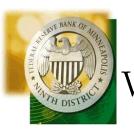


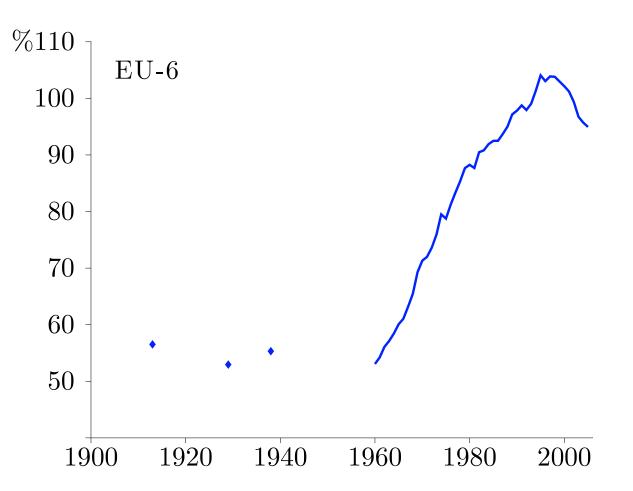
OPENNESS, TECHNOLOGY CAPITAL, AND DEVELOPMENT

Ellen McGrattan and Edward Prescott

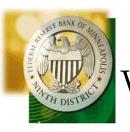
July 2008



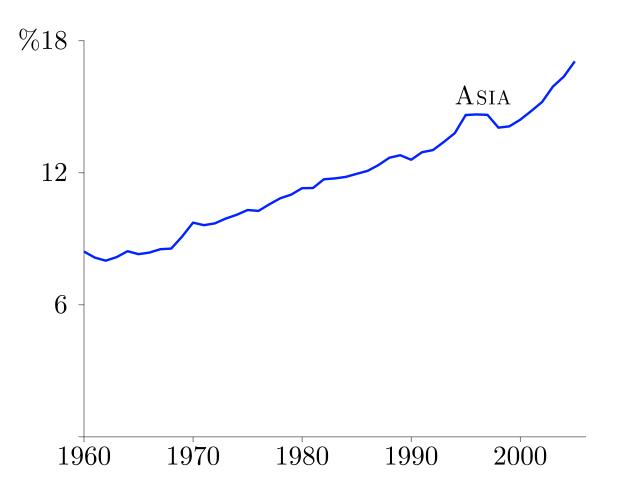
Why Did the EU-6 Catch Up?



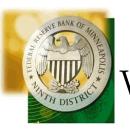
EU-6 Labor Productivity as % of US



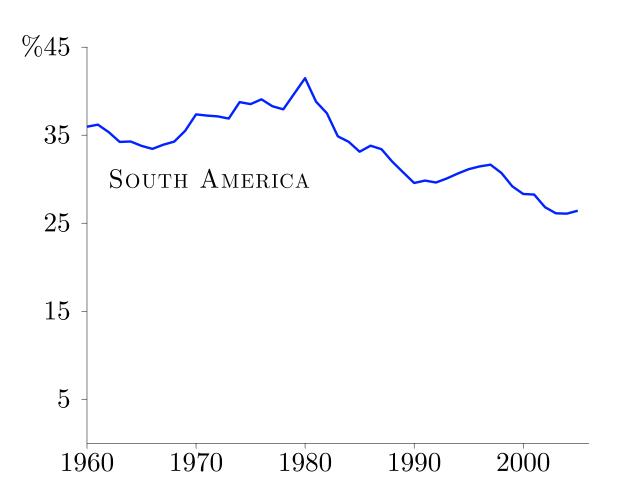
Why is Asia Starting to Catch Up?



Asian Labor Productivity as % of US



WHILE SOUTH AMERICA IS LOSING GROUND?



South American Labor Productivity as % of US

- Why did the EU-6 catch up?
- Why is Asia starting to catch up?
- Why is South America losing ground?

Answer: Open countries gain, closed countries lose

Our Notion of Openness

• Openness can mean many things

 \bullet We mean foreign multinationals' $technology\ capital\ permitted$

• We find big gains to openness

TECHNOLOGY CAPITAL

• Is accumulated know-how from investments in

• R&D

• Brands

 $\circ~$ Organization know-how

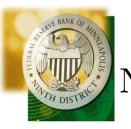
which can be used in as many *locations* as firms choose

New Model of FDI

• Countries are measures of locations

• Technology capital can be used in multiple locations

• Doesn't require monopoly rents to finance innovation



New Avenue for Gains from FDI

• Opening implies bigger aggregate production sets

• In our model, gains arise

- $\circ~$ Without increasing returns
- Without traditional factor endowment differences
- Even with symmetric countries

THEORY



CLOSED-ECONOMY AGGREGATE OUTPUT

$$Y = A(NM)^{\phi} Z^{1-\phi}$$

M= units of *technology capital* Z= composite of other factors, $K^{\alpha}L^{1-\alpha}$

- N = number of production *locations*
- A = the technology parameter
- ϕ = the income share parameter

which is the result of maximizing plant-level output



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

We assume $g(z) = Az^{1-\phi}$, increasing and strictly concave



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

\Rightarrow organizational span of control limits



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

\Rightarrow optimal to split Z evenly across location-technologies



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N,M,Z) = NMg(Z/NM) = A(NM)^{\phi}Z^{1-\phi}$



•
$$n \in \{1, \dots, N\}, m \in \{1, \dots, M\}$$

$$F(N, M, Z) = \max_{z_{nm}} \sum_{n,m} g(z_{nm})$$

subject to
$$\sum_{n,m} z_{nm} \le Z$$

 $\Rightarrow F(N, \lambda M, \lambda Z) = \lambda F(N, M, Z)$

• The degree of openness of country i is σ_i

• Aggregate output in i is

$$\max_{z_d, z_f} M_i N_i A_i z_d^{1-\phi} + \sigma_i \sum_{j \neq i} M_j N_i A_i z_f^{1-\phi}$$

subject to
$$M_i N_i z_d + \sum_{j \neq i} M_j N_i z_f \leq Z_i$$

d,f indexes allocations to domestic and for eign operations

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

where

$$Z_i = K_i^{\alpha} L_i^{1-\alpha}$$

 $\omega_i = \sigma_i^{\frac{1}{\phi}} = \text{fraction of foreign T-capital permitted}$

• Alternative interpretation of openness: fraction of M_j let in

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result provided $\omega_i > 0$:

Each i has constant returns, but summing over i results in a *bigger* aggregate production set.

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result:

It is *as if* there were increasing returns, when in fact there are none.

• Aggregate output in i is

$$Y_i = A_i N_i^{\phi} (M_i + \omega_i \sum_{j \neq i} M_j)^{\phi} Z_i^{1-\phi}$$

• Key result:

We partially endogenize <u>measured</u> TFP since locations and technology capital affect <u>measured</u> TFP.

Advantages to Our Technology

• Standard national accounting

• Standard parameter selection

• Standard welfare analysis

Advantages to Our Technology

• Standard national accounting

• Standard parameter selection

• Standard welfare analysis

Next, we describe the rest of the model

INTRODUCE POPULATION

• N_i = number of production locations in i

• $N_i \propto \text{population in } i$

• Implication: Canada is like Taiwan, not China

$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$



$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$
$$K_{i,t+1} = (1 - \delta_k)K_{it} + X_{ikt}$$
$$M_{i,t+1} = (1 - \delta_m)M_{it} + X_{imt}$$

$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$
$$K_{i,t+1} = (1 - \delta_k)K_{it} + X_{ikt}$$
$$M_{i,t+1} = (1 - \delta_m)M_{it} + X_{imt}$$
$$NX_{it} + \sum_{j \neq i} r_{it}^j M_{it} - \sum_{j \neq i} r_{jt}^i M_{jt} = 0$$



$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$
$$K_{i,t+1} = (1 - \delta_k)K_{it} + X_{ikt}$$
$$M_{i,t+1} = (1 - \delta_m)M_{it} + X_{imt}$$
$$NX_{it} + \sum_{j \neq i} r_{it}^j M_{it} - \sum_{j \neq i} r_{jt}^i M_{jt} = 0$$
$$N_{it} = (1 + \gamma_N)^t N_{i0}$$



COUNTRY *i* HOUSEHOLD'S PROBLEM

$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$
$$K_{i,t+1} = (1 - \delta_k)K_{it} + X_{ikt}$$
$$M_{i,t+1} = (1 - \delta_m)M_{it} + X_{imt}$$
$$NX_{it} + \sum_{j \neq i} r_{it}^j M_{it} - \sum_{j \neq i} r_{jt}^i M_{jt} = 0$$
$$N_{it} = (1 + \gamma_N)^t N_{i0}$$
$$X_{imt}, X_{ikt} \ge 0$$



COUNTRY *i* HOUSEHOLD'S PROBLEM

$$\max \sum_{t} \beta^{t} U(C_{it}/N_{it}, L_{it}/N_{it}) N_{it}$$

s.t.
$$C_{it} + X_{ikt} + X_{imt} + NX_{it} = Y_{it}$$

 $K_{i,t+1} = (1 - \delta_k)K_{it} + X_{ikt}$
 $M_{i,t+1} = (1 - \delta_m)M_{it} + X_{imt}$
 $NX_{it} + \sum_{j \neq i} r_{it}^j M_{it} - \sum_{j \neq i} r_{jt}^i M_{jt} = 0$
 $N_{it} = (1 + \gamma_N)^t N_{i0}$
 $X_{imt}, X_{ikt} \ge 0$
 $K_{i0}; M_{i0}; \{A_{it}, \omega_{it}\} \; \forall i, t; \{M_{jt}\} \forall j \neq i, t; \{r_{it}^j\} \forall i, j, t \text{ given}$

How do Countries Differ?

DIFFERENCES ACROSS COUNTRIES

• Degree of openness

• Size =
$$\mathcal{A}_i N_i$$

• N_i is proprotional to population

• \mathcal{A}_i is augmenting labor & location $(=A_i^{\frac{1}{1-\alpha(1-\phi)}})$

Results depend only on product $\mathcal{A}_i N_i$

STEADY STATE ANALYSIS

A STEADY STATE

• Common world interest rate determined by preferences

• Common K/Y ratio determined by interest rate

• Key result: Some M_i may be zero

Key Equilibrium Conditions

• K_i/Y_i same across i

$$\Rightarrow Y_i = \psi \mathcal{A}_i N_i (M_i + \omega_i \sum_{j \neq i} M_j)^{\frac{\phi}{1 - \alpha(1 - \phi)}}$$

• Combined with

$$\sum_{j} \partial Y_j / \partial M_i \le \rho + \delta_m, \quad = \text{if } M_i > 0$$

 \Rightarrow System for which we apply Kakutani theorem

THREE LESSONS FROM STEADY STATE ANALYSIS

THREE LESSONS FROM STEADY STATE ANALYSIS

1. There is an advantage to size if world closed

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country

THREE LESSONS FROM STEADY STATE ANALYSIS

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country
- 3. Countries gain when unilaterally opening

THREE LESSONS FROM STEADY STATE ANALYSIS

- 1. There is an advantage to size if world closed
- 2. A union of small countries is like a large country
- 3. Countries gain when unilaterally opening

Let's consider an example that illustrates 3 lessons ...

Example: I = 2, Symmetric ω

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• Key equilibrium conditions imply a ω^* such that:

Case 1: $M_1 > 0, M_2 > 0$ if $\omega < \omega^*$

Case 2: $M_1 > 0, M_2 = 0$ if $\omega > \omega^*$

Lesson 1: Size Advantage ($\omega < \omega^*$)

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

What matters is effective technology capital, $M_i + \omega M_{-i}$

LESSON 1: SIZE ADVANTAGE ($\omega < \omega^*$)

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and
$$\frac{Y_i}{N_i} \propto [(1 + \omega) \mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$$

Which is proportional to size

LESSON 1: SIZE ADVANTAGE ($\omega < \omega^*$)

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and
$$\frac{Y_i}{N_i} \propto [(1 + \omega) \mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$$

Implying an advantage to size when ω small

LESSON 1: SIZE ADVANTAGE ($\omega < \omega^*$)

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If $\omega < \omega^*$, then $M_1, M_2 > 0$ and

$$\frac{Y_i}{N_i} \propto (M_i + \omega M_{-i})^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_i$$

and $\frac{Y_i}{N_i} \propto [(1 + \omega) \mathcal{A}_i N_i]^{\frac{\phi}{(1 - \alpha)(1 - \phi)}} \mathcal{A}_i$
 $\rightarrow \mathcal{A}_i \text{ as } \phi \rightarrow 0$

As $\phi \to 0$, back to standard theory

LESSON 1: SIZE ADVANTAGE $(\omega > \omega^*)$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto \left(\omega(Y_1 + Y_2)\right)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

When $\omega > \omega^*$, small country uses M_1

LESSON 1: SIZE ADVANTAGE $(\omega > \omega^*)$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto (\omega(Y_1 + Y_2))^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

Implying a disappearing advantage as $\omega \to 1$

LESSON 1: SIZE ADVANTAGE $(\omega > \omega^*)$

• Country 1 is larger, $\mathcal{A}_1 N_1 > \mathcal{A}_2 N_2$

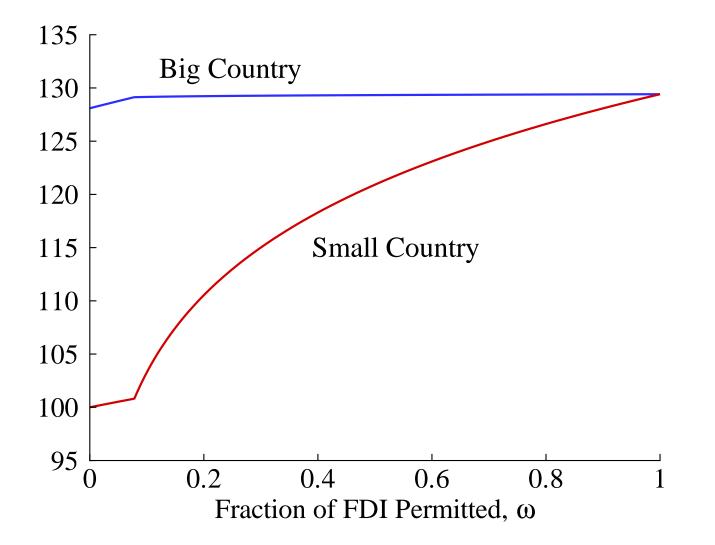
• If
$$\omega > \omega^*$$
, then $M_2 = 0$ and

$$\frac{Y_1}{N_1} \propto (Y_1 + Y_2)^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_1$$

$$\frac{Y_2}{N_2} \propto (\omega(Y_1 + Y_2))^{\frac{\phi}{1 - \alpha(1 - \phi)}} \mathcal{A}_2$$

As $\phi \to 0$, back to standard theory

PRODUCTIVITIES VS. ω , $\mathcal{A}_1 N_1 = 10 \mathcal{A}_2 N_2$



Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• A union of small countries is like a large country

Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• How large are the potential gains?

Lesson 2: Gain from Forming Unions

- I = number of equal-sized countries forming union
- Then, factor gain in productivity y for union is

$$y(I)/y(1) = I^{\frac{\phi}{(1-\alpha)(1-\phi)}}$$

• If
$$\alpha = .3$$
, $\phi = .07$, then

Gain =
$$28\%$$
 if $I = 10$

Gain = 64% if I = 100

LESSON 3: GAIN FROM UNILATERALLY OPENING

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

• Countries gain when unilaterally opening

LESSON 3: GAIN FROM UNILATERALLY OPENING

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

• How large are the potential gains?

LESSON 3: GAIN FROM UNILATERALLY OPENING

- I = number of equal-sized countries remaining closed
- Then, factor gain in productivity of I+1st opening is

$$y_o/y_c = I^{\frac{\phi}{1-\alpha(1-\phi)}}$$

• If $\alpha = .3$, $\phi = .07$, then

Gain = 25% if I = 10

Gain = 56% if I = 100

• Gains to opening are large if ϕ not small

• To determine how large, need to know ϕ

Using US Accounts to Estimate ϕ

• If ϕ sizable, gains to opening are large

- In "Technology Capital and the US Current Account"
 - $\circ~$ Chose $\phi,$ size, openness to match US
 - International accounts
 - National accounts
 - Needed $\phi = .07$ for consistency with accounts

ECONOMIES IN TRANSITION

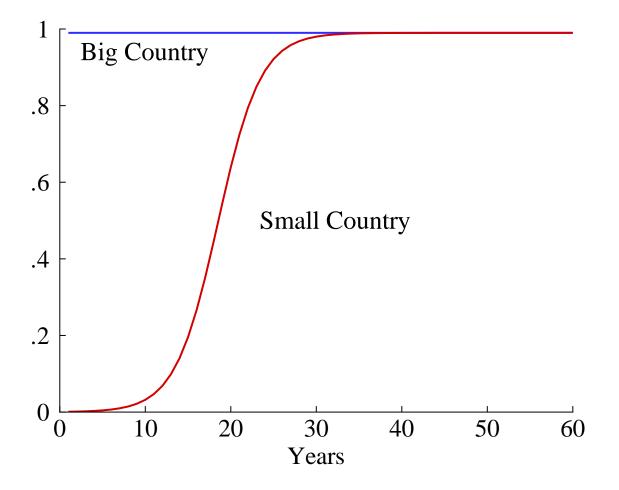
IN TRANSITIONS

- Allow for
 - $\circ\,$ Labor to be elastically supplied with $u(c,l) = \log c + \psi \log(1-l)$

• Growth in population γ_N and technology γ_A so $\gamma_Y = [(1 + \gamma_A)(1 + \gamma_N)]^{(1 - \alpha(1 - \phi))/((1 - \alpha)(1 - \phi))} - 1$

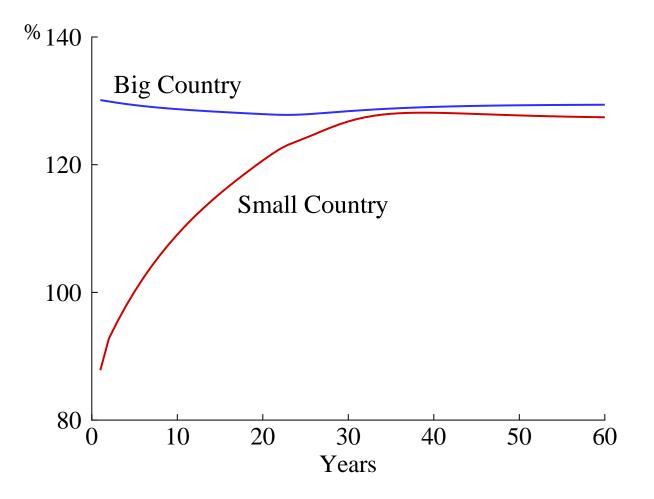
• What happens to a country joining an open EU?

Openness Parameters (σ)



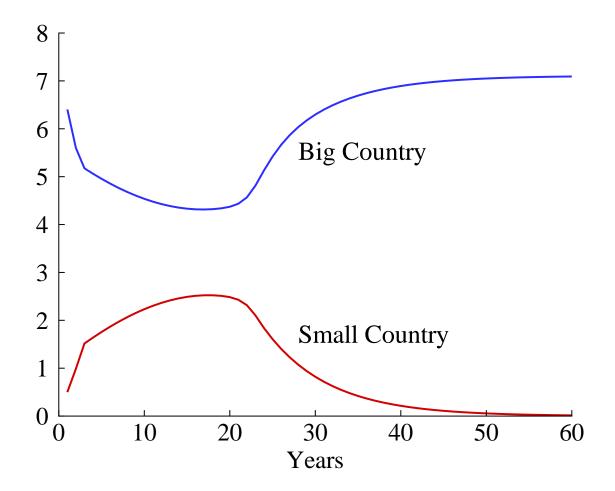
Small Country Opens to Big

Consumption/ $C_{2,0}(1+\gamma_Y)^t$



Small Country Opens to Big

Technology Capital/ $Y_{2,0}(1+\gamma_Y)^t$



Small Country Opens Gradually – Recap

- Initially, small country
 - Takes advantage of new markets in big country
 - Invests more in technology capital
 - Experiences a decline in measured productivity
 - $\circ~$ Scares observers at the World Bank
- Eventually exploits big country's technology capital stock

Small Country Opens Gradually – Recap

- Initially, small country
 - Takes advantage of new markets in big country
 - Invests more in technology capital
 - Experiences a decline in measured productivity
 - $\circ~$ Scares observers at the World Bank
- Eventually exploits big country's technology capital stock
- What if there is diffusion of knowlege?

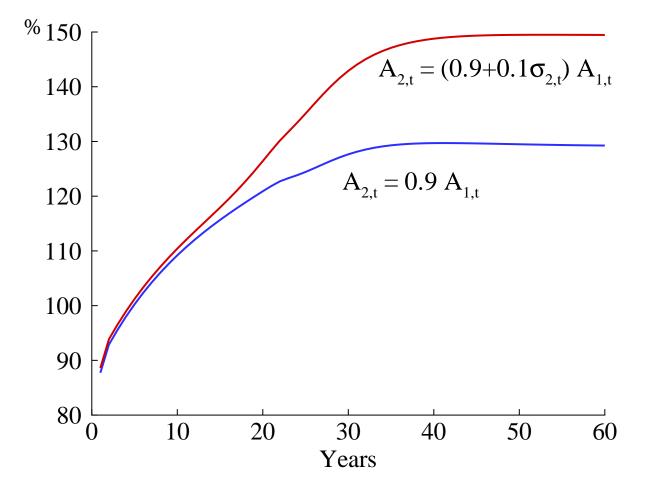
GAINS FROM OPENING WITH DIFFUSION

• Compare small country's consumption in 2 cases:

- Without diffusion $(A_{2t} = .9A_{1t})$
- With diffusion $(A_{2t} = A_{1t}(.9 + .1\sigma_{2,t}))$

GAINS FROM OPENING WITH DIFFUSION

Consumption/ $C_{2,0}(1+\gamma_Y)^t$



- Paper extends neoclassical growth model by adding
 - \circ Locations
 - Technology capital

• Use new theory to assess the gains from openness

• Elsewhere, use theory to study U.S. current account

