

OPENNESS, TECHNOLOGY CAPITAL, AND DEVELOPMENT

Ellen McGrattan and Edward Prescott

March 2008

http://minneapolisfed.org/research/economists/emcgrattan.html

TECHNOLOGY CAPITAL

• Is accumulated know-how from investments in

• R&D

• Brands

 $\circ~$ Organization know-how

which can be used in as many *locations* as firms choose

• Technology capital is critical to

 $\circ\,$ Assessing gains from opening to FDI

 $\circ\,$ Predicting current account flows/balances

NEW MODEL OF FDI

• Countries are measures of locations

• Technology capital can be used in multiple locations

• Doesn't require monopoly rents to finance innovations

New Avenue for Gains From FDI

• Opening implies bigger aggregate production sets

- In our model, gains arise
 - Without increasing returns
 - Without traditional factor endowment differences
 - Even with symmetric countries

• Gains from opening to FDI are large

• Current account "puzzles" are not so puzzling

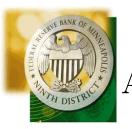
THEORY

CLOSED-ECONOMY AGGREGATE OUTPUT

$$Y = A(NM)^{\phi} Z^{1-\phi}$$

- $M = \text{ units of } technology \ capital$ $Z = \text{ composite of other factors, } K^{\alpha}L^{1-\alpha}$ N = number of production locationsA = the technology parameter
- $\phi{=}$ the income share parameter

which is the result of maximizing plant-level output



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

We assume $g(z) = Az^{1-\phi}$, increasing and strictly concave

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

\Rightarrow organizational span of control limits

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

\Rightarrow optimal to split Z evenly across location-technologies

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N,M,Z) = NMg(Z/NM) = A(NM)^{\phi}Z^{1-\phi}$

•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N, \lambda M, \lambda Z) = \lambda F(N, M, Z)$

• The degree of openness of country i is $\sigma_i \in [0, 1]$

• Aggregate output in i is

$$\max_{z_d, z_f} M_i N_i A_i z_d^{1-\phi} + \sigma_i \sum_{j \neq i} M_j N_i A_i z_f^{1-\phi}$$

subject to
$$M_i N_i z_d + \sum_{j \neq i} M_j N_i z_f \le Z_i$$

d,f indexes allocations to domestic and for eign operations



• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

where

$$Z_i = K_i^{\alpha} L_i^{1-\alpha}$$
$$\omega_i = \sigma_i^{\frac{1}{\phi}}$$

• Alternative interpretation of openness: fraction of M_j let in

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result provided $\omega_i > 0$:

Each i has constant returns, but summing over i results in a *bigger* aggregate production set.

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result:

It is *as if* there were increasing returns, when in fact there are none.

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result:

We partially endogenize <u>measured</u> TFP since locations and technology capital affect <u>measured</u> TFP.

Assessing Gains to Openness

GAINS TO OPENING TO FDI

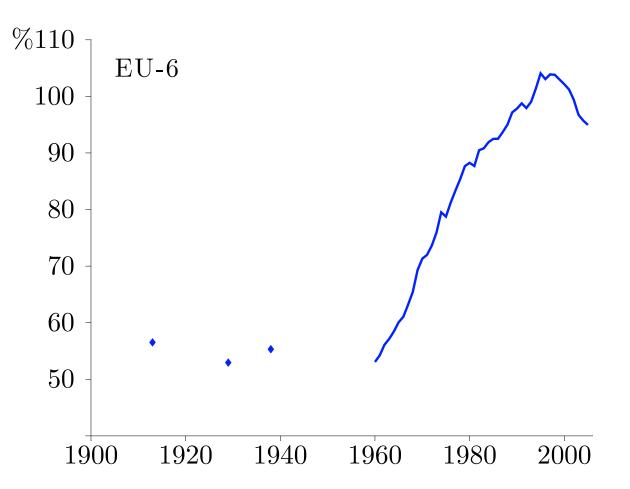
• Empirical evidence:

 $\circ\,$ Mixed results in regressions of growth on FDI

 $\circ~$ But, huge successes of economic unions (eg, EU)

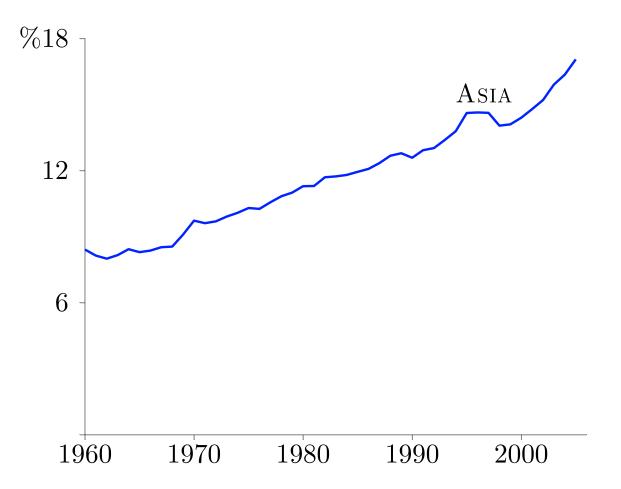


Why Did the EU-6 Catch Up?

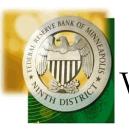


EU-6 Labor Productivity as % of US

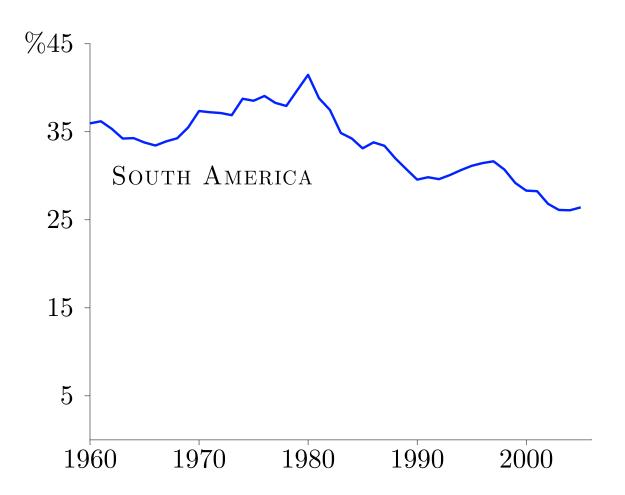
Why is Asia Starting to Catch Up?



Asian Labor Productivity as % of US



WHILE SOUTH AMERICA IS LOSING GROUND?



South American Labor Productivity as % of US

- Why did the EU-6 catch up?
- Why is Asia starting to catch up?
- Why is South America losing ground?

• And, specifically, what role does FDI play?

• Answer depends on countries' openness policy and size

• Definition: Size = $\mathcal{A}_i N_i$

$$\mathcal{A}_i$$
 is level of technology, $A_i^{\frac{1}{1-\alpha(1-\phi)}}$

 N_i is number of production locations

• Answer depends on countries' openness policy and size

- Definition: Size = $\mathcal{A}_i N_i$
 - \mathcal{A}_i is level of technology, $A_i^{\frac{1}{1-\alpha(1-\phi)}}$
 - N_i is number of production locations

 \propto population in i

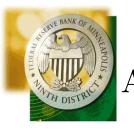
• Answer depends on countries' openness policy and size

- Definition: Size = $\mathcal{A}_i N_i$
 - \mathcal{A}_i is level of technology, $A_i^{\frac{1}{1-\alpha(1-\phi)}}$
 - N_i is number of production locations
 - \Rightarrow expanding markets requires more consumers

• Answer depends on countries' openness policy and size

- Definition: Size = $\mathcal{A}_i N_i$
 - \mathcal{A}_i is level of technology, $A_i^{\frac{1}{1-\alpha(1-\phi)}}$
 - N_i is number of production locations
 - \Rightarrow Canada is like Taiwan, not China

STEADY STATE ANALYSIS



A STEADY STATE

• Common world interest rate determined by preferences

• Common K/Y ratio determined by interest rate

• Key result: Some M_i may be zero

Key Equilibrium Conditions

• K_i/Y_i same across i

$$\Rightarrow Y_i = \psi \mathcal{A}_i N_i (M_i + \omega_i \sum_{j \neq i} M_j)^{\frac{\phi}{1 - \alpha(1 - \phi)}}$$

• Combined with

$$\sum_{j} \partial Y_j / \partial M_i \le \rho + \delta_m, \quad = \text{if } M_i > 0$$

 \Rightarrow System for which we apply Kakutani theorem

THREE LESSONS FROM STEADY STATE ANALYSIS

THREE LESSONS FROM STEADY STATE ANALYSIS

1. There is an advantage to size if world closed

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country
- 3. Countries gain when unilaterally opening

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country
- 3. Countries gain when unilaterally opening

Let's consider an example that illustrates 3 lessons ...

Example: I = 2, Symmetric ω

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• Key equilibrium conditions imply a ω^* such that:

Case 1: $M_1 > 0, M_2 > 0$ if $\omega < \omega^*$

Case 2: $M_1 > 0, M_2 = 0$ if $\omega > \omega^*$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

What matters is effective technology capital, $M_i + \omega M_{-i}$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and
$$\frac{Y_i}{N_i} \propto [(1 + \omega) \mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$$

Which is proportional to size

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and
$$\frac{Y_i}{N_i} \propto [(1 + \omega) \mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$$

Implying an advantage to size when ω small

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and $\frac{Y_i}{N_i} \propto [(1 + \omega)\mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$
 $\rightarrow \mathcal{A}_i \text{ as } \phi \rightarrow 0$

As $\phi \to 0$, back to standard theory

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto \left(\omega(Y_1 + Y_2)\right)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

When $\omega > \omega^*$, small country uses M_1

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto (\omega(Y_1 + Y_2))^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

Implying a disappearing advantage as $\omega \to 1$

LESSON 1: SIZE ADVANTAGE $(\omega > \omega^*)$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

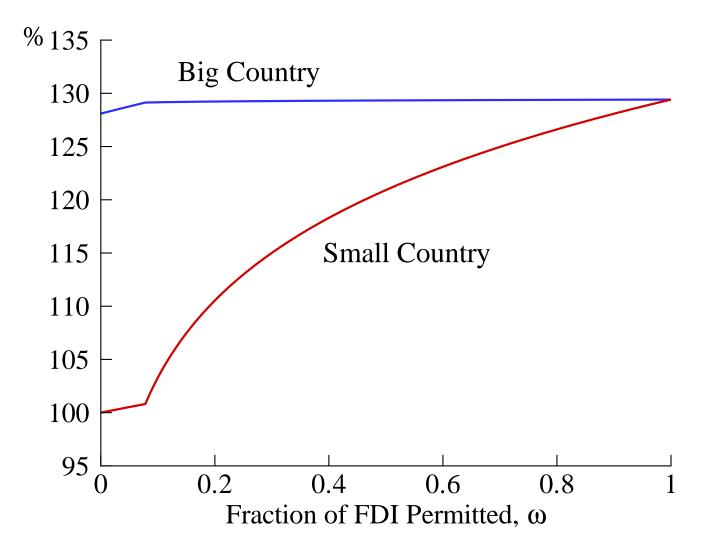
• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto (\omega(Y_1 + Y_2))^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

As $\phi \to 0$, back to standard theory

PRODUCTIVITIES VS. ω , $\mathcal{A}_1 N_1 = 10 \mathcal{A}_2 N_2$



Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• A union of small countries is like a large country

Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• How large are the potential gains?

Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• If
$$\alpha = .3$$
, $\phi = .07$, then

Gain =
$$28\%$$
 if $I = 10$

Gain = 64% if I = 100

Lesson 3: Gain from Unilaterally Opening

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

• Countries gain when unilaterally opening

Lesson 3: Gain from Unilaterally Opening

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

• How large are the potential gains?

Lesson 3: Gain from Unilaterally Opening

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

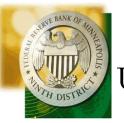
• If $\alpha = .3$, $\phi = .07$, then

Gain = 25% if I = 10

Gain = 56% if I = 100

• Gains to opening are large if ϕ not small

• To determine how large, need to know ϕ



Using US Accounts to Estimate ϕ

• If ϕ sizable, gains to opening are large

- In "Technology Capital and the US Current Account"
 - $\circ~$ Chose $\phi,$ size, openness to match US
 - International accounts
 - National accounts
 - Needed $\phi = .07$ for consistency with accounts

TECHNOLOGY CAPITAL AND THE US CURRENT ACCOUNT

• Households choose:

Consumption, hours, domestic & foreign equity and debt

• Multinationals choose:

Locations, labor, and tangible and intangible capitals

• No asset or goods market frictions

 \Rightarrow Generate domestic and current accounts for the model

TECHNOLOGY CAPITAL AND THE US CURRENT ACCOUNT

• Households choose:

Consumption, hours, domestic & foreign equity and debt

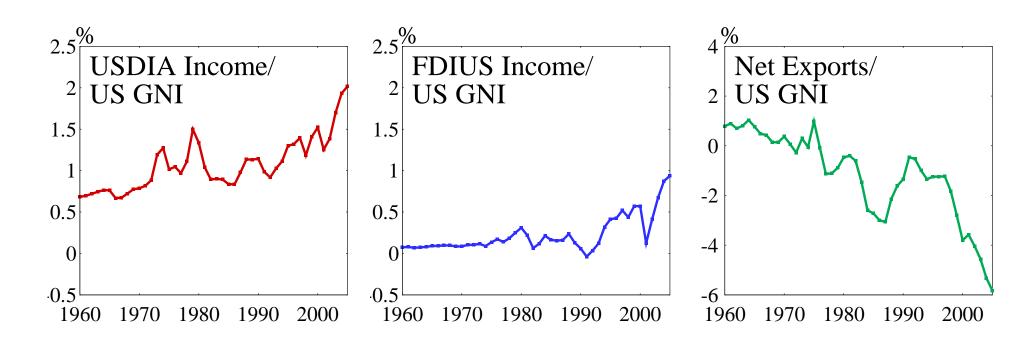
• Multinationals choose:

Locations, labor, and tangible and intangible capitals

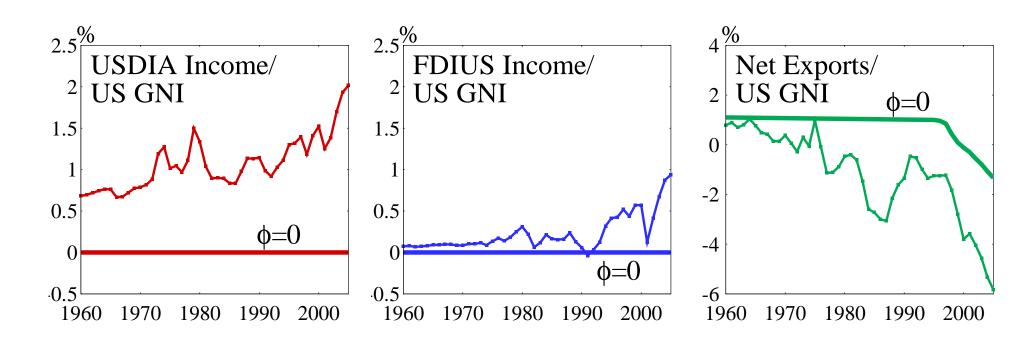
• No asset or goods market frictions

 \Rightarrow Can directly compare model and US accounts

FDI INCOMES AND TRADE BALANCE

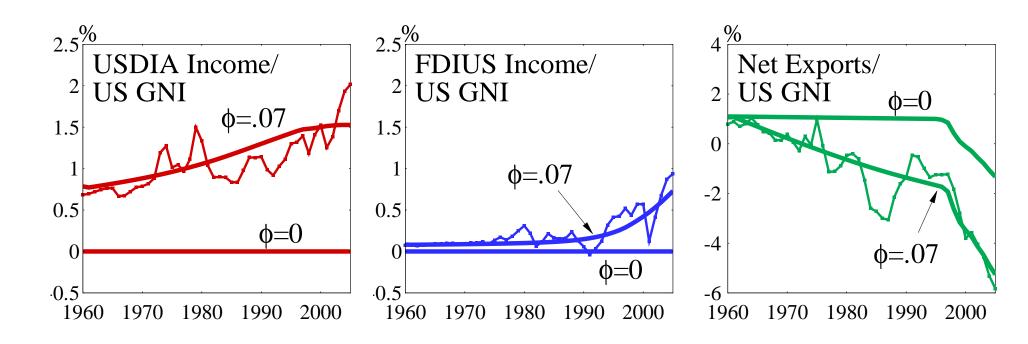


FDI Incomes and Trade Balance, $\phi = 0$



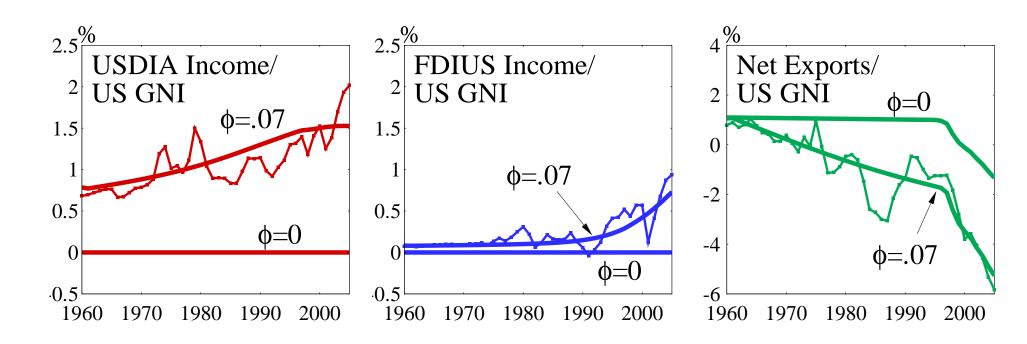
No technology capital case

FDI Incomes and Trade Balance, $\phi=.07$

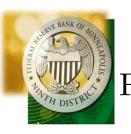


Increase ϕ to fit trends in data

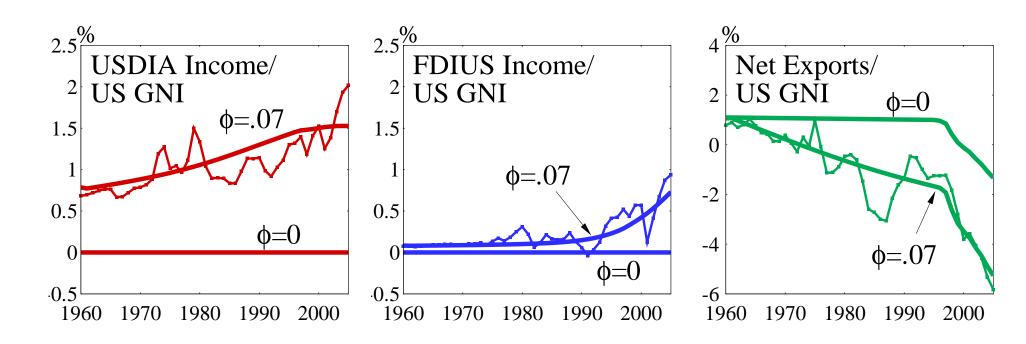
FDI Incomes and Trade Balance, $\phi=.07$



International data consistent with $\phi=.07$



FDI Incomes and Trade Balance, $\phi=.07$



Bottom line: gains from opening to FDI are large

- Let u=US, r=ROW
- Net exports relative to size for US and ROW:

$$\frac{NX_u}{\mathcal{A}_u N_u} = \frac{Y_u - X_{m,u} - X_{k,u} - C_u}{\mathcal{A}_u N_u}$$
(1)
$$\frac{-NX_u}{\mathcal{A}_r N_r} = \frac{Y_r - X_{m,r} - X_{k,r} - C_r}{\mathcal{A}_r N_r}$$
(2)

where X_m, X_k are investments in M and K

• Subtract (2) from (1)

INTUITION FOR LARGE DECLINE IN NET EXPORTS

• If change in size due to change in population, then

$$\left(\frac{1}{\mathcal{A}_{u}N_{u}} + \frac{1}{\mathcal{A}_{r}N_{r}}\right)NX_{u} = \underbrace{\left(\frac{X_{k,u}}{\mathcal{A}_{u}N_{u}} - \frac{X_{k,r}}{\mathcal{A}_{r}N_{r}}\right)}_{\text{Equates } K/Y's} + \underbrace{\left(\frac{C_{u}}{\mathcal{A}_{u}N_{u}} - \frac{C_{r}}{\mathcal{A}_{r}N_{r}}\right)}_{=0} + \underbrace{\left(\frac{X_{m,u}}{\mathcal{A}_{u}N_{u}} - \frac{X_{m,r}}{\mathcal{A}_{r}N_{r}}\right)}_{\underset{\text{amplifies } X_{k} \text{ term if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ if } \phi = 0}{\overset{=0 \text{ of } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ of } \phi = 0}{\overset{=0 \text{ of } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ of } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ of } \phi = 0}{\overset{=0 \text{ of } \phi = 0}{\underset{\text{with size if } \phi > 0}{\overset{=0 \text{ of } \phi = 0}$$

• Implies large decline in NX_u and reversal

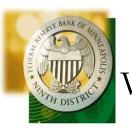
CURRENT ACCOUNT PUZZLES NOT SO PUZZLING

• With technology capital included, predict

• Large decline in net exports share

• Large rise in consumption share

 $\circ\,$ Large gap between USDIA and FDIUS returns

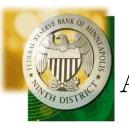


WHAT IMPLICATIONS FOR GROWTH REGRESSIONS?

• Mixed results in regressions of growth on FDI

- Not surprising in light of our theory which
 - Predicts level effects rather than growth effects
 - $\circ~$ Points to FDI incomes, not investments as key variables
 - Requires knowledge of openness policies over time

AN EXAMPLE TRANSITION TO ILLUSTRATE THE POINT



AN EXAMPLE TRANSITION

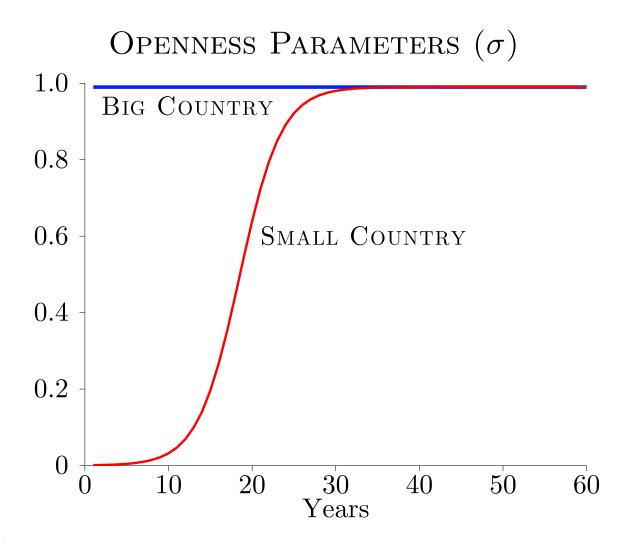
 $\bullet\,$ Two countries, closed at date 0

• In date 1,

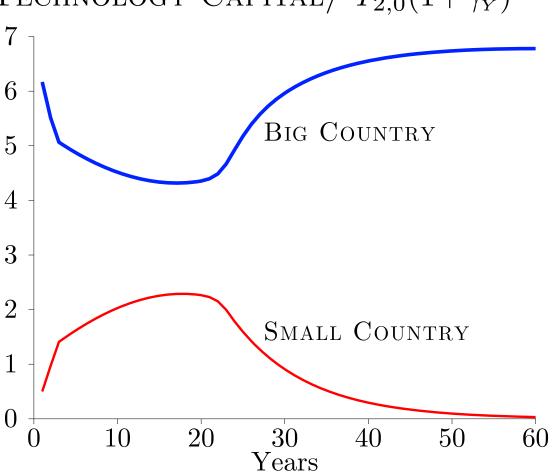
• Big country (AN = 10) opens up rapidly

• Small country (AN = 1) opens up gradually

SMALL COUNTRY OPENS GRADUALLY



SMALL COUNTRY OPENS GRADUALLY



Small Country Opens Gradually

- Initially, small country
 - Takes advantage of new markets in big country
 - Invests more in technology capital
 - Experiences a drop in measured productivity
 - $\circ~{\bf Scares}$ observers at the IMF
- Eventually exploits big country's technology capital stock

- Paper extends neoclassical growth model by adding
 - Locations
 - Technology capital

- These additions are critical in assessing
 - Gains from opening to FDI
 - US current account flows/balances

APPENDIX:

A DECENTRALIZATION TO MATCH TO BEA ACCOUNTS

HOUSEHOLDS IN i Solve

$$\max \sum_{t} \beta^{t} U\left(\frac{C_{it}}{N_{it}}, \frac{L_{it}}{N_{it}}\right) N_{it}$$

subject to budget constraint

$$\sum_{t} p_{t} \Big[(1 + \tau_{c,it}) C_{it} + \sum_{j} V_{t}^{j} (S_{i,t+1}^{j} - S_{it}^{j}) + B_{i,t+1} - B_{it} \Big]$$

$$\leq \sum_{t} p_{t} \Big[(1 - \tau_{l,it}) W_{it} L_{it} + (1 - \tau_{d,t}) \sum_{j} S_{it}^{j} D_{t}^{j} + r_{b,t} B_{it} + \kappa_{it} \Big]$$

 S_i^j = equity shares of companies in j B_i = foreign debt

Multinationals Incorporated in Country j Solve

$$\max \sum_{t} p_t (1 - \tau_{d,t}) D_t^j$$

where dividends D_t^j satisfy

$$D_t^j + \underbrace{\sum_i K_{T,i,t+1}^j - K_{T,it}^j}_{i}$$

Reported reinvested earnings

$$= \underbrace{\sum_{i} \{ (1 - \tau_{p,it}) (Y_{it}^{j} - W_{it} L_{it}^{j} - \delta_{T} K_{T,it}^{j} - X_{I,it}^{j} - \chi_{i}^{j} X_{M,t}^{j})}_{Y_{it}^{j} - W_{it} L_{it}^{j} - \delta_{T} K_{T,it}^{j} - \chi_{I,it}^{j} - \chi_{i}^{j} X_{M,t}^{j})}_{Y_{it}^{j} - Y_{it}^{j} - W_{it} L_{it}^{j} - \delta_{T} K_{T,it}^{j} - \chi_{I,it}^{j} - \chi_{i}^{j} X_{M,t}^{j})}$$

 ${\it Reported}$ profits less expensed investments and taxes

where
$$\chi_i^i = 1$$
 and $\chi_i^j = 0, \ j \neq i$

Multinationals Incorporated in Country j Solve

$$\max \sum_{t} p_t (1 - \tau_{d,t}) D_t^j$$

given definition of dividends,

$$D_t^j + \underbrace{\sum_i K_{T,i,t+1}^j - K_{T,it}^j}_{i}$$

Reported reinvested earnings

$$=\sum_{i} \{ (1 - \tau_{p,it}) (Y_{it}^{j} - W_{it} L_{it}^{j} - \delta_{T} K_{T,it}^{j} - X_{I,it}^{j} - \chi_{i}^{j} X_{M,t}^{j}) \}$$

Reported profits less expensed investments and taxes

\Rightarrow expensing done at home

Multinationals Incorporated in Country j Solve

$$\max \sum_{t} p_t (1 - \tau_{d,t}) D_t^j$$

given definition of dividends,

$$D_t^j + \underbrace{\sum_i K_{T,i,t+1}^j - K_{T,it}^j}_{i}$$

Reported reinvested earnings

$$=\sum_{i} \{ (1 - \tau_{p,it}) (Y_{it}^{j} - W_{it} L_{it}^{j} - \delta_{T} K_{T,it}^{j} - X_{I,it}^{j} - \chi_{i}^{j} X_{M,t}^{j}) \}$$

Reported profits less expensed investments and taxes

Key result: accounting profits are not equal to true profits

