Discussion of "Deconstructing Lifecycle Expenditures" by Aguiar and Hurst

Discussant: Fatih Guvenen

July 23, 2008
Overview of Results

Two New Empirical Findings:

Earlier papers: Hump-shaped total consumption over lifecycle

Discussant: Fatih Guvenen ()
Overview of Results

Two New Empirical Findings:
Overview of Results

Two New Empirical Findings:

Mean Profile:

- Earlier papers: Hump-shaped total consumption over lifecycle
Lifecycle Profile of Expenditures (Aggregate)
Overview of Results

Two New Empirical Findings:

1. Mean Profile:
 - Earlier papers: Hump-shaped total consumption over lifecycle
 - New in this paper: No consistent hump within sub-categories
Lifecycle Profile of Expenditures (Sub-categories)
Overview of Results

Two New Empirical Findings:

1. Mean Profile:
 - Earlier papers: Hump-shaped total consumption over lifecycle
 - New in this paper: No consistent hump within sub-categories

2. Cross-sectional Variance Profile:
Overview of Results

- Two New Empirical Findings:
 1. Mean Profile:
 - Earlier papers: Hump-shaped total consumption over lifecycle
 - New in this paper: No consistent hump within sub-categories
 2. Cross-sectional Variance Profile:
 - Earlier papers: Increasing variance of total consumption
Cross-sectional Variance of Expenditures (Aggregate)
Overview of Results

Two New Empirical Findings:

1. Mean Profile:
 - Earlier papers: *Hump-shaped* total consumption over lifecycle
 - New in this paper: *No consistent hump* within sub-categories

2. Cross-sectional Variance Profile:
 - Earlier papers: *Increasing* variance of total consumption
 - New in this paper: *No clear pattern* within subcategories
Cross-sectional Variance of Expenditures (Sub-categories)
Overview of Results

Two New Empirical Findings:

1. Mean Profile:
 - Earlier papers: Hump-shaped total consumption over lifecycle
 - New in this paper: No consistent hump within sub-categories

2. Cross-sectional Variance Profile:
 - Earlier papers: Increasing variance of total consumption
 - New in this paper: No clear pattern within subcategories

Implications for Existing Theories

- Difficult to reconcile with standard models (with uninsurable idiosyncratic shocks and impatience).
Overview of Results

Two New Empirical Findings:

1. Mean Profile:
 - Earlier papers: Hump-shaped total consumption over lifecycle
 - New in this paper: No consistent hump within sub-categories

2. Cross-sectional Variance Profile:
 - Earlier papers: Increasing variance of total consumption
 - New in this paper: No clear pattern within subcategories

Implications for Existing Theories

- Difficult to reconcile with standard models (with uninsurable idiosyncratic shocks and impatience).
- Categories that behave differently are work-related (transport and clothing) or suitable for home production (food).
ln C_{it}^k = \beta_0 + \beta_{age}^k \text{Age}_{it} + \beta_{cohort}^k \text{Cohort}_i + \beta_{fs}^k \text{Family}_{it} + \varepsilon_{it}^k
Control for relative prices when constructing profiles, because:

1. Population aging over sample period.
 Age distribution by year

<table>
<thead>
<tr>
<th>Age</th>
<th>1985</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-44</td>
<td>0.556</td>
<td>0.396</td>
</tr>
<tr>
<td>45-64</td>
<td>0.346</td>
<td>0.447</td>
</tr>
<tr>
<td>65-75</td>
<td>0.098</td>
<td>0.156</td>
</tr>
</tbody>
</table>

2. Relative prices have increased differently during this period:

<table>
<thead>
<tr>
<th>Item</th>
<th>% Inflation 1980-2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>140</td>
</tr>
<tr>
<td>Food away</td>
<td>125</td>
</tr>
<tr>
<td>Food at home</td>
<td>107</td>
</tr>
<tr>
<td>Transport</td>
<td>102</td>
</tr>
<tr>
<td>Clothing</td>
<td>38</td>
</tr>
<tr>
<td>Recreation</td>
<td>18</td>
</tr>
</tbody>
</table>

Similarly, control for geographical region, and urban-rural (different age distributions).
Control for relative prices when constructing profiles, because:

- Population aging over sample period.

<table>
<thead>
<tr>
<th>Age distribution by year</th>
<th>1985</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-44</td>
<td>0.556</td>
<td>0.396</td>
</tr>
<tr>
<td>45-64</td>
<td>0.346</td>
<td>0.447</td>
</tr>
<tr>
<td>65-75</td>
<td>0.098</td>
<td>0.156</td>
</tr>
</tbody>
</table>
Control for relative prices when constructing profiles, because:

- Population aging over sample period.

<table>
<thead>
<tr>
<th>Age</th>
<th>1985</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-44</td>
<td>0.556</td>
<td>0.396</td>
</tr>
<tr>
<td>45-64</td>
<td>0.346</td>
<td>0.447</td>
</tr>
<tr>
<td>65-75</td>
<td>0.098</td>
<td>0.156</td>
</tr>
</tbody>
</table>

- Relative prices have increased differently during this period:

<table>
<thead>
<tr>
<th>% Inflation 1980-2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Food away</td>
</tr>
<tr>
<td>Food at home</td>
</tr>
<tr>
<td>Transport</td>
</tr>
<tr>
<td>Clothing</td>
</tr>
<tr>
<td>Recreation</td>
</tr>
</tbody>
</table>
Control for relative prices when constructing profiles, because:

- Population aging over sample period.

<table>
<thead>
<tr>
<th>Age distribution by year</th>
<th>1985</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-44</td>
<td>0.556</td>
<td>0.396</td>
</tr>
<tr>
<td>45-64</td>
<td>0.346</td>
<td>0.447</td>
</tr>
<tr>
<td>65-75</td>
<td>0.098</td>
<td>0.156</td>
</tr>
</tbody>
</table>

- Relative prices have increased differently during this period:

<table>
<thead>
<tr>
<th>% Inflation 1980-2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Food away</td>
</tr>
<tr>
<td>Food at home</td>
</tr>
<tr>
<td>Transport</td>
</tr>
<tr>
<td>Clothing</td>
</tr>
<tr>
<td>Recreation</td>
</tr>
</tbody>
</table>

Similarly, control for geographical region, and urban-rural (different age distributions).
Comments/Suggestions for Empirical Analysis

Sensitivity to Time Period

- Variance profile:

<table>
<thead>
<tr>
<th>CEX</th>
<th>Change in variance between age 25 and 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1990</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>1980-1998</td>
<td>0.08-0.10</td>
</tr>
<tr>
<td>1980-2003</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Web appendix: "housing services" and "entertainment" could be the culprits. The paper could shed light on why we see instability in the variance profile of total consumption in different time periods. Same comment applies to the different results obtained by "cohort effects" versus "time effects" approaches. Similar sensitivity in "mean profiles" of food, transport and clothing. The paper currently does not focus on any of these results. But it could be useful to dig further.

Discussant: Fatih Guvenen
Comments/Suggestions for Empirical Analysis

Sensitivity to Time Period

- Variance profile:

<table>
<thead>
<tr>
<th>CEX</th>
<th>Change in variance between age 25 and 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1990</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>1980-1998</td>
<td>0.08-0.10</td>
</tr>
<tr>
<td>1980-2003</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- Web appendix: “housing services” and “entertainment” could be the culprits. The paper could shed light on why we see instability in the variance profile of total consumption in different time periods.
Comments/Suggestions for Empirical Analysis

Sensitivity to Time Period

- Variance profile:

<table>
<thead>
<tr>
<th>CEX</th>
<th>Change in variance between age 25 and 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1990</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>1980-1998</td>
<td>0.08-0.10</td>
</tr>
<tr>
<td>1980-2003</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- Web appendix: “housing services” and “entertainment” could be the culprits. The paper could shed light on why we see instability in the variance profile of total consumption in different time periods.

- Same comment applies to the different results obtained by "cohort effects" versus "time effects" approaches.
Comments/Suggestions for Empirical Analysis

Sensitivity to Time Period

- Variance profile:

<table>
<thead>
<tr>
<th>CEX</th>
<th>Change in variance between age 25 and 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1990</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>1980-1998</td>
<td>0.08-0.10</td>
</tr>
<tr>
<td>1980-2003</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- Web appendix: “housing services” and “entertainment” could be the culprits. The paper could shed light on why we see instability in the variance profile of total consumption in different time periods.

- Same comment applies to the different results obtained by "cohort effects" versus "time effects" approaches.

- Similar sensitivity in "mean profiles" of food, transport and clothing.
Comments/Suggestions for Empirical Analysis

Sensitivity to Time Period

- Variance profile:

<table>
<thead>
<tr>
<th>CEX</th>
<th>Change in variance between age 25 and 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1990</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>1980-1998</td>
<td>0.08-0.10</td>
</tr>
<tr>
<td>1980-2003</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- Web appendix: “housing services” and “entertainment” could be the culprits. The paper could shed light on why we see instability in the variance profile of total consumption in different time periods.

- Same comment applies to the different results obtained by "cohort effects" versus "time effects" approaches.

- Similar sensitivity in "mean profiles" of food, transport and clothing.

- The paper currently does not focus on any of these results. But it could be useful to dig further.
What to Make of These New Facts?

Mean Profile

Variance Profile

Discussant: Fatih Guvenen

Discussion of "Deconstructing Lifecycle Expenditure Patterns" by Aguiar and Hurst

July 23, 2008
Three Regularities to note from Previous Page

Putting all sub-categories on the same graphs (instead of separately looking at "increasing" and "decreasing categories) reveals more systematic patterns:

1. Mean profiles of different categories:
 a. are all concave
 b. Do not criss-cross each other (ie, a ranked in an orderly fashion)
 c. all look like each other except being rotated around age 25.

2. Sub-categories rank on the mean and variance profiles in exactly opposite order!!

3. Subcategories associated with goods consumed away from home all decline later in life whereas those that capture consumption at home all rise (broader than home production!)

Overall, these are remarkably systematic patterns that seem to point to a general explanation (rather than a different explanation for each category as currently done in paper).
Consumption “Home” versus “Away”

<table>
<thead>
<tr>
<th>Home Consumption:</th>
<th>share</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at home</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic services</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing services</td>
<td>.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Home</td>
<td>.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Away Consumption:</th>
<th>share</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Away</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothing</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Away</td>
<td>.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attempt at a Model: “Standard Framework” with a Twist

\[
\max \sum_{t=1}^{T} \beta^t \frac{C_t^{1-\alpha}}{1-\alpha}
\]

s.t.

\[
C_t + S_{t+1} = (1 + r) S_t + Y_t
\]
Attempt at a Model: “Standard Framework” with a Twist

\[
\max \sum_{t=1}^{T} \beta^{t} \frac{C_{t}^{1-\alpha}}{1-\alpha}
\]

s.t.

\[
C_{t} + S_{t+1} = (1 + r) S_{t} + Y_{t}
\]

where the income process is given by:

\[
\log(Y_{t}) = \log(Y_{t-1}) + \varepsilon_{t}, \quad \varepsilon_{t} \sim iid \ N(0, \sigma_{\varepsilon}^{2}) \quad \text{for} \ t = 1, .., R
\]

\[
Y_{t} \equiv 0 \quad \text{for} \ t = R + 1, .., T
\]
Home Sweet-er Home

- Two types of consumption goods aggregated by:

\[u(C) = \left((\theta H)^\rho + ((1 - \theta) M)^\rho\right)^{\alpha/\rho} \]

where \(H \): good consumed at home; \(M \): good consumed away from home.
Two types of consumption goods aggregated by:

$$u(C) = \left((\theta H)^\rho + ((1 - \theta) M)^\rho\right)^{\alpha/\rho}$$

where H: good consumed at home; M: good consumed away from home.

Budget constraint: $[P_M M_t + P_H H_t] + S_{t+1} = (1 + r) S_t + Y_t$.
Two types of consumption goods aggregated by:

\[u(C) = ((\theta H)^\rho + ((1 - \theta) M)^\rho)^{\alpha/\rho} \]

where \(H \): good consumed at home; \(M \): good consumed away from home.

Budget constraint: \([P_M M_t + P_H H_t] + S_{t+1} = (1 + r) S_t + Y_t.\]

How does \(\theta \) change over the life-cycle?
Two types of consumption goods aggregated by:

\[u(C) = \left((\theta H)^{\rho} + ((1 - \theta) M)^{\rho} \right)^{\alpha/\rho} \]

where \(H \): good consumed at home; \(M \): good consumed away from home.

Budget constraint:

\[[P_M M_t + P_H H_t] + S_{t+1} = (1 + r) S_t + Y_t. \]

How does \(\theta \) change over the life-cycle?

\[\theta^i_t = \theta_0 + \delta^i t \]
Home Sweet-er Home

Discussant: Fatih Guvenen

Discussion of "Deconstructing Lifecycle Expenditures" by Aguiar and Hurst

July 23, 2008

1 - θ: Preference for Away Goods

AGE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

25 30 35 40 45 50 55 60 65

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0
1 - θ: Preference for Away Goods

AGE

Discussant: Fatih Guvenen ()
Discussion of "Deconstructing Lifecycle Expenditures" by Aguiar and Hurst
July 23, 2008 20 / 26
Simple Calibration

- $R = 40$, $T - R = 20$.
- $\sigma_\varepsilon = 0.15$
- $\beta = 0.94$, $r = \frac{1}{0.96} - 1$.
- $\rho = 0.6 \rightarrow Elasticity = 2.5$.
- $\theta_0 = 0.55$, $\theta_{40} = 0.68$ (to match the share of home versus away foods at age 25)
- $\sigma \left(\delta^i \right) = 0.10$
Discussant: Fatih Guvenen

Discussion of "Deconstructing Lifecycle Expenditures" by Aguiar and Hurst

July 23, 2008 23 / 26
Discussant: Fatih Guvenen

Discussion of "Deconstructing Lifecycle Expenditures" by Aguiar and Hurst

July 23, 2008 25 / 26
Conclusions

- Very nice empirical results: paper uncovers systematic patterns in the evolution of heterogeneity.
Conclusions

- Very nice empirical results: paper uncovers **systematic patterns in the evolution of heterogeneity**.
- The systematic behavior of all sub-categories seem to suggest a broader explanation than offered in the paper.

First attempt at a model: increasing preference for goods consumed at home.
This simple modification of the "standard incomplete markets model" seems broadly consistent with trends presented.
Introducing "opportunity cost of time" (via endog. labor supply) into this framework could form the basis of a more compelling explanation.
ATUS data could be used to shed more light on time spent at home versus away.
Conclusions

- Very nice empirical results: paper uncovers *systematic patterns in the evolution of heterogeneity*.
- The systematic behavior of all sub-categories seem to suggest a broader explanation than offered in the paper.
- First attempt at a model: increasing preference for goods consumed at home.
Conclusions

- Very nice empirical results: paper uncovers **systematic patterns in the evolution of heterogeneity**.
- The systematic behavior of all sub-categories seem to suggest a broader explanation than offered in the paper.
- First attempt at a model: increasing preference for goods consumed at home.
- This simple modification of the "standard incomplete markets model" seems broadly consistent with trends presented.
Conclusions

- Very nice empirical results: paper uncovers **systematic patterns in the evolution of heterogeneity**.
- The systematic behavior of all sub-categories seem to suggest a broader explanation than offered in the paper.
- First attempt at a model: increasing preference for goods consumed at home.
- This simple modification of the "standard incomplete markets model" seems broadly consistent with trends presented.
- Introducing "opportunity cost of time" (via endog. labor supply) into this framework could form the basis of a more compelling explanation.
Conclusions

- Very nice empirical results: paper uncovers systematic patterns in the evolution of heterogeneity.
- The systematic behavior of all sub-categories seem to suggest a broader explanation than offered in the paper.
- First attempt at a model: increasing preference for goods consumed at home.
- This simple modification of the "standard incomplete markets model" seems broadly consistent with trends presented.
- Introducing "opportunity cost of time" (via endog. labor supply) into this framework could form the basis of a more compelling explanation.
- ATUS data could be used to shed more light on time spent at home versus away.