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This paper presents a model of dynamic competition between two firms that repeatedly engage
in an innovative activity. The state of competition—measured by the difference between the number of
innovations introduced by the firms—evolves stochastically according to their effort level. The structure
of Markov perfect equilibria is identified. It is generally not true that competition is fiercest when firms are
closest. Rather, firms invest under two distinct circumstances: while sufficiently ahead, to outstrip their
rival and secure a durable leadership; while behind, to regain leadership and prevent the situation from
worsening to the point where their rival outstrips them.

1. INTRODUCTION

In markets where the technological leader earns a substantial premium, competition takes on the
characteristics of an endless race. The purpose of this paper is to explain the dynamics of such a
race. It is important to understand the evolution of competition not only for its own sake, but also
because this evolution is a critical determinant of industry growth and long-term market structure.

Research-intensive industries, such as the pharmaceutical and electronics industries, are
typical examples of oligopolistic markets in which technological competition is characterized
by a series of incremental innovations. The industry leader is selected primarily on the basis
of quality, not price. To become a leader, firms frequently introduce innovations, ranging from
simple improvements and upgrades, to new versions of the product. This innovation process is
risky, costly and gradual, and often favours the leader, because of experience, learning-by-doing,
and users’ feedback, perhaps best exemplified by the practice of beta versions in the software
industry.

Such a market structure cannot be adequately modelled by a repeated game since history
obviously affects market opportunities. More precisely, previous outcomes determine the range
of available actions and pay-offs. Economists have thus resorted to the study of races to
gain insights into the strategic issues raised by such competition. With the notable exceptions
of Aoki (1991), Harris (1991) and Budd, Harris and Vickers(1993), most of the literature
has analysed formal races, displaying exogenous finishing lines or deadlines, as well as final
prizes and rewards, and the corresponding results rely on backward induction. However, such
assumptions do not seem to capture accurately the essential features of many markets. Often,
the rivalry only ends, if at all, when one of the competitors withdraws, so that the deadline
should be endogenized. Moreover, benefits and losses are continuously collected. Additionally,
the emerging empirical literature on races stresses the inadequacy of standard models and the
need to model R&D as a race with multiple prizes. In the words ofCockburn and Henderson
(1994), “Our finding that the modern game theoretic literature is of only limited usefulness as an
empirical guide points to the need (. . . ) to model R&D as a race with multiple prizes.”

The model analysed in this paper is an attempt to offer an adequate framework for this
type of dynamic competition. The stochastic evolution of the state of competition between two
firms depends on their respective effort levels. The state of competition is measured by the
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difference between successful innovations introduced by the firms. A higher effort level, though
more costly, is conducive to innovative success. Success, in turn, makes it more likely that the
state of competition evolves in the direction where the firm exerting high effort is leader and is
rewarded with correspondingly larger revenues.

This model is an extension ofAoki (1991) in several respects. There, two firms of equal
efficiency engage in R&D competition for an infinite number of periods.1 Their R&D technology
is deterministic: a firm either makes a costly effort and advances its state of knowledge by one
step, or it does not and its state does not change. Only the firm at the frontier of knowledge sells
the product and earns a monopoly profit which is independent of the actual level of the frontier.
Firms maximize their expected discounted pay-off, and attention is restricted to equilibria in
symmetric and stationary strategies. If costs are not too high relative to profits, both firms invest
when they are even, and possibly randomize their investment decision when the follower is one
step behind. In any case, the follower does not invest at all when it is two or more steps behind,
and the outcome of the race is predictable—except possibly for the stochastic element introduced
by mixed strategies. The gap between firms never exceeds two steps, and firms never alternate
positions as leaders and followers.

In this paper, the technology is not restricted to being deterministic. That is, an investment
level generates a probability distribution over outcomes. Second, the technology may depend on
the respective positions of the players. Third, players may have different pay-off parameters and
attention is therefore not restricted to symmetric strategies.

However, this model is highly stylized, and is meant to be so. It is as simple as possible given
the main goal of this paper: to show that the strategic nature of the race generates an incentive to
compete vigorously, a factor that is usually ignored by analyses of formal races or of non-strategic
settings. Indeed, one might expect so-called(m, M)-strategies to be optimal, a situation in which
high effort is exerted if and only if the firm’s lead or lag is sufficiently small. This is indeed the
case under circumstances described in what follows, namely when agents are relatively impatient
and the leader enjoys a strong advantage in the innovative activity. This, however, is not true
in general. The standard intuition is incomplete. Effort affects the state transition directly by
improving one’s own speed of innovation, but also indirectly through its effect on the rival’s
incentives to innovate. As a result, equilibrium behaviour is more intricate. To state this point as
clearly as possible, I focus on a very simple pay-off structure, corresponding to what appears to
be the most favourable scenario for equilibria in(m, M)-strategies: the flow pay-off from being
ahead does not depend on the size of the lead, just as the flow pay-off from being behind does
not depend on the size of the lag. Increasing one’s lead of course remains valuable as it affects
the expected duration of the lead. Even in this case, there are typically two distinct circumstances
(or intervals of states) in which a player chooses to exert high effort: while sufficiently ahead,
to finish off his opponent and secure a durable leadership, thereby deterring his opponent from
racing with him; while behind, to try to regain the lead and prevent the situation from worsening
to the point where it is his opponent who tries to finish him off. But in intermediate situations,
as when the lead is moderate, low effort may be optimal, because there is neither immediate
danger of losing the leadership nor a clear prospect of securing it by getting the laggard to
loosen his grip. Thus, it is not necessarily true that competition is fiercest when competitors
are close, as could be suggested by some existing models (seeAghion, Harris and Vickers,
1997). The outcome determined by(m, M)-strategies may be described as leapfrogging, in which
the laggard actively tries to usurp the leader’s position, while more general optimal strategies
generate patterns corresponding to “frontier-hugging”, since the laggard simply tries to close the

1. Aoki also develops two richer variations, but does not characterize their equilibria. The first of these variations
is a particular case of the special case studied inSection3, for which an equilibrium characterization is provided.
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gap between himself and the technological leader. In fact, leapfrogging and frontier-hugging are
the two kinds of catching-up behaviour identified by recent empirical investigations in the high-
end computer industry (seeKhanna, 1995). This paper does not claim, obviously, to identify the
structure of equilibria for general pay-off structures. Naturally, for a more complicated pay-off
structure, one should expect even more intricate equilibrium strategies. Indeed, once the effects
highlighted in this model are understood, it becomes easy to construct pay-off structures in which
there will be four, six or more distinct circumstances in which players exert high effort, based on
the very two motivations identified in this paper.

To gain further understanding, two extreme cases are studied. In the first case, it is assumed
that high effort always results in innovative success, while in the second low effort always results
in failure. These two extreme cases are more tractable versions that exhibit optimal strategies
with a similar, “bimodal” structure and straightforward interpretations. In the second case, a
distinction arises relative to the firms’ behaviour as the lead of one of them is increasing.
When is the leader the first to exert low effort? The answer to this question determines whether
the competition eventually comes to an end, or whether both firms perpetually compete for
leadership, which changes hands over and over.

The next section introduces the model, presents the results in the general case, and examines
two extreme cases.Section3 further discusses the findings and relates them to the existing
literature.Section4 concludes.

2. THE RACE

2.1. The model

There are two players, Player 1 and Player 2. There are two possibleoutcomes, which I denote
as Success (S) and Failure (F). A generic outcome is denotedY. There are twoeffort levels, or
actions, called high (H ) and low (L). A generic effort level is denotedE. A player can be in one
of two positions, either ahead or behind. Time is discrete and indexed byt ∈ N0.

In every period, both players simultaneously choose an action. An outcome results for each
player, whose probability of Success depends only on his current effort choice and on his current
position. In particular, it does not depend on the other player’s action. The probability of Success
of a player who is ahead and who exerts effort levelE is denotedαE. The probability of Success
of a player who is behind and who exerts effort levelE is denotedβE. Hence, for instance,βL

refers to the probability of Success of a player who is behind and exerts low effort. High effort
increases the probability of being successful for any given position:αH > αL , βH > βL . Of
particular interest is the case in which position does not affect the probability of Success. In fact,
all the results that follow hold for the more general case in which a Player is at least as likely
to succeed while ahead as when behind, for a given effort choice:αE = βE, ∀E ∈ {H, L}. All
probabilities belong to the interval(0, 1).

Position is meant to capture relative overall success. To this end, I define thestateof the
game in periodt , for any t ∈ N0, as the difference between the total number of Successes of
Player 2 and those of Player 1, computed from period 0 to periodt − 1, periodt − 1 included.
For t = 0, it is equal to zero. (This assumption is inessential, as attention is restricted to subgame
perfect equilibria.) The state space is thusZ, the set of integers, and overall, Player 2 has more
successes in periodt than does Player 1 if and only if the state is positive. The state in periodt
is denoted bykt . The state determines position. Player 2 is ahead in periodt wheneverkt > 0,
while Player 1 is ahead wheneverkt < 0. Whenkt = 0, Player 1 is ahead or behind with equal
probability. Playeri ∈ {1, 2} is behind if and only if Playerj 6= i is ahead.

In periodt , for anyt > 0, both players observe all outcomes and actions up to and including
periodt − 1. A Markov strategy(or Markov policy) for Playeri = 1, 2 is a mapping fromZ to
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[0, 1], whereτi (k) is the probability of high effort exerted by Playeri at statek ∈ Z. Abusing
notation when actions are pure, letτi (k) = H (resp.τi (k) = L) whenever the probability of
high effort is 1 (resp. 0) at statek under strategyτi . The space of Markov strategies for Player
i is denotedMi . Attention is restricted to Markov strategies, hereafter simply referred to as
strategies. Whenever possible, I writeσi (k) (or σ k

i ) for the probability of Success of Playeri at
statek under strategyτi : for instance, fork > 0, σ2(k) = τ2(k)αH

+ (1 − τ2(k))αL . A pair
of strategiesτ , (τ1, τ2) uniquely mapst ∈ N0 into a probability measureπ τ

t on (Z, 2Z). The
probability of being in statek in periodt , evaluated in period 0, under the strategy profileτ is
denotedπ τ

t (k).
In every period, Playeri obtains a rewardr i (k, E) which depends only on his effort levelE

and position, as implied byk ∈ Z. This reward is assumed to have the following separable form:
it is equal to the difference between therevenue, which depends only on the player’s position,
and thecost, which depends only on his effort level. The revenue of Playeri who is ahead is
denoted byRi > 0, which is larger than the revenue of Playeri who is behind, normalized to
−Ri .2 This encompasses the case where the unnormalized revenue while behind is 0, as assumed
in Aoki (1991), which can be interpreted as selling nothing. Letci > 0 be the cost of exerting
high effort, which is strictly larger than the cost of exerting low effort, hereafter normalized
to 0.

Player i discounts future rewards at rateδi ∈ (0, 1), and maximizes normalized, total
discounted expected rewards, or overallpay-off. Given strategiesτi andτ j , the overall pay-off
to Playeri is denoted byVi (τi , τ j ). Finally, write Vi (τi , τ j ; k) for the normalized, discounted
expected future rewards of Playeri starting at statek ∈ Z given strategiesτi andτ j . In particular,
Vi (τi , τ j ) = Vi (τi , τ j ; 0). When the reference toτ is understood, letVi (k) be the value for Player
i of this pay-off evaluated fromk on.

Playeri ’s objective is thus to maximize:

Vi (τi , τ j ) ≡ (1 − δi )
∑∞

t=0

∑∞

k=−∞
π

τi ,τ j
t (k)δt

i r i (k, τi (k)),

wherer i (k, τi (k)) = τi (k)r i (k, H)+ (1− τi (k))r i (k, L) is the expected reward of Playeri given
statek and Markov strategyτi . A strategy that attains the maximum givenτ j is said to beoptimal
givenτ j . The boundedness of rewards ensures that the objective is well-defined and that optimal
strategies exist.

I focus attention onMarkov perfect equilibria(or MPE), that is, on subgame perfect
equilibria in Markov strategies. The focus on Markov strategies is restrictive. Although this
model does not satisfyDutta’s (1995) sufficient conditions for a folk theorem, it is not difficult
to find parameters for which more collusive outcomes can be supported by non-Markovian
strategies, using reversion to an MPE play as a threat to enforce collusion.

Definition1. A pair of strategiesτ ≡ (τ1, τ2) ∈ M , M1 × M2 is an MPE if for any
Playeri , any statek ∈ Z, and any strategỹτi ∈ Mi ,

Vi (τi , τ j ; k) = Vi (τ̃i , τ j ; k).

Hence, an MPE is simply a pair of strategies such that each strategy is optimal given the
other player’s strategy, starting from any state. Notice, however, that an MPE is also a perfect

2. Indeed, adding or subtracting a constant to the revenue of a player (in every state) does not affect his incentives
and simply shifts his value function. Therefore, if his revenue while ahead isRA

i and his revenue while behind isRB
i ,

then, after subtracting the average(RA
i +RB

i )/2 from both revenues, his revenue as a leader becomesRi = (RA
i −RB

i )/2,

whereas his revenue as a laggard is(RB
i − RA

i )/2 = −Ri .
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equilibrium of the game where arbitrary (non-Markovian) strategies are allowed. Indeed, if a
profitable non-Markovian deviation exists, then, given the Markovian nature of the game and of
the opponent’s strategy, there also exists a profitable Markovian deviation. Ifτ ≡ (τ1, τ2) is an
MPE,Vi (τi , τ j , ·) is called thevalue functionof Playeri . The existence of an MPE follows from
standard results (see, for instance,Federgruen, 1978). A direct proof is given in the Appendix,
showing that, due to discounting, the game is effectively finite, and low effort is a dominant
action for large enough states.

For given Markov strategiesτ1 andτ2, the statek ∈ Z follows a nearest-neighbour random
walk. Suppose, for example, thatkt = k > 0, τ1(k) = E andτ2(k) = E′, with E, E′

∈ {H, L},
thenkt+1 = k + 1 with probability(1 − βE)αE′

, kt+1 = k − 1 with probabilityβE(1 − αE′

),
and kt+1 = k with probability βEαE′

+ (1 − βE)(1 − αE′

). The state moves up one unit
whenever Player 2 is successful while Player 1 is not, moves down one unit whenever Player 1 is
successful while Player 2 is not, and remains unchanged whenever both players are unsuccessful
or successful. The transition probabilities fork obtain similarly fork negative or zero.

The assumption that rewards and transition probabilities depend only on the positions (as
well as, of course, on the effort choices), as opposed to the absolute level of technology achieved,
is very strong. Given the pay-off structure adopted in this paper, it is best to regard the demand
as consisting of two distinct markets, the leader’s market being more lucrative than that of the
laggard; or, the leader having the lion’s share of the market, as in the pharmaceutical industry
(Cockburn and Henderson, 1994), or, more specifically—and fortunately—in the industry of
implantable cardiac pacemakers (Banbury and Mitchell, 1995). Alternatively, one may assume
that the leading product commands a significant mark-up, as is the case in the semiconductor
industry (seeGruber, 1994). Another crucial assumption of the model is that leadership is
conducive to success, in the sense that, for a given effort level, the firm that is ahead is at least
as likely to experience a success as the firm that is behind. Of course, this includes the important
case in which only effort levels, and not positions, influence the transition probabilities. However,
this model extends to situations in which learning-by-doing (seeLerner, 1997), consumer
feedback (as in the software industry or the pacemaker industry, seeBanbury and Mitchell, 1995)
or clinical experience (as in the pharmaceutical industry, seeCockburn and Henderson, 1994)
exceed the spill-over effects that tend to favour the laggard. Observe also that the alternative
assumption that, for a given effort level, the laggard is strictly more likely than the leader
to succeed, implies that, if players do not use strictly dominated strategies, the random walk
followed by the state will be recurrent. In particular, one can then useDutta(1995) to show that
his folk theorem for stochastic games holds.

The assumption that the effort’s outcomes are uncorrelated across firms rules out some
interesting phenomena (seeCabral, 1999 for the analysis of a race where variance and co-
variance are strategic choices). Finally, while, as mentioned, the model encompasses the situation
in which the laggard sells nothing, it would clearly be a desirable extension to allow the laggard
to actually exit, as a third option available to firms. Exiting can be modelled as an effort choice
commanding degenerate transitions. As such, the choice between exiting and competing is a
special case of the current model requiring minor modifications, but the choice of effort for a
firm which chooses to compete is then trivial. The importance of these assumptions is further
assessed in the discussion inSection3.

2.2. The equilibrium analysis

The structure of equilibrium is derived from three observations about optimal strategies. These
observations are stated here from Player 2’s point of view, but analogous statements obviously
hold for Player 1.
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Lemma2 establishes that Player 2’s effort level decreases with his lead whenever the leads
considered exceed the largest state at which Player 1 still finds it optimal to exert effort. Lemma3
states that, if Player 2 exerts high effort at some state within an interval (of either positive or
negative integers) over which his opponent’s effort level does not vary, then Player 2 must either
exert high effort at all larger states within that interval, or at all smaller states. Finally, Lemma4
establishes that the laggard’s effort level increases whenever his lag decreases.

The proofs of Lemmas3 and4 are relegated to the Appendix. Although Lemma2 can be
derived from Lemma3and dominance arguments, its proof is simple and illustrates the role of the
assumption that leadership is conducive to success. The arguments rely on dynamic programming
and use the relationship between the variations of the value function and the incentives to exert
effort. To see this connection, observe first that the value functionV2(·) is bounded below by
−R2 and bounded above byR2. Moreover, these bounds are strict, since transition probabilities
are strictly positive. Since the revenue of Player 2 is increasing in the state, it follows thatV2(·)

is strictly increasing:

Lemma 1. V2 is increasing.

Proof. Consider for instance statesk andk′, wherek > k′ = 0. Instead of following the
optimal strategyτ2, Player 2 can, starting from statek, exert low effort until the state hitsk′ (if
ever), at which point he reverts toτ2. The value atk underτ2 is at least as large as the value
of following this alternative strategy, which yields atk a weighted average ofR2 and ofV2(k′),
which is strictly larger than the latter. A similar argument applies fork < k′ 5 0. ‖

It is standard to show that the value function satisfies the optimality equation. For instance,
whenk > 0 and Player 1’s probability of winning atk given his effort level, is denoted asσ1(k),
the value functionV2 satisfies:

V2(k) = max{V H
2 (k), V L

2 (k)},

where

V H
2 (k) = (1 − δ2)(R2 − c2) + δ2σ1(k)(1 − αH )V2(k − 1) + δ2α

H (1 − σ1(k))V2(k + 1)

+ δ2(α
Hσ1(k) + (1 − αH )(1 − σ1(k)))V2(k), (1)

and

V L
2 (k) = (1 − δ2)R2 + δ2σ1(k)(1 − αL)V2(k − 1) + δ2α

L(1 − σ1(k))V2(k + 1)

+ δ2(α
Lσ1(k) + (1 − αL)(1 − σ1(k)))V2(k). (2)

Thus, it is evident that high effort atk is preferred by Player 2 to low effort atk if and only if:

1 − δ2

δ2

c2

αH − αL
5 σ1(k)4V2(k − 1) + (1 − σ1(k))4V2(k), (3)

where4 f (k) , f (k + 1) − f (k), for any k ∈ Z and any f ∈ RZ. That is, Player 2 exerts
effort if, and only if, the combined loss in the case where he fails and the gain in the case where
he succeeds, exceeds the appropriately normalized and discounted cost of effort. Of course, the
expectation depends on Player 1’s probability of success. If he were to exert a constant effort
level onZ, then one could show that the value functionV2(·) is S-shaped, with Player 2 exerting
high effort exactly in an interval of integers including or immediately next to the origin. However,
Player 1 will typically not choose to remain idle and identifying patterns of behaviour that are
compatible with equation (3) becomes a non-trivial exercise.

Lemma2 determines the shape of the tails of optimal strategies.
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Lemma 2. (1) Supposeτ1(k) = τ1(k + 1) = L and τ2(k) = L, for k > 0. Then
τ2(k + 1) = L.

(2) Supposeτ1(k) = τ1(k + 1) = H andτ2(k) = H, for k + 1 < 0. Thenτ2(k + 1) = H.

Proof. (1) Suppose thatτ1(k) = L. Observe from (2) thatV L
2 (k) is a weighted average

of R, V2(k + 1) and V2(k − 1). Obviously, R is an upper bound onV2(k + 1). Also, since
αL = βL , the weight onV2(k + 1) is larger than the weight onV2(k − 1). Together with
monotonicity, this ensures thatV L

2 (k) is strictly larger than the average(V2(k−1)+V2(k+1))/2.
However,V2(k) = V L

2 (k). This guarantees thatV2 is strictly concave atk wheneverτ1(k) = L.
Under the assumptions of the lemma, Player 1 exerts low effort atk andk + 1, and thusV2 is
strictly concave atk andk + 1. Since low effort is optimal atk, it must be that1−δ2

δ2

c2
αH −αL =

βL
4V2(k − 1) + (1 − βL)4V2(k) > βL

4V2(k) + (1 − βL)4V2(k + 1), where the second
inequality follows from the strict concavity ofV2. This implies that low effort is optimal for
Player 2 atk + 1. The second part of the lemma is proved similarly.‖

Lemma2 gives a primary perspective on the structure of optimal policies. If Player 1 exerts
high effort on some interval of negative integers, then whenever Player 2 exerts high effort at a
state in this interval, he also does at all larger states in this interval. If Player 1 exerts low effort
on some interval of positive integers, then whenever Player 2 exerts low effort at a state in this
interval, he does so as well at any larger state in this interval.

Lemma2 is an instance of a more general phenomenon. Consider an interval of states such
that Player 2’s revenue is constant over this interval, as is his rival’s effort level. Then if Player
2 exerts high effort at some state within this interval, he must be motivated to do so either by
the fear of getting the low continuation value associated with the lower extremity of the interval,
or by the hope of getting the high continuation value associated with the upper extremity of the
interval. It turns out that, in the first case, Player 2 also exerts high effort at lower states within
this interval, while in the second case, he keeps on exerting high effort at larger states within
the interval. This is precisely what the proof of Lemma 3 shows. However, it is sufficient for the
present purposes to restrict attention to positive intervals.

Lemma 3. Suppose that Player1 exerts a constant effort level on some positive interval
I = {m, m+ 1, . . . , n − 1, n}. If there exists k∈ I such thatτ2(k) = L andτ2(k + 1) = H, then
τ2(k′) = H for any k′ > k, k′

∈ I .

Proof. See Appendix. ‖

Thus, either high effort is employed to try to prevent the state from reaching the lower
extremity of the interval, and incentives to do so decrease with the state, or high effort is
employed to try to push the state towards the upper extremity of the interval, and incentives to
do so increase with the state. Observe in particular that this implies (the first part of) Lemma2,
given that high effort is a dominated action for sufficiently large states.

It follows from Lemma3 that an equilibrium involves strategies that specify constant actions
over overlapping intervals on each half-line. However, it does not tell us how many such intervals
may occur. Lemma4 shows that a laggard switches action at one state at most.

Lemma 4. For k < 0, σ2(k) = σ2(k − 1).

Proof. See Appendix. ‖
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FIGURE 1

Structure of equilibria
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FIGURE 2

Equilibrium of Example1
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k < 0 k > 00

FIGURE 3

Absorbing equilibrium of Example2

Lemmas2, 3 and 4 completely identify the structure of the equilibria, as displayed in
Figure1. The optimal strategy of a player is not necessarily unimodal in the state variable: if
Playeri exerts high effort at two different states, he might exert low effort at some intermediate
state, but if so, that intermediate state belongs to a unique interval of integers, contained in the
half-line where Playeri is ahead, and such that Playerj exerts high effort at any state of this
interval. Notice that strict randomization may only occur at the “switching” points, which are the
extremities of the intervals on which monotonicity has been shown. Indeed, suppose that a player
is indifferent between effort levels at a node contained in one of the intervals where his optimal
strategy is monotonic by virtue of Lemmas2, 3 or 4, and suppose that this node is not one of the
extremities of the interval. Then his alternative strategy, obtained by modifying the effort level at
this node in such a way that monotonicity is violated, achieves the same overall pay-off (at any
node), and is thus also optimal, contradicting at least one of the monotonicity results.
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FIGURE 4

Reflecting equilibrium of Example3

To understand why it is sometimes optimal to exert low effort in an intermediate interval
while leading, it is helpful, though by no means necessary, to consider the case in whichδ1, R1
and R2 andβH are large, whileβL , c1, δ2 are not. In this case, Player 1 has strong incentives
to exert high effort while behind, since leadership is valuable and high effort is both cheap and
effective, and Player 1 is sufficiently patient. As a result, Player 1 gives up only for large lags.
SinceR2 is large, Player 2 finds it optimal to exert high effort when his lead is too small. When
his lead approaches the level at which Player 1 gives up, he may also exert high effort since a
short streak of luck would get Player 1 to loosen his grip, thereby leaving a lasting leadership to
Player 2. But for moderate leads, Player 2 might prefer low effort. Indeed, since Player 1 exerts
high effort and does so quite successfully, any attempt by Player 2 to secure his leadership is
bound to take time and money. Since there is no immediate danger of losing leadership either,
it may simply be best to make the most of the high rewards associated with leadership. Such
subtleties do not arise for a player who trails since in his case the rewards he gets from exerting
low effort are hardly a temptation, unless his situation becomes hopeless, for these rewards are a
lower bound on his value function.

While the optimal strategies need not be unimodal in the state, this is the case under stronger
conditions. A strategyτi is a(m, M)-strategy(Rath, 1977) if it specifies effort levels that are uni-
modal in the state, with either−1, 0 or 1 belonging to the mode. Loosely speaking, such a strategy
specifies effort levels that are increasing onZ− and decreasing onZ+ (but the threshold might be
−1 or 1 rather than 0 in specific instances because of the tie-breaking rule at 0). It is called(m, M)

because, whenever such a strategy is pure, it can be characterized by two integers,m 5 1 and
M > −1, withm 5 M , where Playeri switches effort levels: for any integer strictly smaller than
m and for any integer weakly larger thanM , he exerts low effort, and exerts high effort otherwise.
In particular, never exerting effort is a(m, M)-strategy withm = M . When a(m, M)-strategy
specifies mixing, it is equivalent from the point of view of Playeri to a pure strategy having the
features just described. Moreover, it will be seen that mixing may only occur at those switching
points. The concept of a(m, M)-strategy is intuitive, since it specifies that, whenever a player
exerts high effort, he keeps doing so as long as his lead or his lag does not become too large.
This captures the idea that high effort is exerted whenever the “stakes” are high enough. Lemma
4 provides sufficient conditions to guarantee that any MPE is in(m, M)-strategies.

Corollary 1. If δi 5 αL/βH , then every equilibrium is in(m, M)-strategies.

Proof. It is a matter of simple algebra to verify that the L.H.S. of the inequality(∗) in the
Appendix is negative ifδ2 5 αL/βH . Hence, from (strengthening of) Lemma4 (Lemma 4′, in
the Appendix), fork > 0, σ2(k + 1) 5 σ2(k), and fork < 0, σ2(k) = σ2(k − 1). The analogous
results hold for Player 1. ‖
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Hence, any equilibrium is in(m, M)-strategies whenever players are sufficiently impatient,
or whenever being ahead provides better chances of Success no matter the effort levels. If
δi > αL/βH however, equilibria which are not in(m, M)-strategies exist. An example of such
an equilibrium is given in the next section for particularly simple and extreme parameters, but
perfectness and pay-off continuity in the parameters ensures that the features of this equilibrium
hold for the corresponding equilibria with nearby parameters.

There are two extreme cases for which more specific results are available, when only one
action generates noise. While the previous analysis has been derived under the assumption that
both actions were noisy, it is straightforward to adapt the treatment to these extreme cases. When
neither action is noisy, one is back to the model ofAoki (1991). In the first extreme case, high
effort leads to success with probability one (for any state). In the second case, low effort leads to
failure with probability one (for any state). The former may be relevant for applications in which
the technical uncertainty can be insured against (seeFreeman and Soete, 1997, pp. 242–245).
The latter corresponds to situations where it is not possible to experience a success without a
minimal investment (seeKamien and Schwartz, 1982, pp. 54–58).

2.3. It is now or never: high effort leads to success

Assume that high effort ensures success. That is, letαH
= βH

= 1 and writeαL
= α ∈ (0, 1),

βL
= β ∈ (0, 1). Hence Player 2 can prevent the state from dropping below any level he wishes

(provided the state is above that level), while Player 1 can prevent it from rising above any level
he wishes. Such a threshold is called areflectingthreshold and Playeri is said toreflectat k if
his Markovian strategy specifies a reflecting threshold at statek, that is, if his strategy specifies
high effort atk.

It is clear that whenever Player 2 chooses to reflect atk > 0, it cannot be optimal for Player
1 to reflect atk′ > k, since there is no hope for him to ever be ahead, and hence no incentive for
him to exert costly effort. Hence also Player 2 chooses low effort for anyk′ > k, since given his
own reflection atk, he is guaranteed to be ahead forever (it is important here that Player 1 does
not reflect fork′ > k, for otherwise a higher reflecting threshold for Player 2 might be less costly
in the long run given the frequency of visits at that threshold).

Further, suppose again that Player 2 chooses to reflect atk > 1. Then it cannot be that
Player 1 reflects atk, for his overall pay-off evaluated atk would then be−R1 − c1 < −R1
since the state would be trapped atk forever. Given this and given thatk > 1, it must be that
Player 1 reflects atk − 1, since otherwise Player 2 could do better by reflecting atk − 1 (exerting
low effort at higher states) rather than by reflecting atk provided, of course, that reflection at
positive states is worthwhile to begin with. Suppose in addition that−R2 > R2 − c2. Then,
since Player 1 reflects atk − 1, it cannot be optimal for Player 2 to reflect atk − 1 also. Hence,
for −Ri > Ri − ci , if a symmetric equilibrium exists where high effort is exerted at a state
k /∈ {−1, 0, 1}, both players must use strategies that are not unimodal in the state since, letting
k > 1 be a state where Player 2 reflects, it must be thatτ2(k − 1) = L, τ2(k) = H and since the
equilibrium is symmetric,τ2(1 − k) = H . The next example illustrates that such equilibria do
occur and are not pathological, although equilibria with simpler structures may occur.

Example1. α = β = 1/4, δi ' 1, Ri /ci = R/c ∈ [1/6, 2/3].
Consider the following profile of strategiesτ = (τ1, τ2). τ2(−1) = τ2(2) = H , τ2(k) = L

for k /∈ {−1, 2}, τ1(−2) = τ1(1) = H , τ1(k) = L for k /∈ {−2, 1}.
To verify that this profile forms an MPE, let us verify that Player 2 has no profitable

deviations. If Player 2 exerts high effort at 1, the random walk corresponding to the evolution of
the state is eventually absorbed at 1. Since Player 2 is patient, the value (at, say, the origin) of



HÖRNER A PERPETUAL RACE TO STAY AHEAD 1075

such a strategy equalsR − c. If Player 2 exerts no effort at−1, 0 or 1, the state is eventually
trapped below−2, and the value at zero to Player 2 of such an outcome is−R. If Player 2 exerts
high effort at 0 but not at 1, the random walk spends roughly half of its time at 0, and half of its
time at 1, which is worth(R − c)/2. If τ2 is followed instead, the random walk spends 2/3 of its
time at 0, 1/6 at−1 and 1/6 at 1, which yields a pay-off of−c/6. It is easy to check that−c/6
is larger thanR − c, (R − c)/2 and−R sinceR/c ∈ [1/6, 2/3]. Finally, given that whenever
the state is equal to or below−2, the revenue to Player 2 will always be−R whatever his effort
level, it is optimal not to exert high effort at such states. Similarly, whenever the state is strictly
above 2, Player 2 should not exert high effort. Finally, if Player 2 does not exert high effort at
2, given thatα = β, if the state is initially at 2, it will eventually be trapped within{−1, 0, 1}

with probability one, yielding a pay-off of−c/6. If Player 2 exerts high effort at 2 and the state
is initially at 2, the probability that at any future datet the state is at 2 vanishes, and thus high
effort at 2 yields a pay-off ofR, which is larger than−c/6. SeeFigure2.

Suppose now that Player 1 exerts low effort at all states except possibly state−1 and 0.
Clearly then, Player 2 cannot exert high effort at states larger than 2, for if Player 2 wants to exert
high effort at strictly positive states, it is best to exert it only at 1. Further, it can be shown that
the value, evaluated at the origin for instance, of reflection at a statek < −1 is strictly convex in
k (provided of course that Player 2 does not exert high effort forn′ < k). This means that either
reflection is worthwhile and then it should occur “as soon as possible”, or it is not, and Player 2
should not exert high effort at all at negative states. From such considerations follows the next
proposition.

Proposition 1. Suppose thatτ1(k) = L for any k /∈ {−1, 0}. Then I = {k ∈ Z : τ2(k) =

H} is either empty or an interval containing0 whose upper extremity is either0 or 1.

Proof. See Appendix. ‖

It follows by symmetry thatτ2(k) = L for anyk /∈ {0, 1} implies thatτ1(k) = H if and only
if k ∈ I , whereI is either empty or an interval containing 0 whose lower extremity is either 0
or −1. Proposition 1 helps us understand when equilibria are in(m, M)-strategies. Suppose that
Player 1 only exerts high effort, if anywhere, at−1 and 0. Then either Player 2 exerts high effort,
if anywhere, in an interval with upper extremity 0 or 1, or he never exerts high effort. Suppose that
this interval is contained in{0, 1} (which includes the case where high effort is never exerted).
Then Proposition 1 can be applied in turn to Player 1, who accordingly only exerts high effort,
if at all, in an interval containing the origin and whose lower extremity is either 0 or−1. If this
interval is similarly contained in{−1, 0}, then there exists an equilibrium in(m, M)-strategies,
possibly involving mixing, where high effort is exerted at most at−1, 0 or 1. As has just been
seen, this requires however that the intervalI i where Playeri exerts high effort be of small length,
as is the case, for instance, when Playeri is sufficiently impatient. But the intervalI2 is of greater
length, for instance, whenever Player 2 finds it worthwhile, at moderate negative states, to exert
high effort in order to “speed things up”. If indeed Player 2 exerts high effort in a larger interval
I2, Proposition 1 cannot be applied to Player 1 and there is accordingly no reason for Player 1 to
restrict high effort to{−1, 0}. On the contrary, he might exert high effort both at states around 0
to prevent his position from deteriorating, and around the lower extremity ofI2, to preserve his
position at such a state. In such a case, the only MPE might be of the type described in Example1,
where high effort is exerted by each player in two different intervals: when a player is ahead, to
preserve his position, and when he is behind, to prevent his position from worsening.

It appears more important to understand in which cases Player 2 exerts high effort “around”
0 than to identify under which conditions high effort is exerted exactly up to 0 or exactly up to 1,
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a distinction which essentially depends on the tie-breaking rule at 0. The next lemma determines
under which conditions Player 2 chooses to reflect near the origin.

Lemma 5. For a given strategyτ1 satisfying the assumptions of Proposition1, there exists
a threshold T2 such that I 6= ∅ whenever R2/c2 > T2, and I = ∅ whenever R2/c2 < T2. This
threshold increases withβ and decreases withδ2.

Proof. See Appendix. ‖

The decision depends on the ratioR2/c2, that is, on the stakes of being ahead normalized
by the cost of exerting high effort. This ratio is low when effort is costly, or when the premium of
being ahead is small. In this case, reflection is not an attractive policy. The thresholdT2 increases
with the discount factor, since the immediate cost of high effort matters less for patient players.
Finally, this threshold decreases withβ. If β is low, the expected time before the state leaves
the half-line where it sojourns is large, and failing to exert high effort around 0 has long-lasting
consequences in this case.

To summarize, there are two robust features of Player 2’s equilibrium strategy in this
extreme case. As in the general model, if Player 2 exerts high effort at a negative state, he does
so too at all larger negative states. Furthermore, there is at most one strictly positive state at
which he exerts high effort, and Player 1 exerts high effort at all (strictly) smaller strictly positive
states, and low effort at all (weakly) larger states. Hence, the equilibrium need not be in(m, M)-
strategies. When it is, the effort level increases with the discount factor and decreases with the
probability of Success of the laggard in the sense of Lemma4.

2.4. Low effort leads to failure

The other extreme case occurs whenαL
= βL

= 0, whileαH
= α ∈ (0, 1), βH

= β ∈ (0, 1).
In this case, a player who exerts low effort experiences a failure. Hence, for Player 2, low effort
induces an upper reflecting barrier, while it induces a lower reflecting barrier for Player 1. The
interpretation of low effort depends on the situation. If a player exerts low effort while being
behind, he thereby condemns himself to be behind forever. Accordingly, a player who exerts low
effort while being behind is said togive upat that state. A player who exerts low effort while
being ahead simply considers that his lead is so large that it is not worthwhile to keep on building
it up. Hence, a player who exerts low effort while being aheadrelaxesat that state.

What determines the main features of the equilibrium then is what happens “first” as the
lead of one player increases: does the player who is ahead relax before his opponent gives up,
or does the opposite happen instead? There are correspondingly two classes of “symmetric”
equilibria: absorbing equilibria, in which giving up occurs first, andreflecting equilibria, in
which relaxation occurs first. The terminology is motivated as follows. When players give up on
the equilibrium path, the state is eventually absorbed at such a state. When players relax, the state
bounces back and forth between two endpoints, both players switching positions infinitely often.
Of course, “asymmetric” equilibria, where at one end a player relaxes while at the other end he
gives up may also occur.

Notice that whenever a player gives up, his opponent has no further incentives to exert high
effort at that point. If he exerts low effort, the state is bound to remain at that point. But this
means that the player who is ahead remains ahead forever while exerting low effort, an enviable
situation indeed. Thus, in an absorbing equilibrium, the player who is ahead relaxes “as soon as”
his opponent gives up.

The following two examples illustrate this discussion.
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Example2 (Absorbing Equilibrium). (δi = 1/2, α = β = 1/3, Ri /ci = 3).
The following strategies constitute an equilibrium:τi (0) = H , τi (k) = L for k 6= 0, for

i = 1, 2. Player 2 gives up at−1, while Player 1 gives up at 1. Accordingly, Player 2 has no
incentives to exert high effort at statesk = 1, while Player 1 has no incentives to exert high effort
at statesk 5 −1. SeeFigure3.

Example3 (Reflecting Equilibrium). (δi = 1/2, α = β = 1/3, Ri /ci = 4).
The following strategies constitute an equilibrium:τi (0) = H , τ1(1) = τ2(−1) = H ,

τ1(−1) = τ2(1) = L, τi (k) = L for k 6= {−1, 0, 1}, for i = 1, 2. Player 1 relaxes at−1, at
which point Player 2 still exerts high effort, ensuring thereby that the state bounces back to 0.
Similarly, Player 2 relaxes at 1. SeeFigure4.

Notice that the parameters of both examples are almost identical. An absorbing equilibrium
does obtain for lowRi /ci , whereas a reflecting equilibrium does obtain for a larger value of this
ratio.

Let us call an absorbing equilibrium in which Player 2 gives up at state−m2, while Player 1
gives up at statem1, a (m2, m1)-equilibrium. Similarly, a(M1, M2)-equilibrium is a reflecting
equilibrium in which Player 2 relaxes at−M1 while Player 1 relaxes atM2. Who stops exerting
high effort first in equilibrium? The next lemma provides a simple answer to that question.

Lemma 6. Let δ1 = δ2. In a (m2, m1)-equilibrium, m2 = m1 if and only if R2/c2 =
R1/c1. In a (M1, M2)-equilibrium, M2 = M1 if and only if R2/c2 = R1/c1.

Proof. See Appendix. ‖

Hence, in an absorbing equilibrium, a player with a highR/c ratio does not give up quickly.
This is intuitive since a highR/c means that the stakes (of being ahead rather than behind) are
high relative to the cost of staying in the race. Similarly, in a reflecting equilibrium, a player with
a highR/c ratio relaxes late, since high effort is not very costly (as compared with the stakesR),
and thus, relaxing is not very profitable, compared with the perspective of securing position.

Of course, equilibria might be neither reflecting nor absorbing. As an extreme example,
suppose thatc1 is negligible,R1 is not, and Player 2 has a much smaller ratioR2/c2. Player
1 then exerts high effort within a large interval around the origin: relaxing is not profitable for
him, nor is giving up. All Player 1 then cares about is being ahead. In that case, the barriers
determining the equilibrium’s outcome are determined byR2/c2: the state evolves between an
upper barrier where Player 2 relaxes, and a lower, absorbing, barrier, where Player 2 gives up.

To complete the description of equilibrium, it is necessary to understand the structure of
optimal strategies outside of the interval between the largest negative barrier and the lowest
positive one. In the case of absorbing equilibrium, this is fairly easy. Consider an absorbing
barrierm1 > 0, where Player 1 gives up. As a consequence, Player 2 also exerts low effort at that
state. The value function of Player 1 is thus worth−R1 at that state. At larger states, there are
no incentives for Player 1 to exert high effort, for given the optimal actions specified atm1, he is
bound to be behind forever after. Hence also, Player 2 exerts low effort at larger states. Thus, in
the case of an absorbing(m2, m1)-equilibrium, optimal strategies are(m, M), with switching
points given for both players bym2 andm1.

The situation is more complicated in the case of a reflecting(M1, M2)-equilibrium.
Consider positive states. For states large enough, Player 1 exerts low effort. Let the smallest of
these states bem1. Of course, low effort by Player 1 atm1 triggers low effort by Player 2 at that
state, and, by the previous argument, low effort is then exerted by both players at all states larger
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thanm1. Since the equilibrium is reflecting,m1 > M2. In the interval{M2, . . . , m1}, Player 1
exerts high effort, by definition ofm1. Player 2 exerts low effort atM2 (since this is the reflecting
barrier), and low effort atm1. However, Player 1 need not exert low effort at all states in the
interval. Rather, depending on the parameters, he might prefer to exert low effort in an interval
{M2, . . . , T} and high effort in the interval{T + 1, m1 − 1}, whenever these intervals are well
defined, forT ∈ {M2 + 1, . . . , m1 − 1}. The point is thatm1 might be much larger thanM2, so
that for states close toM2, reflection is preferred. For states close tom1 however, the chances of
reaching statem1 are high enough so that Player 2 finds it profitable to exert high effort there. In
this case, once more, optimal strategies are not(m, M). This is likely to happen if the normalized
costc/(αH

−αL) is low, so that it is desirable to exert high effort when one’s rival is on the brink
of giving up. Hence, while absorbing equilibria necessarily specify(m, M)-strategies, there is
a natural sense in which reflecting equilibria correspond to the other kinds of equilibria which
have emerged so far in all the models investigated.

It is desirable to understand what determines whether equilibria are absorbing or reflecting.
The role of heterogeneity in pay-offs having already been addressed, suppose for simplicity that
R1/c1 = R2/c2, δ1 = δ2 = δ, and focus on symmetric equilibria. It can be shown that absorbing
equilibria exist while reflecting equilibria do not when the discount factor is sufficiently low and
I also suspect that they do not exist when the discount factor is sufficiently high. When players
are very impatient, it is trivial that players always exert low effort and thus, that the equilibrium is
absorbing. On the other hand, when players are very patient, they care mainly about the long-run
fraction of time spent on each half-line. Not surprisingly, the band between the lower and the
upper barrier is large whenδ is close to one. Reflection is only profitable at one state, the barrier,
which is obviously visited much fewer times than each half-line. (Of course, a larger value of
α −β, that is, a stronger drift away from the origin makes such visits more frequent. But a larger
drift also makes abandon more attractive, since it makes it harder to come back once behind.)
Finally, there is the issue of multiplicity of equilibria. The proof of the previous lemma shows
that absorbing equilibria are “essentially” unique: uniqueness would result if the barriers were
real variables, so that multiplicity only occurs because of the discrete features of the game. In
fact, it is shown in the Appendix that if Player 2 gives up atm2 < 0 in an absorbing equilibrium,
which implies that Player 1 exerts low effort atm2, it must be that Player 2 would have given
up atm2 even if Player 1 had exerted high effort atm2 and lower states, implying thatm2 is
the maximizer (or the largest of two adjacent maximizers, in rare circumstances) of a simple
quasi-concave programme. To understand why he would have given up atm2 anyway, notice
that, if m2 is the lower barrier of an absorbing equilibrium, it must be that giving up earlier is not
worthwhile, while if giving up later was optimal for Player 2 when Player 1 exerts high effort at
lower states, he would prefer high effort atm2 to his equilibrium choice, since under high effort,
the state would be reflected atm2.

3. RELATED LITERATURE AND DISCUSSION

The early literature on innovative competition either assumed away uncertainty or borrowed the
framework of a formal race. The most notable exceptions areHarris (1991), Buddet al. (1993)
andDutta and Rustichini(1995).

Dutta and Rustichini study a continuous time stochastic game in which agents can make
costly discrete or discontinuous changes in the pay-off-relevant state, whose space is identified
with the real line. If unhindered, the state evolves according to a Brownian motion. Player 1
prefers higher states to lower ones, while Player 2 has the opposite preference. They prove the
existence of MEP which are characterized by two-sided s-S rules. Strategies are completely
determined by four parameters,L, L + θ (for Player 1) andU , U − µ (for Player 2), where
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L 5 L + θ < U andL < U − µ 5 U . If the state is ever at or belowL, Player 1 jumps up to
L + θ , whereas if it ever gets up toU or above, Player 2 jumps down toU − µ. In some of these
equilibria either or both players might be passive. The cartel (cooperative) solution is also s-S,
but the symmetric cartel solution has a wider band than the symmetric Markov equilibrium. The
crucial assumption here is that the cost of these changes does not depend on their size. Players can
change the state by any amount at a fixed cost. Of course, the fear of immediate retaliation forces
them into moderation. The main conceptual difference between the present paper and Dutta and
Rustichini’s lies in the nature of the control exerted by the players. In the former, players can
influencethe evolution of the state,step by step. In the latter, players candictatethis evolution,
imposing arbitrarydiscretechanges upon the state. Which setting is relevant depends, of course,
on the particular application, but the analysis shows that the predictions differ. While simple s-S
strategies are optimal, simple(m, M)-strategies need not be. A continuous version of the model
developed in this paper is available from the author.

An important branch of the literature followedFutia(1980) andReinganum(1985). Futia’s
framework has some similarities with the discrete-time model, but its focus is on explaining some
stylized facts and a comparison is therefore difficult to make. Reinganum’s model shares with the
present one the distinction between leader and follower. There is, however, no measure of the gap
between firms, and the leader cannot build his lead up, and therefore has fewer incentives than
his rival, since protecting his leadership is his sole motivation, while his opponent hopes to gain
the lead. As a consequence, action–reaction equilibrium appears, in which leadership frequently
changes hands.

Much closer are the papers byHarris (1991) andBudd et al. (1993). The first is roughly
an undiscounted version of the second. Competition is modelled as a continuous process, so that
innovative success by the laggard does not catapult him into the technological lead, leapfrogging
the leader, but simply narrows the gap between the two firms before overtaking possibly occurs.
The state is modelled as market share which evolves according to a Brownian motion whose
drift depends on the firms’ effort choices. The state space is identified with the unit interval, and
different boundary conditions are investigated. Given the generality of their model, the authors
resort to asymptotic expansions in the interest rate and in the level of uncertainty as measured by
the diffusion to study how effort varies with the state. The effects underscored by both expansions
are fortunately comparable. Most important is ajoint profit effect. If joint profits from the product
market are higher on average if the gap between firms grows rather than shrinks, then the leader
tends to make greater effort than the laggard.Joint cost effectsare of two kinds. First, there are
profit-incentive cost effects, which occur if, for instance, each firm’s profit function is steeply
sloped at states. Then each firm has a strong incentive to advance ats and exerts high effort at
such a state. The state of competition thus tends away from points where effort levels are high.
Second, there are endpoint effects. Firms in some cases obtain relief from points at or near the
endpoints. Finally, there is an effect only observed in simulations, aself-reinforcing cost effect,
illustrating that the pattern of joint effort costs and the pattern of evolution of industry structure
may interact in a mutually reinforcing manner.

The joint profit effect is by now relatively well understood. It is the driving force of the
traditional patent race analysis, as inFudenberg, Gilbert, Stiglitz and Tirole(1983), Grossman
and Shapiro(1987), Harris and Vickers(1987) orLippman and McCardle(1987). In these papers,
this effect tends to favour increasing dominance, the leader tending to get further and further
ahead. In the present paper, it is difficult to interpret the results as being driven by such an effect.
Indeed, revenues are constant over each half-line, and so are their sums. However, the sum is
larger on the half-line where the player with the largerRi is ahead. When the intensity of effort
can be measured by simple indices like thresholds, as in the extreme cases studied, there is a
natural sense in which the player with the largerRi /ci exerts more effort. This can indeed be
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interpreted as a joint profit effect, where profits need to be normalized by the cost of effort.
The structure of the equilibria can also be interpreted in terms of the joint cost effect. One way
to understand why(m, M)-equilibria need not be optimal is precisely this one. Sometimes, it
is simply too costly to exert high effort when the opponent does, for it may be better to lose
some ground than to remain stuck at a state where the cost of effort is incurred. Rather, players
might prefer to exert high effort just “before” or just “after” their opponent. Efforts are strategic
substitutes in this model: an increase in the rival’s effort level tends to decrease a firm’s own
effort level. Accordingly, strategies are typically not(m, M). Hence, unless the state is expected
to spend only a little time at points where effort levels are high, both players tend not to exert
high effort simultaneously in equilibrium.

The assumptions of the model are rather strong. Instantaneous revenue is constant on each
half-line, probabilities of success given the effort choice are also constant, while the cost of
effort is assumed constant onZ. Some of the assumptions can be relaxed while preserving
some features of the equilibrium as described in this paper. To ensure monotonicity of the value
function, for instance, it is sufficient that instantaneous revenue be increasing onZ, strictly
increasing at some statek ∈ Z, and bounded. Also, the assumption that the cost of effort be
constant on all the integers can be relaxed. If one assumes that the cost is constant on each half-
line, then all the structural results of the paper still hold. The second part of Proposition 2, namely
the monotonicity of Player 2’s optimal effort level in the state remains valid as long as the cost
of effort does not grow too fast (i.e. letting ck

2 denote the cost of effort of Player 2 at statek,

monotonicity obtains onZ− as long asck+1/ck 5 αL (1−βL )

βL (1−αL )
for all k 5 0). Similarly, Lemma2

remains valid as long as the cost does not decrease too fast (i.e. if ck+1/ck = βL (1−αL )

αL (1−βL )
for all

k 5 0).
Other assumptions are harder to relax. However, weaker assumptions are unlikely to yield a

simpler structure of equilibrium. For instance, it would be interesting to understand what happens
when the laggard is more likely to succeed than the leader, for a given effort level. In this case,
besides monotonicity (and the dominance of low effort for states that are either very large or very
small), most of the structural features of equilibrium depend on the parameters. Nevertheless, an
extension of Lemma3 can be used to show that, as long as Player 1’s optimal effort level is
increasing on the negative half-line, Player 2’s optimal effort level is also increasing on this half-
line. This suggests that the optimal policy of the laggard typically exhibits a “nicer” structure
than the leader’s policy.

Another strong assumption of the model is the “bang-bang” structure of the revenue, which
jumps from one extreme to the other as soon as leadership changes hands. How much can this
assumption be relaxed? As mentioned, monotonicity of the rewards is sufficient for monotonicity
of the value function. As can be seen from the proofs of Lemmas2 and 4, as proved in
the Appendix, the differenceRk

2 − Vk
2 (wherek refers to the state) plays an important role.

Specifically, it is important for the results of this paper to be generalized that this difference
be negative fork negative, and positive fork positive. It is easy to provide specific, sufficient
restrictions on the collection{Rk

2}k∈Z for given parametersδ, αH , αL , βH , βL andc. Finally,
the generalization of Lemma3 requires additionally that{Rk

2} be convex onZ− and concave
on Z+. The results extend thus to rewards which are “sufficiently” increasing and “sufficiently”
S-shaped, where “sufficiently” depends on the other parameters of the model.

4. CONCLUSION

This paper is an attempt to unravel some of the features that characterize equilibria in a model of
dynamic competition between two firms. The stochastic evolution of the state of competition
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depends on the respective effort levels of the firms, which try to take the lead in order to
enjoy higher flow pay-offs. Under some assumptions, equilibria involve only simple, intuitive
strategies, where firms only exert high effort when their lead or their lag is small enough, and
choose to exert low effort otherwise. In general however, such a simple pattern does not arise.
Rather, a firm exerts high effort in two distinct situations. When a firm’s lead is sufficiently
large, such an effort level is motivated by the tangible prospects of securing the position, thereby
leaving its rival durably behind, which results in it loosening its grip. When a firm’s lead is very
small, or its lag not too large, high effort helps to defend or regain the higher revenues associated
with leadership and to avoid falling by the wayside. However, in intermediate situations, as when
the lead is moderate, low effort may be the best choice since there is neither an urgent need for an
active defence of the leadership, nor hope to see the laggard quickly let go. Hence, it is generally
not true that the struggle is fiercest when firms are shoulder to shoulder. These effects are even
more pronounced in the case in which high effort guarantees success.

When low effort entails failure, a closely related distinction arises. When a firm’s lead
increases, does this firm stop exerting high effort before or after its rival? If the firm which is
ahead stops first, then leadership bounces back and forth between the firms. If the firm which
is behind stops first, then chance determines which firm eventually becomes the leader forever.
When firms are very patient or very impatient, the latter absorbing equilibrium occurs. In any
case, a firm with a high revenue over cost of effort ratio keeps on exerting high effort longer than
does its rival.

There are many possible extensions to this work. First, this paper assumes that the
heterogeneity among firms is given and common knowledge. It seems interesting to study the
case in which firms’ characteristics are private information. Obviously, issues of reputation
emerge. A firm can try, through its behaviour, to convince its opponent that it is of a type that
it really is not, but that it prefers to be believed to be. Although its opponent is not naive, such
considerations ought to change the conclusions of the model considerably.

It seems also worthwhile to investigate what happens when the state is a measure of a
reputation. Firms which know their type and are matched every period with clients who do not
know their types but prefer to experience a success, and therefore care about the state as it allows
them to make inferences about the firms. This imposes further constraints on equilibrium, for
reputation needs to be valuable. That is, it must be that clients indeed expect the firm which
is ahead to be more likely to be successful than its rival, given both the inferences about types
and about the effort levels exerted under the equilibrium strategies. The model developed in this
paper helps one understand how an asset such as a technological position should be managed. It
remains to be understood how such an asset is valued.

APPENDIX

A.1. Proof of existence of MPE

For N ∈ N, define the truncated (finite state) stochastic game0N as follows. Players are Player 1 and Player 2. The
state space is{−N, −N + 1, . . . , N − 1, N}, the action space for each player is[0, 1] corresponding to the probability
that high effort is exerted, with low effort being exerted with complementary probability, the probability of transition
and rewards at each state except−N and N are as in the game defined in the paper. States−N and N are absorbing.
That is, once the random walk reaches one of these states, it remains in that state forever. Rewards at state−N are R1
(−R2) for Player 1 (2), while rewards at stateN are−R1 and R2 respectively. Total pay-offs to Playeri starting in
statek, given a pair of strategiesτ , are denotedRτ

i,N (k). Existence of MPE (that is, subgame perfect equilibrium in
stationary Markov strategies) in the game0N follows from a standard application of Kakutani’s fixed point theorem
(see Theorem 4.6.4,Filar and Vrieze, 1996, p. 219). For eachN ∈ N, pick an MPEτN = (τ1,N , τ2,N ) of the game

0N . Let N0 ∈ N be such thatN0 > max
{
ln (1−δ1)c1

2R1
/ ln δ1, ln (1−δ2)c2

2R2
/ ln δ2

}
. This ensures that for anyn = N0,

(1 − δ2)(R2 − c2) + δ2R2 < (1 − δn
2)R2 + δn

2(−R2), and(1 − δ1)(−R1 − c1) + δ1(1 − δn−1
1 )(−R1) + δn

1 R1 < R1,



1082 REVIEW OF ECONOMIC STUDIES

that is, that at any statek larger thanN0, it is a dominant action to haveτi (k) = 0 for i = 1, 2. Similarly, low effort
is strictly preferred to high effort by both players at statesk 5 −N0. Consider the sequence of equilibrium action
vectors{{τN (−N0), τN (−N0+1), . . . , τN (N0−1), τN (N0)}, N = N0}. Pick a convergent subsequence (in the product
topology) and defineτ : Z → [0, 1], such thatτ(k) equals its limit fork ∈ {−N0, . . . , N0} and equals 0 otherwise. It
remains to show thatτ constitute an MPE of the game defined in the paper. Obviously,τ are Markov (stationary) strategies
by construction. Ifτ do not constitute an equilibrium, there existsε > 0, a Playeri , a statek ∈ Z and a strategyτ ′

i such

that R
(τ ′

i ,τ j )

i (k) = Rτ
i (k) + ε. Defineτ ′

1,N as the restriction ofτ ′
1 to states{−N, . . . , N}. By continuity, there existsN

large enough,N > k such thatR
(τ ′

i,N ,τ j,N )

i,N (k) = Rτ
i,N (k) + ε/2, a contradiction.

A.2. Proof of Lemma3

The strategy of the proof is as follows. Suppose for the sake of contradiction that there exists a positive interval
I = {m, m + 1, . . . , n − 1, n}, in which Player 1 exerts a constant effort level, and that there existsk ∈ I , k′

∈ I ,
k 5 k′, such that the optimal strategy of Player 2 specifiesτ(k) = L, τ(k + 1) = H , τ(k′) = H , τ(k′

+ 1) = L. Let
β be the probability of success of Player 1 at any state ofI . Let VI = V2(k − 1), WI = V2(k + 2), VI I = V2(k′

− 1),
WI I = V2(k′

+ 2). Since the value function of Player 2 is strictly increasing,VI < WI < VI I < WI I (adapting the
argument for the casek + 2 = k′

− 2 is straightforward). It is easy to determine the average ofV2(k′) andV2(k′
+ 1)

underτ , denotedV , as a function ofR2, c2, VI I , WI I . Similarly, one can determineVH,H (VL ,L ) as the average of the
values atk′ and atk′

+ 1 obtained by exerting high (low) effort at bothk′ andk′
+ 1, holding the values atk′

− 1 and at
k′

+2 fixed atVI I and atWI I . Sinceτ is optimal, it must be thatV = VH,H and thatV = VL ,L . These two inequalities
give an upper and a lower bound ofWI I as a function ofVI I , R2, c2. Because the upper bound must be larger than the
lower bound, this inequality provides in turn an upper bound onVI I as a function ofR2 andc2. Proceeding similarly at
k andk + 1, one obtains a lower bound onWI . Clearly, the upper bound onVI I should be larger than the lower bound
on WI , but this yields the desired contradiction. Details follow. Since the effort level is decreasing atk′, holdingVI I and
WI I , exerting “early effort” (that is,τ(k′) = H , τ(k′

+1) = L) should yield a higher average12(V(k′)+V(k′
+1)) than

exerting “always effort” (that is,τ(k′) = H , τ(k′
+ 1) = H ). Computing the difference of the corresponding average

values gives an expression which is linear inWI I ,

−(αH
− αL )(1 − δ2 + 2δ2αH (1 − β) + δ2β(1 − αH ))

× (δ2
2(1 − αH )(1 − β)β2

+ δ2(1 − δ2)(1 − β)(αH
+ 2β(1 − αH )) + (1 − δ2)2(1 − β)),

which is negative. Accordingly, this necessary condition yields an upper bound toWI I . Similarly, early effort should
give an average value larger than exerting “no effort” (that is,τ(k′) = L , τ (k′

+ 1) = L). Computing the difference of
the corresponding average values gives an expression which is linear inWI I , with the same sign as:

(αH
− αL )(1 − β)2δ2

2αL (1 − δ2(1 − β))(1 − δ2 + 2δ2β(1 − αL ) + δ2αL (1 − β)),

which is positive. We thus obtain a lower bound onWI I . The upper bound being necessarily larger than the lower bound,
the corresponding difference should be positive. This difference is easily seen to be proportional to a term linear inVI I ,
with the same sign as:

−δ2
2(1 − δ2)β(1 − β)(αH

− αL )2
(

(1 − δ2)2 + δ2(1 − δ2)((1 − β)(αL
+ αH ) + β(2 − αL

− αH ))+

δ2
2(β2(1 − αL )(1 − αH ) + αLαH (1 − β)2 + αL (1 − αL )β(1 − β))

)
,

which is negative. We have thus an upper bound onVI I . In fact, we obtain that:

VI I 5 R2 −
(1 − δ2)2 + δ2(1 − δ2)β(2 − αL ) + δ2

2β(β − αL )

δ2β(αH − αL )
, vI I .

Focusing now on statesk, k + 1, it must be the case that exerting “late effort” (that is,τ(k) = L, τ(k + 1) = H )
should yield a higher average12(V(k) + V(k + 1)) than exerting “always effort”. Computing the difference between the
corresponding average values gives an expression which is linear inVI , with the same sign as:

δ2β(αH
− αL )(1 − δ2 + 2δ2αH (1 − β) + δ2β(1 − αH ))

× (δ2
2(1 − αH )(1 − β)2 + δ2(1 − δ2)(1 − β)(1 − αH β + αH (1 − β)) + (1 − δ2)2),

which is always positive, yielding thus a lower bound onVI . Similarly, exerting “late effort” should yield an average value
larger than exerting “no effort” (atk andk + 1). The difference between the values is linear inVI , with the same sign as:

−δ2
2β2(1 − αL )(1 − δ2β)(αH

− αL )((1 − δ2) + 2δ2αL (1 − β) + δ2β(1 − αL )),
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which is negative, yielding thus an upper bound onVI . An upper bound being necessarily larger than a lower bound, it
must be that:

WI = R2 +
1 − δ2 + δ2αL (1 − β) − δ2β(1 − δ2β)

δ2(1 − β)(αH − αL )
, wI .

It is now a matter of simple computations to verify thatwI = vI I , yielding the desired contradiction.

A.3. Proof of Lemma4

We will show the following strengthening of Lemma4, which is the version implying Corollary1. (In addition to proving
that an optimal strategy is non-decreasing onZ−, it also gives sufficient conditions for an optimal strategy to be non-
increasing onZ+.)

Lemma 4′. Suppose that, givenσ1, σ2 is an optimal strategy.

(1) Let k > 0. If V2(k−1) satisfies

σ k+1
1 (1 − δ2σ k+1

1 )

(1 − σ k+1
1 )(1 − δ2σ k

1 +δ2σ k+1
1 )

−
1 − δ2

δ2(1 − σ k+1
1 )

− αL<
R2 − V2(k − 1)

c2/(αH −αL )
, (*)

thenσ2(k + 1) 5 σ2(k). If the strict inequality is reversed, then there exists V> V2(k − 1), such that, provided
V2(k + 2) = V , σ2(k + 1) > σ2(k).

(2) For k < 0, σ2(k) = σ2(k − 1).

Remark. Lemma 4′ shows that(∗) is a sufficient condition for optimal strategiesσ2 to be non-increasing on the
positive integers. It is also necessary to the extent that, if this condition is violated, and ifV = V2(k + 2) is treated as
exogenous, there existsV > V2(k − 1) for which the optimal strategy is non-decreasing on statesk andk + 1. The
corresponding equation for negative states is trivially satisfied, yielding the second conclusion.

Proof. Suppose that the optimal strategy of Player 2 is increasing atk > 0, that is,σ2(k) = L andσ2(k+1) = H .
In what follows, subscripts for Player 2 are dropped when no confusion is possible. Let us writeVE,E′ for the average
of V(k) andV(k + 1) under the strategy consisting of effort levelE atk, andE′ atk + 1 and assigning the same actions
as the optimal strategy does at all other states. The proof consists of comparing the average of the values achieved atk
andk + 1 by the different strategies which assign pure actions at statesk andk + 1, and assign the same actions at all
other states as the strategy assumed to be optimal. Necessary and sufficient conditions will follow (vacuously satisfied for
k < 0). Obviously, the average under the optimal (increasing) strategy should equalVL ,H . Let1E,E′ = VH,H −VE,E′ .
It is tedious but easy to show that1H,H is a linear function ofc, R, Vk−1 andVk+2. Let V = Vk+2 and5 be equal
to R2 − V . That is,5 measures by how much the value atk + 2 differs from the maximal possible value. Let alsoD
be equal toVk+2 − Vk−1, that is, the increase in the value from statek − 1 to statek + 1 under the proposed strategy.
In fact,1E,E′ is a linear function inc, R andD. Since the strategy we consider is optimal, it must be that1E,E′ 5 0
for all E, E′. As a function ofc, it is obvious that1H,H (0) is strictly positive: when effort is not costly, then the best
strategy is evidently always to exert high effort. Ifc increases, low effort becomes more attractive and accordingly, one
would expect that1H,H (c) becomes negative. Indeed, the algebra confirms this intuition, since:

1H,H (c) − 1H,H (0) = −(1 − δ2)(1 − δ2 + 2δ2σ E′

(1 − αH ) + δ2αH (1 − σ E′

))c

×

(
(1 − δ2)2 + δ2(1 − δ2)(σ E(1 − αL ) + σ E′

(1 − αH ) + αH (1 − σ E′
) + αH (1 − σ E))

+ δ2
2(σ E(αH

− αL )(1 − σ E) + σ Eσ E′
(1 − αL )(1 − αH ) + αH (1 − σ E′

)(σ E(1 − αL ) + αL (1 − σ E)))

)
,

whereσ1(k) = σ E andσ1(k + 1) = σ E′
. 1H,H is thus a decreasing (linear) function ofc. Similarly, 1L ,L is a linear

form in R2, V , D andc, and as a function ofc, it is an increasing function, for:

1L ,L (c) − 1L ,L (0) = (1 − δ2)(1 − δ2 + 2δ2αL (1 − σ E) + δ2σ E(1 − αL ))c

×

(
(1 − δ2)2 + δ2(1 − δ2)(σ E(1 − αL ) + σ E′

(1 − αL ) + αL (1 − σ E) + αL (1 − σ E′
))

+ δ2
2(σ Eσ E′

(1 − αL )2 + (αL )2(1 − σ E)(1 − σ E′
) + σ E(1 − αL )((αH

− αL )σ E′
+ αL (1 − σ E′

)))

)
.

Variations with respect toD are intuitively less obvious. It turns out, however, that:

1H,H (D) − 1H,H (0) = δ2σ E(αH
− αL )(1 − δ2 + 2δ2σ E′

(1 − αH ) + δ2αH (1 − σ E′

))

× ((1 − δ2σ E)(1 − δ2 + δ2αH (1 − σ E′

)) + δ2(1 − δ2)σ E′

(1 − αH )) · D,
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and hence1H,H is increasing inD. As for 1L ,L ,

1L ,L (D) − 1L ,L (0) = −δ2
2σ Eσ E′

(αH
− αL )(1 − αL )(1 − δ2σ E′

)

× (1 − δ2 + 2δ2αL (1 − σ E) + δ2σ E(1 − αL )) · D,

which shows that it is a decreasing function inD. An immediate consequence of these monotonicity properties is that
if 1L ,L (D) = 1H,H (D) implies that this value is strictly positive, then for anyD, maxD{1H,H (D), 1L ,L (D)} > 0,
so for the strategy considered to be optimal, this should not be the case. Because1E,E′ is linear in D, 1L ,L (D) =

1H,H (D) > 0 is equivalent to
1H,H (D)

D · 1L ,L (0) >
1L ,L (D)

D · 1H,H (0). Tedious algebra shows that this is true if
and only if:

(1 − δ2)δ2σ E(αH
− αL )(1 − δ2 + 2δ2αL (1 − σ E) + δ2σ E(1 − αL ))(1 − δ2 + 2σ E′

(1 − αH ) + δ2αH (1 − σ E′

))

×

(
(1 − δ2)2 + δ2(1 − δ2)(αH (1 − σ E′

) + αL (1 − σ E) + σ E(1 − αL ) + σ E′
(1 − αH ))

+ δ2
2((1 − αL )(1 − αH )σ Eσ E′

+ αLαH (1 − σ E)(1 − σ E′
) + αH (1 − αL )σ E(1 − σ E′

))

)
× (δ2(αH

− αL )(1 − σ E′

)(1 − δ2σ E
+ δ2σ E′

)5

+ ((1 − δ2σ E)(1 − δ2 + δ2αL (1 − σ E′

)) − δ2
2σ E′

(1 − σ E′

)(1 − αL ))c)

is positive. Noticing that all terms except possibly the last one are positive, this is equivalent to:

δ2
2σ E′

(1 − σ E′
)(1 − αL ) − (1 − δ2σ E)(1 − δ2 + δ2αL (1 − σ E′

))

δ2(αH − αL )(1 − σ E′
)(1 − δ2σ E + δ2σ E′

)
<

5

c
=

R2 − V

c
. (A.1)

That is, if this condition holds, it must be that, for anyD > 0, either1H,H or 1L ,L is strictly positive. This shows that,
under this condition, an optimal strategyσ2 cannot be strictly increasing atk > 0. A similar analysis can be done for
k + 1 < 0. The corresponding condition guaranteeing thatσ2 is non-decreasing at such a state (that is, that it cannot be
thatτ2(k) = H andτ2(k + 1) = L) is then:

−
(1 − δ2)2 + δ2(1 − δ2)(σ E(1 − βL ) + σ E′

) + δ2
2σ E(σ E′

(1 − βL ) − βL (1 − σ E))

δ2σ E(βH − βL )(1 − δ2σ E + δ2σ E′
)

<
R + V

c
, (A.2)

where σ1(k) = σ E and σ1(k + 1) = σ E′
. Since R2 + V > 0, this inequality is trivially satisfied provided

(σ E′
(1 − βL ) − βL (1 − σ E)) = 0, or, rearranging,βL 5 σ E′

/(1 − σ E
+ σ E′

). It is easy to see that this condition is
satisfied as long asβL 5 αL .

Sufficiency: We show that, if the inequality in (A.1) or (A.2) is strictly reversed, there existsV > 0 (or equivalently,
givenV(k−1), D > 0) such that no optimal strategy satisfies the monotonicity holding if (A.1) or (A.2) holds. We prove
the casek < 0 (the proof for the casek > 0 is analogous, step by step). To establish equations (A.1) and (A.2), we
determined under which condition maxD∈R+ {1L ,L , 1H,H } = 0 holds. Given the variations of1L ,L and of1H,H as
a function ofD, this condition holds if it holds at the intersection of these functions. Sufficiency holds if there existsD
such that maxD∈R+ {1L ,L , 1H,H , 1L ,H } is negative whenever equation (A.2) is violated. To do so, we evaluate1L ,H
at the value ofD for which1L ,L = 1H,H and show that1L ,H is negative for thisD whenever1L ,L and1H,H are.
Tedious but straightforward computations yield that, at thisD, 1L ,H equals:

(1 − δ2)

[
(1 − δ2)2 + δ2(1 − δ2)[σ E(1 − βH ) + σ E′

(1 − βL ) + βH (1 − σ E) + βL (1 − σ E′
)]

+ δ2
2[(1 − σ E)(1 − σ E′

)βLβH
+ σ Eσ E′

(1 − βL )(1 − βH ) + σ E(1 − σ E′
)βL (1 − βH )]

]

× T1 ·

[
(δ2σ E(βH

− βL )(1 − δ2σ E
+ δ2σ E′

))(R + V)

+ ((1 − δ2)2 + δ2(1 − δ2)(σ E(1 − βL ) + σ E′
) + δ2

2σ E(σ E′
(1 − βL ) − βL (1 − σ E)))c

]/
T2

where

T1 =

2(1 − δ2)2 + δ2(1 − δ2)[(βL
+ βH )(2(1 − σ E) + 1 − σ E′

) + (2 − βH
− βL )(2σ E′

+ σ E)]

+ δ2
2

[
2((βL )2 + (βH )2)(1 − σ E)(1 − σ E′

) + 2σ Eσ E′
((1 − βH )2 + (1 − βL )2)

+(βH (1 − βH ) + βL (1 − βL ))(4σ E′
(1 − σ E) + σ E(1 − σ E′

))

]
,
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andT2 equals

(1 − δ2)3 + δ2(1 − δ2)2(σ E′

+ 3βH (1 − σ E) + 2σ E(1 − βH ) + βL (1 − σ E))

+ δ2
2(1 − δ2)

[
(σ E(1 − βH ) + βH (1 − σ E))(2σ E′

+ 2βH (1 − σ E) + σ E(1 − βH ))

+βL (1 − σ E)(σ E
+ 2σ E′

(1 − βL ) + βL (1 − σ E′
))

]

+ δ3
2

[
σ Eσ E′

(1 − βH )(2βH (1 − σ E) + σ E(1 − βH ))

+2σ E′
(1 − σ E)βL (1 − βL ) + (1 − σ E)(1 − σ E′

)(βL )2

]
.

Notice that all terms in1L ,H (D) are obviously positive, except possibly the term immediately before the denominator.
But this one is easily seen to be proportional to the term involved in equation (A.2), so that1L ,H (D) is positive if and
only if equation (A.2) is satisfied. ‖

Proof of Proposition1. I show that, provided that Player 1 exerts high effort only at states included in{−1, 0}, it
is optimal for Player 2 to exert only high effort, if any, in an interval with upper extremity contained in{0, 1}.

Let us focus throughout on Player 2. First, it is easy to see that Player 2 does not exert high effort at statesk > 1.
To see this, suppose to the contrary that Player 2’s optimal strategyτ specifies high effort atk > 1 and suppose without
loss of generality that this is the largest suchk. Consider the alternative strategyτ̃ whereτ̃ (k) = L, τ̃ (k − 1) = H and
τ̃ (k′) = τ(k′) for k′ /∈ {k − 1, k}. Notice thatV(k − 1, τ̃ ) = V(k, τ ) > V(k − 1, τ ), yielding the desired contradiction.
Suppose next that it is optimal for Player 2 to exert high effort at statek < −2 (the casek = −2 is trivial) and consider
the largest suchk. That is,τ(k + i ) = L for anyi = 1, . . . ,−2− k, whereτ denote the strategy of Player 2. Let us write
V for V(−1, τ ). Pick some statei = 1, . . . ,−2 − k. It is easy to determineV(i, τ ). Consider the alternative strategy
τ̃ such thatτ̃ (k + 1) = H , τ̃ (k′) = τ(k′) for k′

6= k + 1, and determine similarlyV(i, τ̃ ) fixing V(−1, τ̃ ) at V . The
differenceV(i, τ̃ ) − V(i, τ ) can then be seen to be positive if and only ifMn is positive, whereMn equals:

(1 − x)xny3(1 − δ2)(δ2(1 − α) − x(1 − αδ2))(1 − δ2 + δ2β(1 − α) + δ2α(1 − β)(1 − y))c

− (1 − y)ynx3(1 − δ2)(δ2(1 − α) − y(1 − αδ2))(1 − δ2 + δ2β(1 − α) + δ2α(1 − β)(1 − x))c

− (xy)n(y − x)(1 − α)βδ2(δ2(1 − α) − y(1 − αδ2))(δ2(1 − α) − x(1 − αδ2))(R + V),

wherex andy are the roots ofδ2α(1 − β)x2
− (1 − δ2(αβ + (1 − α)(1 − β)))x + δ2β(1 − α), and 0< x < 1 < y.

It is straightforward to verify that(1 − δ2 + δ2β(1 − α) + δ2α(1 − β)(1 − y)) > 0, (δ2(1 − α) − x(1 − αδ2)) > 0,
and xy < 1. The first summand ofMn is thus positive, the second (including the minus sign) negative and the third
positive. Given that 0< x < xy < 1 < y, it then follows that all three terms are strictly decreasing inn, and thus so
is Mn. By assumption,τ being optimal,Mn 5 0. But thenMn+1 < Mn, and thus, defininĝτ as the strategy such that
τ̂ (k − 1) = H , τ̂ (k) = L andτ̂ (k′) = τ(k′) for k′

6= {k − 1, k} and lettingV(i, τ̂ ) denote its value at statei given that
V(−1, τ̂ ) = V , we have thatV(i, τ ) − V(i, τ̂ ) < 0, contradicting the optimality ofτ . Hence, either high effort is never
exerted, or it is exerted in an interval whose upper extremity is at least−1. Since Player 2 does not exert high effort at
statesk > 1, it remains to show that it cannot be optimal to reflect at−1 while exerting low effort at 0. Three possibilities
arise: either Player 1 exerts high effort at−1, or he exerts high effort only at 0, or he never exerts high effort. If he exerts
high effort at−1, the result is trivial, since Player 2 had better not exert high effort at strictly negative states. If he exerts
high effort only at 0, then the policyτ2 of Player 2 consisting in reflecting at−1 but not at 0, is compared with two
alternative strategies: reflection at 0 (τ0

2 ), or low effort at all states (τ N
2 ). It can immediately be verified thatτ0

2 is better

thanτ2 if R2/c2 is larger than some thresholdT0. Similarly,τ N
2 is better thanτ2 if R2/c2 is smaller than some threshold

T1. Easy algebra shows thatT0 < T1, implying thatτ2 is never optimal. The same procedure is used to prove thatτ2 is
never optimal when Player 1 never exerts high effort, but the algebra being much more difficult, it may be useful for the
courageous reader to realize thatT0 < T1 can be rewritten as:

0 < (2 − α − β)(α + β)(1 − δ2)δ2
2(1 − δ2 + δ2β(1 − α) + δ2α(1 − β) +

√
1)

× (δ2(α − β)2 + (1 − δ2)(α(1 − β) + 3β(1 − α)) + (α − β)
√

1)

×

(
δ2
2(α − β)(2 − α − β) + δ2(1 − δ2)(2 − α − β + 2α(1 − β) + 2β(1 − α))

+ 2(1 − δ2)2 + (2 − δ2(α + β))
√

1

)−1/

 δ3
2(1 − α)(α − β)(2 − α − β)(α + β) + 2δ2(1 − δ2)2(2 − α2

− β2
+ 4β(1 − α) + 2α(1 − β))

+δ2
2(1 − δ2)(2(α − β)2(1 + β) + (1 − α)(α + β)(3(2 − α − β) + 4α(1 − β) + 2β(α − β)))

+ 4(1 − δ2)3 + (4(1 − δ2) + 2δ2(1 − δ2)(2(1 + β) − (α + β)2) + δ2
2(1 − α)(2 − α − β)(α + β))

√
1

 ,

which is always satisfied, as the reader may verify.
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Proof of Lemma5. Given that Player 1 never reflects, Player 2 has several possibilities: either he reflects at−1, or
at 0, or at 1 (in which case he also finds it worthwhile to exert high effort at 0), or he never exerts high effort. Given the
symmetry of the game, if he exerts high effort at no states at all, his overall pay-off (evaluated at state 0) is 0. To see then
when Player 2 chooses to reflect, it is sufficient to study when reflection at the aforementioned states yields a positive
pay-off (when evaluated at state 0). Let1 = (1− δ2 +α(1−β)+β(1−α))2 −4δ2

2αβ(1−α)(1−β), which is positive.
Reflection at 0 gives a positive pay-off if and only if:

R/c =
1 − δ2 − δ2(α − β) +

√
1

δ2(2 − α − β)
, T2.

It is straightforward to verify thatT2 > 0. Next, reflection at 1 yields a positive pay-off whenever:

R/c =
4(1 − δ2)(1 − α) + δ2(2 − α − β)((1 − δ2)(1 − α − β) − (α − β) +

√
1)

2δ2(1 − α)(2 − α − β)
.

Although the R.H.S. term,T3, is positive, it can be smaller or larger thanT2 depending on the parameters. Reflection is
thus preferred to low effort if and only if:

R/c = min{T2, T3}.

Fortunately, it is a matter of algebra to verify thatdT2/dδ2 < 0, dT3/dδ2 < 0, dT2/dβ > 0, dT3/dβ > 0, so that
comparative statics conclusions do not hinge upon the ranking ofT2 andT3. Further, one can check thatdT2/dα and
dT3/dα are positive whenβ = 0, and thatdT2/dα anddT3/dα are negative whenβ approachesα andδ2 approaches 1.

Suppose now that Player 1 reflects at 0. Two possibilities arise. Either Player 2 reflects at 0, or he never reflects.
Algebra yields that reflection at 0 is preferred to low effort whenever:

R/c =
1 − δ2 + 2δ2(1 − α) +

√
1

δ2(2 − α − β)
, S1.

It is readily verified thatS1 > 0. Thus, reflection at some point is preferred by Player 2 to no effort ever if and only
if R/c = S1. It is then immediately verified thatdS1/dδ2 < 0, dS1/dβ > 0, dS1/dα > 0 for β close to 0, and
dS1/dα < 0 whenβ approachesα while δ2 approaches 1. Finally, if Player 1 reflects at−1 and 0, it is straightforward
to show that reflection is preferred by Player 2 to low effort whenever:

R/c = 1 +
1 − δ2

δ2

(
1 −

α+β
2

) ,

threshold that increases withα andβ and decreases withδ2.

Proof of Lemma6. As an example on how to derive the relevant value function, suppose that Player 2 reflects at
statem > 1 and gives up at state−n < 1, while Player 1 does not set up any barrier in the interval{−n, . . . , m}. Let z1
andz2 (0 < z1 < z1z2 < 1 < z2) be the roots ofδ2α(1− β)x2

− (1− δ2 + δ2α(1− β) + δ2β(1− α))x + δ2β(1− α).
In what follows, subscriptsi are dropped when no confusion is possible. The valueV , V2(0) of such a policy solves
the following difference equations along with the relevant boundary conditions:

(1 − δ2 + 2δ2
α+β

2 (1 −
α+β

2 ))V

= (1 − δ2)(−c) + δ2
α+β

2 (1 −
α+β

2 )(R − c + θ1z1 + θ2z2) + δ2
α+β

2 (1 −
α+β

2 )(−R − c + ϕ1z1 + ϕ2z2),

(1 − δ2 + δ2α(1 − β) + δ2β(1 − α))(R − c + θ1z1 + θ2z2)

= (1 − δ2)(R − c) + δ2α(1 − β)(R − c + θ1z2
1 + θ2z2

2) + δ2β(1 − α)V,

(1 − δ2 + δ2α(1 − β) + δ2β(1 − α))(−R − c + ϕ1z1 + ϕ2z2)

= (1 − δ2)(−R − c) + δ2α(1 − β)(−R − c + ϕ1z2
1 + ϕ2z2

2) + δ2β(1 − α)V,

(1 − δ2 + δ2α(1 − β) + δ2β(1 − α))(−R − c + ϕ1zn−1
1 + ϕ2zn−1

2 )

= (1 − δ2)(−R − c) + δ2α(1 − β)(−R) + δ2β(1 − α)(−R − c + ϕ1zn−2
1 + ϕ2zn−2

2 ),

(1 − δ2 + δ2α(1 − β) + δ2β(1 − α))(R − c + θ1zm−1
1 + θ2zm−1

2 )

= (1 − δ2)(R − c) + δ2α(1 − β)Vm + δ2β(1 − α)(R − c + θ1zm−2
1 + θ2zm−2

2 ),

(1 − δ2 + δ2β)Vm = (1 − δ2)R + δ2β(R − c + θ1zm−1
1 + θ2zm−1

2 )

where the unknowns areV , Vm, ϕ1, ϕ2, θ1 and θ2. However, the following changes of variable significantly

reduce the complexity of this system. Letp =
δ2α(1−β)

(1−δ2+δ2α(1−β)+δ2β(1−α))
, q =

δ2β(1−α)
(1−δ2+δ2α(1−β)+δ2β(1−α))

, λ =

δ2(α+β)/2
1−δ2+2(δ2(α+β)/2)(1−(α+β)/2)

andµ =
δ2β

(1−δ2+δ2β)
. Notice thatz1 andz2 solve px2

− x + qx = 0, and that the

system of equations, upon rearranging, reduces to:
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V = −c + λ(θ1z1 + θ2z2 + ϕ1z1 + ϕ2z2),

θ1 + θ2 = V − R + c,

ϕ1 + ϕ2 = V + R + c,

ϕ1zn
1 + ϕ2zn

2 = c,

θ1zn
1 + θ2zn

2 = (1 − µ)c + µ(θ1zn−1
1 + θ2zn−1

2 ),

which can readily be solved. As a first step, it is useful to show that—assuming Player 1 always exerts high effort—the
value of giving up at state−n < 0 is single-peaked inn. It is actually not even necessary to solve for the previous system.
Instead, it is sufficient to consider how the value of giving up (as measured at state−1 as a convention), depends onn,
given that the random walk is absorbed at the origin with pay-off from absorption given by (exogenous)V ∈ (−R, R).
Denote this valueVn. It is straightforward to show thatVn+1 − Vn is of the same sign as:

(z2 − z1)(z1z2)n(R + c + V) − (zn
2(z2 − 1) + zn

1(1 − z1))c,

which is strictly decreasing, so thatVn is single-peaked, and thus, admits at most two adjacent maximizers. From the
previous expression, one can easily show that these maximizers are non-decreasing inV . This makes sense, since a larger
terminating value at the origin makes Player 2 more reluctant to give up. Using exactly the same procedure for reflection
atm and denotingVm the value at state 1 of reflecting atm > 0, given terminating value ofV at state 0, one obtains that
Vm+1 − Vm is of the same sign as:

(z2 − z1)(z2 − µ)(µ − z1)(z1z2)m(R − c − V) − (1 − µ)(z1(z2 − 1)(z2 − µ)zm
2 − z2(1 − z1)(µ − z1)zm

1 )c,

which is possibly first increasing and then decreasing (it is easy to show thatz1 < µ < z2). Hence alsoVm admits at most
two adjacent maximizers, and it can be shown from the previous expression that these maximizers are non-increasing in
V . This also makes sense: if the terminating value is more attractive, it is less costly to reflect earlier. To save on notation,
write K ' f (n) when f (n) = K = f (n + 1), or f (n + 1) = K = f (n). First, suppose that Player 1 gives up at
−n < 0. In any absorbing equilibrium, this implies that Player 1 relaxes at−n. However, given this, Player 2 gives up
at−n only if −n is the smallest maximizer ofVn, the value (at−1) of reflecting at−n. To prove this, it is easy to show
that giving up at−n is preferred (by Player 2) to high effort at that state (the particle being then reflected), if and only
if V 5 −R − c + m1c, wherem1 is some lengthy expression andV is the terminating value at 0,V ∈ (−R, R). Also,
giving up at−n is preferred to reflection at−n − 1 if and only if V 5 −R − c + m2c, for somem2 easy to determine.
If m1 < m2, thenV 5 −R− c+ m1c impliesV < −R− c+ m2c, and since Player 2 by assumption prefers to give up
at−n rather than at 1− n, this would conclude the claim. It is easy to show thatm2 − m1 is of the same sign as:

(1 − δ2 + δ2α(1 − β)(1 − z2) + δ2β(1 − α))zn
1z3

2((1 − α)βδ2(1 − z1) − z1(1 − δ2) − α(1 − β)δ2z1)

− (1 − δ2 + δ2α(1 − β)(1 − z1) + δ2β(1 − α))zn
1z3

2((1 − α)βδ2(1 − z2) − z2(1 − δ2) − α(1 − β)δ2z2).

Algebra shows that the last factors of each summand are negative, while the first are positive. It follows that this

expression is increasing inn, but forn = 1, it reduces to(1−α)2β2δ2
α(1−β)

√
1 > 0, proving that indeedm2 > m1. Consider

a reflecting equilibrium with reflection occurring at−n < −1 and atm > 1. It is straightforward to compute the value
Vm = V2(0) induced by such strategies, where the subscriptm refers to the state at which Player 2 reflects. The threshold
m at which Player 2 reflects must maximize this value given threshold−n. Hence, the thresholdm is the largest integer
such thatVm+1 − Vm is positive. But 0' Vm is equivalent toR2/c2 ' T R

2 , for some positiveT R
2 easily computable.

Let 4i f be the difference operator with respect to variablei . One can show that:

4nT R
2 =

(1 − µ)(z2 − z1)λ[(µ − z1)(1 − z1)(1 − 2z2λ)z2zm
1 − (z2 − µ)(z2 − 1)(1 − 2z1λ)z1zm

2 ]

[(z2 − µ)(1 − 2z1λ)z1zn
2 + (µ − z1)(1 − 2z2λ)z2zn

1][(z2 − µ)(1 − 2z1λ)zn
2 + (µ − z1)(1 − 2z2λ)zn

1]
,

which is negative. Similarly, one obtains:

4mT R
2 =

(1 − µ)(1 − z1)(z2 − 1)

(
zn
2z1(z2 − µ)(zm

2 (z2 − µ)(1 − 2z1λ) + zm
1 (µ − z1)(1 − (z1 + z2)λ))

+zn
1z2(µ − z1)(zm

2 (z2 − µ)(1 − (z1 + z2)λ) + zm
1 (µ − z1)(1 − 2z2λ))

)
(µ − z1)(z2 − µ)(z2 − z1)(z1z2)m[(z2 − µ)(1 − 2z1λ)z1zn

2 + (µ − z1)(1 − 2z2λ)z2zn
1]

,

which is positive. Hence,4nT R
2 < 0 and4mT R

2 > 0. Also, by symmetry,4nT R
1 > 0 and4mT R

1 < 0. Of course,

whenm = n, T R
2 = T R

1 . Hence it must be thatR2/c2 = R1/c1 if and only if m = n. Since4nT R
2 < 0 and4mT R

2 > 0,
multiple reflecting equilibria may exist, since largerm implies largern for both players (in fact, in continuous time, one
can show that there are at most two equilibria). Consider now an absorbing equilibrium with absorption occurring at
−n < −1 and atm > 1. It is straightforward to compute the valueVn = V2(0) induced by such strategies, where the
subscriptn refers to the state at which Player 2 gives up. The threshold−n at which Player 2 gives up must maximize
this value given thresholdm (recall that we have seen that this needs to be true in an absorbing equilibrium). Hence, the
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threshold−n is the smallest integer such thatVn+1 − Vn is positive. But 0' Vn is equivalent toR2/c2 ' T A
2 , for some

positiveT A easily computable. One can show that:

4mT A
2 =

λ(z2 − z1)[zm+n
1 (zm

2 + zn
2)(1 − z1)(1 − 2z2λ) + zm+n

2 (zm
1 + zn

1)(z2 − 1)(1 − 2z1λ)]

(z1z2)n(zm+1
2 (1 − 2z1λ) − zm+1

1 (1 − 2z2λ))(zm
2 (1 − 2z1λ) − zm

1 (1 − 2z2λ))
,

which is positive. Also:

4nT A
2 =

(1 − z1)(z2 − 1)

(
zn+1
2 (zm

2 (1 − 2z1λ) − zm
1 (1 − (z1 + z2)λ))

−zn+1
1 (zm

2 (1 − (z1 + z2)λ) − zm
1 (1 − 2z2λ))

)
(z1z2)n+1(z2 − z1)(zm

2 (1 − 2z1λ) − zm
1 (1 − 2z2λ))

,

which is positive too. However,4nT A
2 > 4mT A

2 > 0, as straightforward computation establishes. Symmetrically then,

0 < 4nT A
1 < 4mT A

1 . SinceT A
1 = T A

2 on the diagonalm = n, this establishes thatR2/c2 = R1/c1 if and only if
n = m. These variations also imply that multiple equilibria may only arise on adjacent states. Finally, it is a matter of
tedious but straightforward computation to extend these results to the boundariesm and/orn ∈ {−1, 0, 1}.
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