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ABSTRACT

Because firms invest heavily in R&D, software, brands, and other intangible assets—at a
rate close to that of tangible assets—changes in measured GDP, which does not include
all intangible investments, understate the actual changes in total output. If changes in
the labor input are more precisely measured, then it is possible to observe little change
in measured total factor productivity (TFP) coincidentally with large changes in hours
and investment. This mismeasurement leaves business cycle modelers with large and un-
explained labor wedges accounting for most of the fluctuations in aggregate data. In this
paper, I incorporate intangible investments into a multi-sector general equilibrium model
and parameterize income and cost shares using data from an updated U.S. input and
output table, with intangible investments added to final goods and services. I use max-
imum likelihood methods and quarterly observations on sectoral gross outputs over the
period 1985–2014 to estimate processes for latent sectoral TFPs—that have common and
idiosyncratic components. Aggregate hours are not used to estimate TFPs, but the model
predicts changes in hours that compare well with the actual hours series and account for
roughly two-thirds of its standard deviation. I find that sector-specific shocks and industry
linkages play an important role in accounting for fluctuations in aggregate U.S. data, and
I find that the model’s common component of TFP is not correlated at business cycle
frequencies with the standard measures of TFP used in the macroeconomic literature.

∗ The views expressed herein are those of the authors and not necessarily those of the Federal Reserve

Bank of Minneapolis or the Federal Reserve System.



1. Introduction

This paper sheds light on a measurement issue that confounds analyses of key macro-

data during economic booms and busts. Because firms invest heavily in R&D, software,

brands, and other intangible assets—at a rate close to that of tangible assets—changes in

GDP, which does not include all intangible investments, understate the actual changes in

total output. As a result, it is possible to observe large changes in hours and investment

coincidentally with little change in measured total factor productivity. In other words,

innovation by firms—which is fueled in large part by their intangible investments—may be

evident “everywhere but in the productivity statistics.”1 Here, I use theory and recently

revised U.S. national accounts to more accurately estimate U.S. total factor productivity

at both the aggregate and industry levels.

I develop a dynamic multi-sector general equilibrium model and explicitly incorporate

intangible investment. Multiple sectors are needed to account for the vast heterogeneity

in intangible investment rates across industries. To parameterize income and cost shares,

I start with the 2007 benchmark input-output table and take advantage of the fact that

the Bureau of Economic Analysis (BEA) now includes expenditures on intellectual prop-

erty products—software, R&D, mineral exploration, entertainment, literary, and artistic

originals—as part of investment rather than as part of intermediate inputs. I additionally

reallocate several categories of intermediate inputs that are under consideration for future

inclusion in the BEA fixed assets including computer design services, architectural and en-

gineering services, management consulting services, advertising, and marketing research.

Firms in the model economy have access to two production technologies: one for pro-

ducing tangible goods and services and another for producing new intangible capital goods

and services. Tangible capital is assumed to be a rivalrous input, but intangible capital is

1 Solow (1987) remarked that the computer age could be seen everywhere but in the economic data.
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assumed to be a nonrivalrous input, since knowledge can be used simultaneously in pro-

ducing consumer goods and services and creating new ideas. I explicitly model industry

linkages that occur through purchases of intermediate inputs and through purchases of new

tangible investment goods or intangible investment goods. Business cycle fluctuations in

the model are assumed to be driven by shocks to industry and aggregate TFP, the impact

of which will depend on details of the industry input-use and capital-use linkages.

Because the model includes intangible capital stocks that cannot be accurately mea-

sured, it is not possible to use observations on factor inputs and outputs to directly mea-

sure the TFP series as has been done in earlier work. (See, for example, Horvath (2000).)

Instead, I use maximum likelihood methods to estimate stochastic processes for the la-

tent TFPs—that are assumed to have both sector-specific components and a common

component—and derive model predictions for the series via the Kalman smoother. The

observations used in the estimation are gross outputs from the BEA by major industry and

per capita hours from the Bureau of Labor Statistics (BLS) for three intangible-intensive

minor industries over the period 1985:1 to 2014:4. Data on aggregate hours are not used

to estimate the TFP processes, but are used as an external check on the model’s predictive

capability. Previous work has shown that a one-sector, no-intangible version of the model

analyzed here has no chance of accounting for fluctuations in aggregate hours.2

I find that the model’s predicted hours track U.S. hours much better than the simplest

one-sector model without intangible investments. The model predicts three sizable booms

over the 1985–2014 sample period and then a bust. Moreover, the standard deviation of

the model’s predicted hours series is 65 percent of the actual series. This implies much

less scope for an unexplained labor wedge. If I decompose the predicted changes in hours

into components driven by the different shocks, I find that the common TFP shock is

2 The one-sector, no-intangible version of the model is the prototype model of Chari, Kehoe, and
McGrattan (2007, 2016), who use it to show that large labor wedges are needed to account for
fluctuations in U.S. hours.
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important for the low frequency movements in hours, and the sector-specific TFP shocks

are important for higher frequency movements.

I also decompose the variances of the observations used to estimate the latent TFP

shocks in order to determine the relative importance of different shocks and to assess

the role of input-output linkages. I do this in two ways: by computing the variance

decomposition of the ergodic distribution and by decomposing predicted growth rates in

specific boom and bust episodes. I find that sector-specific shocks and industry linkages

play an important role in accounting for fluctuations in the aggregate and industry gross

outputs. With the Kalman smoother, I construct model predictions for all TFP series.

Interestingly, I find that the model’s common component of TFP is not correlated at

business cycle frequencies with the standard measures of TFP used in the macroeconomic

literature.

Previous theoretical work related to this paper has either abstracted from intangible

capital or been more limited in scope. Long and Plosser (1983) analyzed a relatively simple

multi-sector model, arguing that firm- and industry-level shocks could generate aggregate

fluctuations. Horvath (1998, 2000) and Dupor (1998) extended their model and studied

the nature of industry linkages to determine if independent productivity shocks could in

fact generate much variation for aggregate variables. Parameterizing the model to match

the input-output and capital-use tables for the 1977 BEA benchmark, Horvath (2000)

concludes that sectoral shocks may have significant aggregate effects, but he does not

compute the model’s variance decomposition. More recently, Foerster, Sarte, and Watson

(2011) do a full structural factor analysis of the errors from the same multi-sector model,

but only use data for sectors within manufacturing and mining. Neither Horvath (2000)

nor Foerster et al. (2011) distinguish tangible and intangible investments. McGrattan and

Prescott (2010) do distinguish the different investments, but focus only on aggregate data

for a specific episode, namely the technology boom of the 1990s. Furthermore, they did
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their analysis well before the BEA completed the comprehensive revision introducing the

category of intellectual property products.

Previous empirical work has documented that intangible investments are large and

vary with tangible investments over the business cycle. For example, Corrado, Hulten,

and Sichel (2005, 2006) estimate that intangible investments made by businesses are about

as large as their tangible investments.3 McGrattan and Prescott (2014) use firm-level data

and show that intangible investments are highly correlated with tangible investments like

plant and equipment.

The model is described in Section 2. Parameters of the model are described in Section

3. Section 4 summarizes the results. Section 5 concludes.

2. Model

There is a stand-in household that supplies labor to competitive firms and, as owners of

the firms, receives the dividends. There is a government with certain spending obligations

that are financed by various taxes on households and firms. Firms produce final goods for

households and the government and intermediate inputs for other firms. The sources of

fluctuations in the economy are stochastic shocks to firm productivities.4

There are J sectors in the economy. Firms in sector j maximize the present value

of dividends {Djt} paid to their shareholders. I assume that firms in each sector j pro-

duce both tangible goods and services, Yj, and intangible intangible investment goods and

services, XIj . The technologies available are as follows:

Yjt =
(

K1
Tjt

)θj
(KIjt)

φj

(

∏

l

(

M1
ljt

)γlj

)

(

Z1
jtH

1
jt

)1−θj−φj−γj
(2.1)

3 For more details on measurement of intangible investments in the national accounts, see recent
surveys in the BEA’s Survey of Current Business (U.S. Department of Commerce, 1929–2013). For
more details on measurement of R&D investments, see National Science Foundation (1953–2013).
For details on entertainment, literary, and artistic originals, see Soloveichik and Wasshausen (2013).

4 Later, I plan to include shocks to government spending and to tax rates.
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XIjt =
(

K2
Tjt

)θj
(KIjt)

φj

(

∏

l

(

M2
ljt

)γlj

)

(

Z2
jtH

2
jt

)1−θj−φj−γj
(2.2)

and depend on inputs of tangible capital K1
Tj, K

2
Tj , intangible capital KIj , intermediate

inputs {M1
ljt}, {M

2
ljt}, and hours H1

j , H
2
j . These production technologies are hit by

stochastic technology shocks, Z1
jt and Z2

jt, that could have a common component and

sector-specific components. The specific choices for the stochastic processes are discussed

below.

Firms in sector j maximize the present value of after-tax dividends on behalf of their

owners (households) that discount after-tax future earnings at the rate ̺t:

max E0

∞
∑

t=0

(1 − τdt) ̺tDjt,

where

Djt = PjtYjt +QjtXIjt −WjtHjt −
∑

l

PltMljt −
∑

l

PltXT ljt −
∑

l

QltXIljt

− τktPjtKTjt − τxt
∑

l

PltXT ljt

− τpt{PjtYjt +QjtXIjt −WjtHjt − (δT + τkt)PjtKTjt

−
∑

l

PltMljt −
∑

l

QltXIljt} (2.3)

KTjt+1 = (1 − δT )KTjt +
∏

l

X
ζlj

T ljt (2.4)

KIjt+1 = (1 − δI)KIjt +
∏

l

X
νlj

Iljt (2.5)

Mljt = M1
ljt +M2

ljt. (2.6)

Dividends are equal to gross output PjYj +QjXIj less wage payments to workers WjHj,

purchased intermediate goods
∑

l PlMlj , new tangible investments
∑

l PlXT lj , new intan-

gible investments
∑

lQlXIlj , and taxes. New investment goods and services are purchased

from other sectors and used to update capital stocks as in (2.4) and (2.5). Taxes are

levied on property at rate τkt, investment at rate τxt (which could be negative if it is an

investment tax credit), and accounting profits at rate τpt.
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Households choose consumption Ct and leisure Lt to maximize expected utility:

max E0

∞
∑

t=0

βt
{

[

(Ct/Nt) (Lt/Nt)
ψ
]1−α

− 1
}

/ (1 − α)Nt (2.7)

with the population equal to Nt = N0(1 + gn)
t. The maximization is subject to the

following per-period budget constraint:

(1 + τct)

J
∑

j=1

PjtCjt +

J
∑

j=1

Vjt (Sjt+1 − Sjt)

≤ (1 − τht)

J
∑

j=1

WjtHjt + (1 − τdt)

J
∑

j=1

DjtSjt + Ψt, (2.8)

where Cjt is consumption of goods made by firms in sector j which are purchased at price

Pjt, Hjt is labor supplied to sector j which is paid Wjt, and Djt are dividends paid to the

owners of firms in sector j who have Sjt outstanding shares that sell at price Vjt. Taxes

are paid on consumption purchases (τct), labor earnings (τht) and dividends (τdt). Any

revenues in excess of government purchases of goods and services are lump-sum rebated

to the household in the amount Ψt.

The composite consumption and leisure that enter the utility function are given by

Ct =





∑

j

ωjC
σ−1

σ

jt





σ
σ−1

(2.9)

Lt = Nt −
∑

j

Hjt. (2.10)

Notice that here, I assume CES for consumption and linear for hours. As owners of the

firm, the household’s discount factor is the relevant measure for ̺t in (2.3):

̺t = βtUct/ [Pt (1 + τct)] , (2.11)

where Pt is the aggregate price index given by Pt = [
∑

j ω
σ
j P

1−σ
st ]1/(1−σ).
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The resource constraints for tangible and intangible goods and services are given as

follows:

Yjt = Cjt +
∑

l

XTjlt +
∑

l

Mjlt +Gjt (2.12)

XIjt =
∑

l

XIjlt, (2.13)

where Yj and XIj are defined in (2.1) and (2.2), respectively. The model economy is closed

and, therefore, there is no term for net exports.5

I assume that the logs of the sectoral TFP processes are equal to the sum of a sector-

specific component Z̃ijt and a common component Zt with factor loading ϕj , that is,

logZijt = log Z̃ijt + ϕj logZt (2.14)

log Z̃ijt = ρij log Z̃ijt−1 + ηijt (2.15)

logZt = ρ logZt−1 + υt, (2.16)

where Eηijt = 0, Eηijtη
i
jt−1 = 0, Eηijtη

k
lt = 0 for all i, j, k, l except cases with j = l, Eυt = 0,

Eυtυt−1 = 0, and Eυtη
i
jt = 0. In other words, the shocks to TFP are correlated within a

sector but not across sectors and not with the common TFP component.6

An approximate equilibrium for the model economy can be found by applying a version

of Vaughan’s (1970) method to the log-linearized first-order conditions of the household

and firm maximization problems. The solution can be summarized as an equilibrium law

of motion for the logged and detrended state vector x, namely:

xt+1 = Axt +Bεt+1, Eεtε
′

t = I, (2.17)

where xt = [~kTt, ~kIt, ~z1t, ~z2t, zt, 1]′ is a (4J+2)×1 state vector, ~kTt is the J×1 vector of

logged and detrended tangible capital stocks, ~kIt is the J×1 vector of logged and detrended

5 In the empirical implementation, net exports will be included with intermediate and final domestic
purchases.

6 One exception is the government sector (NAICS 92). I assume that shocks to production in NAICS
92 are independent of all other shocks. If I assume otherwise, then the common shock parameter esti-
mates depend importantly on fluctuations of gross output in this sector during the Great Recession,
the source of which is unlikely to be a boom in TFP.
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intangible capital stocks, ~z1t is the J×1 vector of logged and detrended sectoral TFPs for

production of final goods and services, ~z2t is the J×1 vector of logged and detrended

sectoral TFPs for production of new intangible investments, and zt is the logged and

detrended common shock. The last element of xt is a 1, which is used for constant terms.

The vector εt is a 2J + 1 vector of normally distributed shocks. I assume that the only

nonzero off-diagonal elements of B are correlations between the tangible and intangible

production within a sector. I also estimate, in this case, a stochastic process for the

common component, zt.

In the next section, I use BEA data to parameterize this model economy and to

estimate the parameters governing the shock processes in (2.17) using maximum likelihood

methods.

3. Parameters

Here, I describe how to parameterize income and cost shares using the 2007 bench-

mark BEA input-output table and how to estimate processes for components of the sectoral

TFPs, namely {Z1
jt} and {Z2

jt}, using data from the BEA and BLS. The remaining pa-

rameters, which are also described below, are those related to preferences, growth rates,

depreciation, and tax rates and are not critical to the main results.

3.1. Income and Cost Shares

The starting point for my analysis are the input-output tables published by the BEA.

In Figure 1, I show an example input-output table. The upper left J × J matrix has

intermediate purchases. The rows are commodities (or inputs) and the columns are the

industries using them in production. For the analysis below, I set J = 15 and the sectors

are the following major industries: (1) agriculture, forestry, fishing, and hunting (NAICS

11); (2) mining (NAICS 21); (3) utilities (NAICS 22); (4) construction (NAICS 23); (5)
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manufacturing (NAICS 31-33); (6) wholesale trade (NAICS 42); (7) retail trade (NAICS

44-45); (8) transportation and warehousing (NAICS 48-49); (9) information (NAICS 51);

(10) finance, insurance, real estate, rental and leasing (NAICS 52-53); (11) professional

and business services (NAICS 54-56); (12) educational services, health care, and social

assistance (NAICS 61-62); (13) arts, entertainment, recreation, accommodation, and food

services (NAICS 71-72); (14) other services except government (81); and (15) public ad-

ministration (NAICS 92). Before computing intermediate shares, I reallocate intermediate

expenses in several categories of professional and business services—categories that na-

tional accountants are considering reallocating—to the matrix of intangible investments

listed under final uses. Specifically, I move expenses for computer design services, architec-

tural and engineering services, management consulting services, advertising, and marketing

research out of the intermediate inputs matrix and into final uses.

In terms of the model, the intermediate purchases that show up in element (l, j) of

the matrix are given by Pl(M
1
lj + M2

lj). I use the relative shares of these purchases to

parameterize the intermediate shares, {γlj}, in (2.1) and (2.2). The actual shares used

in the analysis are reported in Table 1. The first panel of the table shows the values of

the intermediate shares γlj . The first row and column headers indicate the commodity

and industry NAICS category, respectively, which in turn correspond to the 15 major

industries listed above. Notice that most elements are nonzero, indicating that there are

many sectoral linkages.

The upper right part of the table in Figure 1 is the final uses of the commodities.

The labels on these final uses are not exactly the same as the BEA’s because some adjust-

ments need to be made in order for the theory and data to be consistent. Starting with

consumption, I include the nondurable goods and services categories from BEA’s personal

consumption expenditures (PCE). Expenditure shares for these goods and services are

governed by the choice of {ωj} in (2.9), which I set to align the theoretical and empirical

shares. These are shown in the final row of Table 1.
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The durable goods component of PCE is included with investments. Specifically,

durable equipment is assumed to be part of tangible investment, and software and books are

assumed to part of intangible investment. Since the tangible and intangible investments,

like intermediate purchases, are used by different industries, I need to assign consumer

durable purchases to specific elements of the J × J matrices. In the case of consumer

durable equipment, I assume it is a manufactured commodity (commodity 5) used by the

real estate industry (industry 10). In the case of software and books, I assume these are

information commodities (commodity 9) used by the real estate industry (industry 10).

Another adjustment that must me made is to include the durable capital services and

depreciation with consumption services. This adjustment also affects incomes, which I

describe later.

Detailed investment data are used to fill in elements of the BEA capital flow tables

(also referred to as the capital-use tables).7 The detailed data are broken down by invest-

ment category and industries making the investment.8 I construct two capital flow tables:

tangible and intangible. I include fixed investment in equipment and structures—both

public and private—and changes in inventories with tangible investment, and I include the

new BEA category of intellectual property (IP) products—both public and private—with

intangible investment.9

The IP products include expenditures on software, mineral exploration, research and

development (R&D), and entertainment, literary, and artistic originals. Some of this spend-

ing is done by firms in-house (and is what the BEA calls own-account). For this spending I

reassign the commodity source to the own industry, which is more in line with the theory.

7 The BEA has not yet published an official capital flow table for the 2007 benchmark input-output
accounts. I constructed one with detailed investment data available for the BEA fixed asset tables
and very useful correspondence with David Wasshausen of the BEA.

8 Some adjustments need to be made to reallocate from owners to users since these tables record final
users of the capital goods.

9 This category of investment was added in the 2013 comprehensive revision of the accounts.
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Once I have the capital flow tables, I can set the parameters ζlj and νlj using the spending

shares for tangible investment and intangible investment, respectively.

The second panel of Table 1 shows the tangible capital flow shares ζlj . Notice that

many rows of this panel have only zeros because the commodities produced are neither

structures nor equipment. Commodities categorized under construction (NAICS 23) and

manufacturing (NAICS 31-33) are the main sources of these investment goods. The third

panel is the analogous panel for intangible investments. Commodities categorized under

information (NAICS 51) and professional and business services (NAICS 54-56) are most

important in this case. In the BEA data, scientific R&D is listed under NAICS 5417 but

much of this is specific to other commodities (e.g., chemical manufacturing) and has been

assigned accordingly. For this reason, there are nonzero shares on the diagonal of the

15×15 matrix ν that would be zeros in the BEA’s table.

The next columns in the final-use table has purchases of government and the rest

of world. I list government purchases as ‘government consumption’ in the table since

government investment is included with the private investments. For all of the simulations

below, I also add the government consumption in with private spending and thus the

theory assumes zeros for this column. The economy is closed and does not have a rest-of-

world sector. Thus, I reallocate net exports to the domestic categories of intermediates,

consumption, and investment. I do so in a pro rata way.

The panel below intermediate purchases in Figure 1 shows the categories of value

added. The first has industry compensation, which is WjHj for all j in the model. The

second has business taxes that include consumption and excise taxes τcCj and property

taxes τkKTj . The third category is operating surplus which is the sum of all capital in-

come and capital depreciation (including depreciation of consumer durables) less property

taxes. Shares of capital income {θj, φj} are set so that the total spending on tangible

and intangible investment is equal to that in the U.S. data. These shares are shown in
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the fourth and fifth panels of Table 1. Adding up the income categories is another way

to compute GDP (in addition to adding up expenditures or taking industry outputs and

subtracting intermediate purchases).

3.2. Shock Processes

Estimates of the parameters governing the shock processes are found by applying

maximum likelihood to the following state space system:

xt+1 = Axt +Bεt+1 (3.1)

yt = Cxt, (3.2)

where the elements of xt are defined above (see (2.17)) and assumed to be unobserved,

and yt are quarterly U.S. data for the period 1985:1-2014:4. For yt, I use detrended gross

outputs and, in some intangible-intensive industries, per capita hours. A common trend is

used for technology growth for all industry gross outputs.

The sectoral gross outputs are the empirical analogue of PjtYjt+QjtXIjt in equation

(2.3).10 I use gross outputs, rather than data on value added, because there are no issues

with the classification of spending as intermediate or final.11 Definitions of value added

have changed over the postwar period. For intangible-intensive sectors that may have

some own-account investments still missing from gross output, sectoral hours are used.

If only a small subset of hours are used in the estimation, aggregate hours can be used

as an external check on the model. Given the failure of the standard one-sector model

without intangibles to account for large fluctuations in hours, a comparison of hours is a

particularly important test of the new theory.

The model time period is quarterly, but time series on gross outputs by industry are

only available annually before 2005. Therefore, before estimating parameters for the shock

10 Both data and model series are deflated before shocks are estimated.
11 I also worked with IRS business receipts, which are an important source of information for construct-

ing gross outputs and are available back to the 1920s for many major and minor industries.
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processes, I use a Kalman filter to compute forecasts of quarterly gross outputs. The idea is

to use other available quarterly data by industry and construct quarterly forecasts for the

series of interest, namely, gross outputs. Specifically, I use quarterly estimates of BEA’s

national income by industry, Njt, quarterly estimates of BLS’s employment by industry,

Ejt, and annual estimates of BEA’s gross outputs, Gjt, t = 4, 8, 12, . . . where Gjt = 0 for t

not divisible by four. Both the national income and gross output data are divided by the

GDP deflator. Then all three series are detrended by applying the filter in Hodrick and

Prescott (1997) (with a smoothing parameter of 1600 for the quarterly series and 100 for

the annual series).12

Let Ĝjt be the quarterly gross outputs being forecasted. The first step in deriving

a forecast is to estimate Aj and Bj of the following state space system via maximum

likelihood:

xjt+1 = Ajxjt +Bjǫt+1

yjt = Cjtxjt

where xjt = [Xjt, Xj,t−1, Xj,t−2, Xj,t−3]
′, Xjt = [Njt, Ejt, Ĝjt]

′, and yjt = [Njt, Ejt, Gjt]
′,

and

Aj =







a1j a2j a3j a4j

I 0 0 0
0 I 0 0
0 0 I 0






, Bj =







bj
0
0
0







Cjt =



































1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4



 if t is 4th quarter

[

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

]

otherwise.

12 The Hodrick-Prescott filter is only used to when constructing quarterly forecasts for the missing
observations in Gjt; the low frequency HP trend is added back. Then a common linear trend is

removed from the logged gross output series before adding them to the vector yt in (3.2).
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Once I have parameter estimates Âj and B̂j , I can construct forecasts of gross outputs

in all quarters given the full sample of data, namely Ĝjt = E[Gjt|yj1, ..., YjT ], by first

applying the Kalman filter and then applying the Kalman smoother. (See Harvey (1989)

for details.)

Doing this yields fifteen series of gross outputs for the major industries in the input-

output table described earlier. Additionally, I include data on hours per capita for com-

puter and electronic products, broadcasting and communications, and advertising, which

are 3-digit industries under manufacturing (industry 5), information (industry 9), and pro-

fessional and business services (industry 11), respectively. Firms in these minor industries

make sizable intangible investments, some of which may be done in-house, which is why I

use hours rather than output to identify the Z2
jt for the sectors j = 5,9,11. Because the

hours in these industries account for only 10 percent, I can use the model’s prediction for

aggregate hours as an external check on the model.

One final step before the TFP processes can be estimated is to set the initial state x0

in (3.1). Here, I do not use the steady-state values because there are differing growth trends

in U.S. industry data. For example, relative to an economy-wide trend, manufacturing has

been slowing and information has been growing. Thus, I choose x0 in such a way that

initial investments do not jump. This is easy to do in two steps: start by setting x0 equal

to the steady state and then use the model’s prediction for the first period state, x̂1, as

the new initial condition.

Given the eighteen observable series in the vector, yt, and initial conditions for the

state, x0, I again apply the methods in Harvey (1989) to estimate the parameters of the

eighteen stochastic TFP processes. These parameters appear as coefficients in A and B in

(3.1). The estimated stochastic processes are reported in a separate appendix.
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3.3. Other parameters

The remaining parameters are those related to preferences, growth in population and

technology, depreciation, and taxes.

For preferences, I set α = 1, ψ = 1.2, and β = 0.995. Growth in population is 0.25

percent per quarter. Growth in technology is 0.5 percent per quarter. Depreciation is

assumed to be the same for all sectors and both types of capital and is set at 0.8 percent

per quarter.13 Tax rates are based on IRS and national account data and are as follows:

τc = 0.065, τd = 0.144, τh = .382, τk = 0.003, τp = 0.33 and τx = 0. For the results below,

these rates are held constant.

4. Results

In this section, I first provide evidence of the model’s fit by comparing the per capita

hours prediction of a baseline model with only one sector and no intangibles to those

of the extended multi-sector model with intangible investments. I find that the latter is

significantly closer to U.S. hours because the implied TFP series for the baseline model

and the estimated series for the extended model behave differently at business cycle fre-

quencies. I decompose the extended model’s predictions for aggregate data and show that

sector-specific shocks and industry linkages both play an important role in accounting for

fluctuations over the period 1985-2014. I then look more closely at the Great Recession,

highlighting differences in the model’s predicted TFP series and a typical measure of TFP

used in the macroeconomic literature.

13 One issue that arises in models with intangible capital is the lack of identification of all parameters.
For example, there is insufficient data to estimate both capital shares and depreciation rates, even in
the case of R&D assets that are now included in both NIPA and the BEA’s fixed asset tables. The
BEA uses estimates of intangible depreciation rates to calculate the return to R&D investments and
the capital service costs, which are used in capitalizing R&D investments for their fixed asset tables.
Unfortunately, as the survey of Li (2012) makes clear, “measuring R&D depreciation rates directly
is extremely difficult because both the price and output of R&D capital are generally unobservable.”
Li discusses different approaches that have been used to estimate industry-specific R&D depreciation
rates, finding that there is a wide range of estimates even within narrow categories. She concludes
that “the differences in their results cannot be easily reconciled.” (See Li, Table 2.)
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4.1. Baseline Model

A useful baseline is the nested model with one sector S = 1 and without intangible

capital φs = 0. This version of the model generates similar results to the model of Kydland

and Prescott (1982), which has the distinction of being the standard theoretical benchmark.

In this case, I use the Solow residual as an estimate of the model’s (one) TFP series.

The Solow residual is real GDP divided by real fixed assets raised to a power (in this

case, one-third) times aggregate hours raised to a power (in this case, two-thirds).14 I

assume the logarithm of the Solow residual is a first-order autoregressive process which

can be estimated using ordinary least squares. Given the estimates and an initial condition

for the process, I can simulate a path for TFP and feed it in to the model’s equilibrium

decision functions.

Figure 2 shows the baseline model’s predicted per capita hours along with actual

U.S. hours. As the figure shows, the predicted series does not track the U.S. series and

varies much less over the business cycle, barely rising during the technology boom and

barely falling during the Great Recession. Why does it vary so little? The answer is that

measured TFP—which in this case is the Solow residual—does not fluctuate that much

over the cycle in my sample period.

This result will serve as a useful baseline when analyzing the extended model with

intangible investments and industry input-output linkages explicitly modeled. I turn to

this next.

4.2. Extended Model

In the extended model, predictions of the model’s state and decision variables condi-

tional on all of the observations, {yt}, are derived using a Kalman smoother. Variables of

interest include aggregate hours and the latent TFP series.

14 The NIPA data do include some intangible investments and the fixed assets do include some intangible
capital. Stripping them out will not affect the main results for the baseline model.
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Figure 3 shows the extended model’s predicted per capita hours along with actual

U.S. hours. The figure shows that the predicted hours track actual hours much better

than the simplest one-sector model (Figure 2). The model predicts three sizable booms

and then a bust, and the standard deviation of the model series is 65 percent of the actual

series. This leaves much less room for an unexplained labor wedge.

If I decompose the predicted series in Figure 3 into the component due to the sector-

specific shocks and the component due to the common shock, I find that both play a role.

Figure 4A plots the predicted hours series with all shocks included and then again with

only the common shock. The figure shows that the common shock generates significant

variation at a low frequency, which is necessary to account for the lack of recovery after

the Great Recession. Figure 4B plots the predicted hours series with all shocks included

and then again with only the sector-specific shocks. The sector-specific shocks are more

important in generating variation at higher frequencies, for example, in the 2001 and 2008

downturns.

Table 2 shows the variance decomposition for model’s ergodic distribution. The rows

correspond to the observable data in yt and I have listed the impacted industry.15 In the

case of major industries, the variances of yt being decomposed are those of gross outputs,

and for the minor intangible-intensive industries, the variances being decomposed are those

of per capita hours. The columns correspond to the shocks. The first column is the total

variance due to sectoral shocks. This variance is split between own-sector shocks and

other-sector shocks. Notice that sectoral shocks are important for all of the industry data.

Furthermore, with the exception of mining, the variances attributable to shocks in other

industries are nontrivial, indicating that sectoral linkages are playing an important role. In

fact, in many industries the role of other-sector shocks is greater than that of the common

shock.

15 The government sector is not listed since I imposed restrictions on the shocks in this sector.
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One issue with the variance decomposition in Table 2 is the fact that there are sig-

nificant trends in the 1985–2014 sample, which will bias these estimates. Most likely, the

trends imply more weight on sectoral shocks and less weight on common shocks. Thus, as

an alternative summary of the variance decomposition, I decompose the growth rates of

gross output in two episodes: the 1990s technology boom and the Great Recession.

The results are shown in Figure 5. Here the rows correspond to the source of shocks,

with “common” being due to innovations in Z. The x-axis shows the change in growth

attributable to shocks from each source. There are two periods and, therefore, two esti-

mates for each period. The figure shows that the common TFP shock accounts for roughly

half of the increase in total gross output in the boom and roughly half of the decrease in

the bust. In the technology boom, shocks to TFP in FIRE and professional and business

services were also important. In the Great Recession, shocks to manufacturing TFP were

important.

Finally, I compare the time series of the model’s predicted common TFP shock to the

standard measure of TFP used in the literature, namely, the Solow residual, which was

the TFP series used in the baseline model. I find they are similar at the low frequency but

different at the high frequency. More specifically, if I compare the two series after logging

and linearly detrending them, the correlation is 73 percent. However, if I instead use a

Hodrick-Prescott filter and compare only cyclical fluctuations, the correlation is only 9

percent. Figure 6 shows these two TFP series—logged and linearly detrended—during the

Great Recession, where both are standardized by first subtracting the 2008:1 value and

then dividing all values by the standard deviation of the series. The Solow residual falls

modestly and briefly and is back to trend by mid-2009, exactly when the Great Recession

is declared over by the National Bureau of Economic Research. The estimated TFP series,

on the other hand, falls by more and never recovers. This pattern is consistent with much

of U.S. real activity since 2008.
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5. Conclusion

In the recent comprehensive revision of the national accounts, the BEA has greatly

expanded its coverage of intellectual property products. In this paper, I expand the cov-

erage further and use a multi-sector general equilibrium model to quantify the impact of

including these products (which I refer to as intangible investments) in both the theory

and the measures of GDP and TFP. I find that updating both—both the theory and the

data—is quantitatively important for analyzing U.S. aggregate fluctuations.

20



References

Chari, V.V., Patrick J. Kehoe, and Ellen R. McGrattan. 2007. “Business Cycle Account-

ing.” Econometrica 75(3): 781–836.

Chari, V.V., Patrick J. Kehoe, and Ellen R. McGrattan. 2016. “Accounting for Business

Cycles,” in J. Taylor and H. Uhlig (eds.), Handbook of Macroeconomics, forthcoming.

Corrado C., Charles R. Hulten, and Daniel E. Sichel. 2005. “Measuring Capital and

Technology: An Expanded Framework,” in C. Corrado, J. Haltiwanger, and D. Sichel

(eds.), Measuring Capital in the New Economy, (Chicago, IL: University of Chicago).

Corrado, Carol A., Charles R. Hulten, and Daniel E. Sichel. 2006. “Intangible Capital

and Economic Growth,” Finance and Economics Discussion Series, 2006–24, Divisions

of Research and Statistics and Monetary Affairs, Federal Reserve Board, Washington,

DC.

Dupor, Bill. 1998. “Aggregation and Irrelevance in Multi-Sector Models.” Journal of

Monetary Economics 43(2): 391–409.

Federal Reserve Board of Governors. 1945–2013. Flow of Funds Accounts of the United

States, (Washington, DC: Board of Governors).

Foerster, Andrew T., Pierre-Daniel G. Sarte, and Mark W. Watson. 2011. Journal of

Political Economy 119(1): 1–38.

Harvey, Andrew. 1989. Forecasting, Structural Time Series Models and the Kalman Filter.

(Cambridge, UK: Cambridge University Press).

Hodrick, Robert and Edward C. Prescott. 1997. “Postwar U.S. Business Cycles: An

Empirical Investigation.” Journal of Money, Credit, and Banking 29(1): 1–16.

Horvath, Michael. 1998. “Cyclicality and Sectoral Linkages: Aggregate Fluctuations from

Independent Sectoral Shocks.” Review of Economic Dynamics 1(4): 781–808.

Horvath, Michael. 2000. “Sectoral Shocks and Aggregate Fluctuations.” Journal of Mon-

etary Economics 45(1): 69–106.

Kydland, Finn E.and Edward C. Prescott. 1982. “Time to Build and Aggregate Fluctua-

tions.” Econometrica 50(6): 1345–1370.

Li, Wendy C.Y. 2012. “Depreciation of Business R&D Capital,” Mimeo, Bureau of Eco-

nomic Analysis.

21



Long, John B., Jr., and Charles I. Plosser. 1983. “Real Business Cycles.” Journal of

Political Economy 91(1): 39–69.

McGrattan, Ellen R. 1994. “The Macroeconomic Effects of Distortionary Taxation.” Jour-

nal of Monetary Economics 33(3): 573–601.

McGrattan, Ellen R., and Edward C. Prescott. 2010. “Unmeasured Investment and the

Puzzling U.S. Boom in the 1990s.” American Economic Journal: Macroeconomics 2(4):

88–123.

McGrattan, Ellen R., and Edward C. Prescott. 2014. “A Reassessment of Real Business

Cycle Theory.” American Economic Review, Paper and Proceedings, 104(5): 177–187.

Roll, Richard and Stephen A. Ross. 1980. “An Empirical Investigation of the Arbitrage

Pricing Theory.” Journal of Finance, 35(5): 1073-1103.

Soloveichik, Rachel, and David Wasshausen. 2013. “Copyright-Protected Assets in the

National Accounts,” Mimeo, Bureau of Economic Analysis.

Solow, Robert. 1987. “We’d better watch out,” New York Times Book Review, July 12,

1987, p. 36.

National Science Foundation. 1953–2015. National Patterns of R&D Resources, (Wash-

ington, DC: National Science Foundation).

Vaughan, David R. 1970. “A Nonrecursive Algebraic Solution for the Riccati Equation.”

IEEE Transactions on Automatic Control AC-15: 597–599.

U.S. Department of Commerce, Bureau of Economic Analysis. 1929–2015. Survey of

Current Business, (Washington, DC: U.S. Government Printing Office).

22



Table 1. Parameters Based on 2007 U.S. Input Output Table

Intermediate goods and services shares (γlj)

NAICS 11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

11 .205 .000 .000 .001 .033 .001 .001 .000 .000 .000 .000 .000 .007 .000 .001
21 .003 .069 .107 .005 .037 .000 .000 .003 .000 .001 .000 .000 .001 .001 .004
22 .015 .011 .014 .003 .013 .006 .014 .008 .003 .018 .005 .011 .018 .008 .009
23 .007 .017 .019 .000 .002 .001 .003 .005 .002 .025 .001 .001 .003 .006 .019
31-33 .178 .073 .071 .243 .264 .030 .033 .154 .050 .011 .042 .076 .118 .079 .094
42 .071 .015 .016 .044 .047 .029 .017 .030 .012 .003 .008 .021 .022 .016 .014
44-45 .001 .000 .001 .058 .002 .001 .004 .005 .000 .002 .001 .001 .007 .008 .000
48-49 .033 .023 .067 .018 .022 .047 .053 .123 .015 .007 .015 .010 .014 .009 .018
51 .001 .002 .006 .003 .004 .012 .013 .007 .141 .016 .023 .016 .011 .017 .026
52-53 .045 .032 .052 .023 .015 .086 .126 .093 .050 .212 .088 .136 .097 .159 .040
54-56 .010 .040 .045 .011 .042 .085 .059 .046 .040 .068 .088 .068 .082 .039 .038
61-62 .001 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .012 .002 .003 .005
71-72 .001 .002 .010 .002 .003 .005 .003 .004 .021 .010 .018 .011 .025 .006 .009
81 .004 .003 .005 .005 .008 .017 .011 .024 .016 .013 .014 .013 .015 .015 .015
92 .000 .000 .002 .000 .001 .011 .006 .022 .003 .002 .003 .003 .007 .003 .003

Tangible capital flow shares (ζlj)

11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

11 .084 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 .002 .763 .003 .003 .002 .001 .001 .020 .001 .000 .002 .001 .001 .001 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 .154 .054 .431 .058 .165 .228 .477 .261 .320 .329 .205 .430 .574 .496 .699
31-33 .510 .123 .379 .629 .593 .468 .350 .470 .454 .558 .531 .381 .285 .337 .247
42 .129 .031 .096 .160 .124 .191 .089 .119 .115 .016 .135 .097 .072 .086 .040
44-45 .037 .009 .027 .045 .035 .034 .025 .034 .033 .007 .038 .027 .020 .024 0
48-49 .029 .007 .022 .036 .028 .027 .020 .045 .026 .004 .030 .022 .016 .019 .006
51 .008 .002 .006 .009 .007 .007 .005 .007 .008 .001 .008 .006 .004 .005 0
52-53 0 0 0 0 0 0 0 0 0 .066 0 0 0 0 0
54-56 .049 .012 .036 .060 .047 .045 .033 .045 .043 .020 .051 .036 .027 .032 .008
61-62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71-72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Intangible capital flow shares (νlj)

11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

11 .028 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 .187 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 .115 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 .028 0 0 0 0 0 0 0 0 0 0 0
31-33 0 0 0 0 .725 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 .219 0 0 0 0 0 0 0 0 .003
44-45 0 0 0 0 0 0 .091 0 0 0 0 0 0 0 0
48-49 0 0 0 0 0 0 0 .089 0 0 0 0 0 0 .000
51 .112 .149 .107 .024 .028 .047 .086 .094 .614 .391 .044 .048 .197 .065 .015
52-53 0 0 0 0 0 0 0 0 0 .122 0 0 0 0 0
54-56 .860 .664 .778 .948 .247 .734 .824 .817 .386 .487 .956 .619 .793 .674 .381
61-62 0 0 0 0 0 0 0 0 0 0 0 .333 0 0 0
71-72 0 0 0 0 0 0 0 0 0 0 0 0 .010 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 .261 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .602
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Table 1. Parameters Based on 2007 U.S. Input Output Table (Cont.)

Tangible capital shares (θj)

NAICS 11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

.301 .558 .384 .167 .165 .127 .136 .132 .201 .408 .059 .076 .142 .130 .102

Intangible capital shares (φj)

11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

.006 .011 .038 .082 .193 .149 .072 .039 .236 .040 .178 .033 .061 .056 .083

Consumption shares (ωj)

11 21 22 23 31-33 42 44-45 48-49 51 52-53 54-56 61-62 71-72 81 92

.005 .000 .021 .000 .118 .038 .089 .022 .033 .202 .018 .163 .068 .031 .193
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Table 2. Variance Decomposition, 1985:1–2014:4

Sector-specific

Own Other Common
Observable Total Industry Industry Shock

Agriculture (11) 96.4 61.8 34.6 3.6

Mining (21) 99.9 98.8 1.2 0.1

Utilities (22) 98.8 61.9 37.0 1.2

Construction (23) 77.9 39.2 38.7 22.1

Manufacturing (31-33) 91.5 75.7 15.8 8.5

Computers & Electrical 90.9 80.3 10.6 9.1

Wholesale Trade (42) 81.5 32.5 16.8 18.6

Retail Trade (44-45) 60.0 27.5 32.5 40.0

Transportation & Warehousing (48-49) 70.6 29.7 40.9 29.4

Information (51) 74.1 49.4 24.7 25.9

Broadcasting & Telecommunications 78.5 49.8 28.8 21.5

Finance, Insurance & Real Estate (52-53) 64.7 9.0 55.7 35.3

Professional & Business Services (54-56) 73.5 57.8 15.7 26.5

Advertising 63.8 42.0 21.8 36.2

Education, Health & Social Services (61-62) 67.4 8.6 58.9 32.6

Leisure and Hospitality (71-72) 65.1 10.2 54.9 34.9

Other Services (81) 62.5 20.4 42.2 37.5
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Figure 1
Input Output Table
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Figure 2
U.S. Hours Per Capita and One-Sector, No-Intangibles Model Prediction
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Figure 3
U.S. Hours Per Capita Multi-Sector with Intangibles Model Prediction
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Figure 4
Predicted Hours Per Capita with Subset of Shocks
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Figure 5
Decomposition of Changes in Gross Output in Two Periods
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Figure 6
Two Measures of Aggregate TFP
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