FUNCTION

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N,\lambda M,\lambda Z) = \lambda F(N,M,Z)$

• The degree of openness of country i is σ_i

• Aggregate output in i is

$$\max_{z_d, z_f} M_i N_i A_i z_d^{\phi} + \sigma_i \sum_{j \neq i} M_j N_i A_i z_f^{\phi}$$

subject to $M_i N_i z_d + \sum_{j \neq i} M_j N_i z_f \leq Z_i$

d, f indexes allocations to domestic and foreign operations

• The degree of openness of country i is σ_i

• Aggregate output in i is

$$Y_{i} = A_{i} N_{i}^{1-\phi} (M_{i} + \omega_{i} \sum_{j \neq i} M_{j})^{1-\phi} Z_{i}^{\phi}$$

where

$$Z_i = K_i^{\alpha} L_i^{1-\alpha}$$

 $\omega_i = \sigma_i^{\frac{1}{1-\phi}} = \text{fraction of foreign T-capital permitted}$

• The degree of openness of country i is σ_i

• Aggregate output in i is

$$Y_{i} = A_{i} N_{i}^{1-\phi} (M_{i} + \omega_{i} \sum_{j \neq i} M_{j})^{1-\phi} Z_{i}^{\phi}$$

• Key result:

Each i has constant returns, but summing over i results in a *bigger* aggregate production set.

• The degree of openness of country i is σ_i

• Aggregate output in i is

$$Y_{i} = A_{i} N_{i}^{1-\phi} (M_{i} + \omega_{i} \sum_{j \neq i} M_{j})^{1-\phi} Z_{i}^{\phi}$$

• Key result:

It is *as if* there were increasing returns, when in fact there are none.

Advantages to Our Technology

• Standard welfare analysis

• Standard national accounting

• Standard parameter selection

The Rest of the Model

- Households in i
 - Own K_i and M_i
 - $\circ\,$ Solve standard utility maximization
- Resource constraint in i

$$Y_{it} = C_{it} + X_{ikt} + X_{imt} + NX_{it}$$

where $X_{ikt} = K_{i,t+1} - (1 - \delta_k)K_{it}$
 $X_{imt} = M_{i,t+1} - (1 - \delta_m)M_{it}$

PREDICTIONS OF THEORY

1. There is an advantage to size when world closed;

2. The gains of forming larger unions are large;

3. Opening unilaterally benefits the country opening;

4. Seemingly similar countries can have different M's.

NEED A MEASURE OF SIZE

- Assume
 - N_i is proprotional to population

• \mathcal{A}_i is augmenting labor & location $(=A_i^{\frac{1}{1-\phi\alpha}})$

• Then, results depend only on product $\mathcal{A}_i N_i$

NEED A MEASURE OF SIZE

- Assume
 - N_i is proprotional to population

• \mathcal{A}_i is augmenting labor & location $(=A_i^{\frac{1}{1-\phi\alpha}})$

• Then, results depend only on product $\mathcal{A}_i N_i$

• This is our measure of *size*.

GUTS OF THE THEORY

• $\{Y_i, M_i\}$ satisfy

$$Y_i = \psi \mathcal{A}_i N_i (M_i + \omega_i \sum_{j \neq i} M_j)^{\frac{1-\phi}{1-\alpha\phi}}$$

 $\sum_{j} \partial Y_j / \partial M_i \leq \rho + \delta_m$, with equality if $M_i > 0$

• Implying

• $Y_i/(\mathcal{A}_i N_i)$ depends positively on the M_j

• For some values of $(\mathcal{A}_i N_i)$ & ω_i , some constraints bind

Size Advantage When Closed

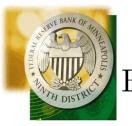
• $\omega_i = 0$ for all i

• Then, output per effective person increasing in size,

$$y_i \propto (\mathcal{A}_i N_i)^{\frac{1-\phi}{\phi(1-\alpha)}}$$

BIG GAINS FROM FORMING UNIONS

- I = number of equal-sized countries forming union
- Then, productivity gain for I in union is


$$y(I)/y(1) = I^{\frac{1-\phi}{\phi(1-\alpha)}}$$

• For example, if $\alpha = .3$, $\phi = .94$,

gain =
$$23\%$$
 if $I = 10$

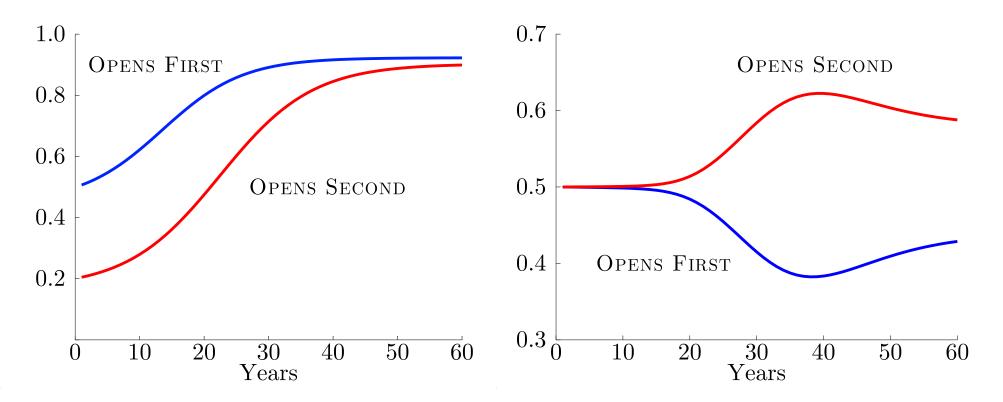
$$gain = 52\%$$
 if $I = 100$

- I = number of equal-sized countries remaining closed
- Then, productivity gain of I+1st opening is

$$y_o/y_c = I^{\frac{1-\phi}{1-\phi\alpha}}$$

• For example, if $\alpha = .3$, $\phi = .94$,

gain =
$$21\%$$
 if $I = 10$


gain =
$$47\%$$
 if $I = 100$

OPENNESS PARAMETERS

 $\mathrm{T}\text{-}\mathrm{CAPITAL}/Y_{2,0}(1+\gamma_Y)^t$

Motivated by experience of EU and US

- Paper extends neoclassical growth model by adding
 - Locations
 - Technology capital

• Use new theory to assess the gains from openness

• Elsewhere, use theory to study U.S. net asset position

