Monopoly and the Incentive to Innovate When Adoption Involves Switchover Disruptions

Thomas J. Holmes, David K. Levine, and James A. Schmitz, Jr.*†

October 3, 2008

Abstract

Arrow (1962) argued that since a monopoly restricts output relative to a competitive industry, it would be less willing to pay a fixed cost to adopt a new technology. Arrow’s idea has been challenged and critiques have shown that under different assumptions, increases in competition lead to less innovation. We present a new idea as to why a monopolist would be less innovative. Firms often face major problems in integrating new technologies. In some cases, upon adoption of technology, firms must temporarily produce substantially below pre-adoption levels. We call such problems switchover disruptions. If firms face switchover disruptions, then a cost of adoption is the foregone rents on the sales of those “lost” units, and these opportunity costs are larger the higher the price on those lost units (i.e., the greater is monopoly power). Our idea is a significant contribution since if we add switchover disruptions to standard (Arrow-type) models, then the critiques of Arrow lose their force: competition again leads to greater adoption. In addition, we show that our model helps explain the accumulating evidence that competition leads to greater adoption (whereas the standard Arrow model cannot).

*Holmes: University of Minnesota, Federal Reserve Bank, and the NBER; Levine: Washington University in St. Louis; Schmitz: Federal Reserve Bank of Minneapolis.
†The views expressed herein are solely those of the authors and do not represent the views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. Holmes acknowledges research support from NSF Grant SES-05-51062. Levine acknowledges NSF Grant SES-03-14713. We have benefited from the comments of Erzo Luttmer on an earlier draft.
1 Introduction

Arrow (1962) postulated that a monopolistic industry would be less innovative than a competitive one. His idea was simple: Since a monopoly restricts output relative to a competitive industry, it would be less willing to pay a fixed cost to adopt a new technology (since there would be fewer units over which to “amortize” the fixed cost). In this paper, we present a new idea as to why a monopolist would be less innovative. We start from the fact that firms often face major problems in integrating new technologies. In some cases, upon adoption of technology, firms must temporarily produce substantially below pre-adoption levels. We call such problems switchover disruptions. Our idea is also simple: If firms face switchover disruptions, then a cost of adoption is the foregone rents on the sales of those “lost” units, and these opportunity costs are larger the higher the price on those lost units (i.e., the greater is monopoly power).

Arrow’s idea has been challenged on theoretical grounds. A number of critiques have shown that under different (and, a priori, as reasonable) assumptions, increases in competition lead to less innovation. Our idea is a significant contribution to the literature since we show that if we add switchover disruptions to a standard (Arrow-type) model, then the critiques of Arrow lose their force: competition again leads to greater adoption. In addition, we show that our model helps explain the accumulating evidence that competition leads to greater adoption (whereas the standard Arrow model cannot).

Perhaps the most fundamental critique of Arrow’s idea is that, as a matter of theory, when an industry faces increased competition (say through unilateral tariff reduction), its output may very well fall, and the Arrow logic then implies less innovation (see, e.g., Demsetz (1969) and Yi (1999)). Another famous critique is that of Gilbert and Newbery (1982). They switch some of Arrow’s assumptions (about who can “bid” on new technology) and show a monopolist now has a greater incentive to adopt than an “outside” rival. Other critiques are discussed below. When we add switchover disruptions to a standard (Arrow-type) model, we show that increases in competition lead to increases in adoption even if output of the industry (and individual firms) falls, and even if we use the Gilbert and Newbery formulation.

Our model also explains the evidence that competition spurs adoption and productivity in a way the Arrow model cannot. In particular, in many studies of increased competition,
one finds that establishment output falls significantly with increased competition (as establishment TFP and adoption increases).\(^1\) The Arrow model cannot explain this evidence, of rising adoption and TFP in the face of falling output, and in fact predicts the opposite. But our model provides an explanation. Since increased competition leads to lower prices, the opportunity costs of switchover disruption are reduced. Not only is the model consistent with the facts, but in the industry studies noted above its clear that it was reduction in the opportunity costs associated with switchover disruptions that was the mechanism by which adoption increased. All this evidence is discussed below.

When considering the incentive of a firm to adopt an innovation, Arrow, Gilbert and Newbery, and everyone else, has assumed that it can instantaneously and seamlessly introduce the new technology. Adoption does not work that way, and the assumption that it does is not innocuous. Firms often face major problems in integrating new technologies (i.e. switchover disruptions). We’ll present extensive evidence on such phenomena in the next section.

Following our discussion of switchover disruptions, we present our “baseline” model. The baseline model serves to illustrate the Arrow force for adoption (which we’ll call the Arrow Output Effect) and the new force introduced with this paper, the Switchover Disruption Effect (again, lower prices meaning lower opportunity costs of switchover disruptions). We then introduce extensions to this basic model to address the major critiques of the Arrow idea. These extensions will show that the critiques do eliminate the Arrow Output Effect, yet the Switchover Disruption Effect remains, and increases in competition will increase adoption (if switchover disruptions are large enough).

Let us briefly preview the baseline model. Consider a firm in an industry that has an advantage over rivals. We call this the incumbent firm and it initially has a marginal cost of \(c^o\). There are rival firms each having a marginal cost \(c^o + \tau\), for \(\tau \geq 0\). The parameter \(\tau\) will govern the degree of market power that the incumbent has over its rivals. One interpretation of the parameter is that the incumbent is a domestic firm and the rivals are foreign firms. Foreign firms have the same production cost as the incumbent, but they must incur an

\(^1\)Below we discuss studies of industries facing increased competition (e.g., Schmitz (2005) and Dunne, Klinek, and Schmitz (2008)) and studies of trade liberalization (an early study is Tybout and Westbrook (1995), and there has been an explosion of papers since, many discussed below).
additional cost of τ per unit which could be a tariff or a transportation cost.

There is a new technology with a fixed cost to adopt. If adopted by a firm, its marginal cost begins at \bar{c} and then falls over time to c, where $c < c^\circ$. If costs are immediately lower, that is, $\bar{c} < c^\circ$, then this is the standard case considered in the literature. Our generalization is to allow costs to be initially higher, that is, $\bar{c} > c^\circ$. There are many reasons why costs may be initially higher and we discuss these below. Such phenomenon are often labeled as glitches, bumps in the road, or kinks in the system. To fix ideas, we’ll just say that when $\bar{c} > c^\circ$, there is a *switchover disruption*.

In the baseline model, following Arrow (1962), we assume the incumbent alone has a choice to adopt. If the incumbent adopts, the rivals can be excluded and the rivals’ costs remain at $c^\circ + \tau$. The essence of the Arrow setup is that the incumbent is choosing between having the new technology for itself and no one having it. Finally, we assume demand $Q^D(p)$ is downward sloping.

If switchover disruptions are large, that is, $\bar{c} > c^\circ + \tau$, then, as we show below, if the incumbent adopts, it will decide to initially drop out of the market, thereby losing some sales. Hence, when we reduce the tariff in the baseline model, price falls and there are two forces leading to adoption. First, since output expands, there is the *Arrow Output Effect*. Second, lower prices mean lower opportunity costs on lost sales, the *Switchover Disruption Effect*.

We first extend the model to allow for falling industry output as competition increases (i.e., τ falls). An increase in competition could decrease an industry’s (and individual firm) output for many reasons and we discuss some below. To keep things simple, we extend the model by assuming a reduced form relationship between industry demand and the tariff rate, that is, we’ll assume demand is $Q^D(p, \tau)$. Holding p fixed, quantity demanded falls as tariffs τ fall.\(^2\) Now, as τ falls, output may fall, a force for less innovation. But there is the offsetting force that the opportunity costs from switchover disruptions fall. Now, increases in competition will increase adoption (if switchover disruptions are large enough).

\(^2\) For example, suppose the industry here is an intermediate good industry and sells its output to other domestic manufacturing firms. Now imagine that there is a unilateral tariff reduction across *all* manufacturing industries. The tariff reduction will lead to a price reduction in the intermediate good industry, but some of its local market may simply disappear (i.e. the demand curve shifts in).
The next extension is to allow for the Gilbert and Newbery formulation. Now we assume that both the incumbent and the rivals can “bid” on the new technology. An outsider sells the technology to the highest bidder which could be the incumbent or a rival firm. The essence of the Gilbert and Newbery setup is that the incumbent is choosing between having the new technology for itself and a rival having it. Gilbert and Newbery show that the incumbent always has a greater willingness to pay than the rival, and the incumbent’s willingness to pay increases when market power \(\tau \) is increased. But just as before, there is an offsetting force: as \(\tau \) increases, the opportunity costs from switchover disruption increase. An increase in monopoly now leads to less adoption (again, if switchover disruptions are large enough).

We consider a third major extension of the baseline model next. In the baseline model, if a firm adopts then costs fall over time (independently of output). We extend the model to allow for a firm’s costs to depend on output (as in learning-by-doing). We show that our results continue to hold.

The incentive-to-innovate literature is large and here we’ll only mention a few key papers (some of which review the literature). Reinganum (1983) made important contributions. It has also extended into more traditional oligopoly models. In fact, there are recent papers that exhaustively look at the incentive-to-innovate literature in these models (see, Vives (2008) and Schmutzler (2007) for a synthesis of this literature). But all this literature, as far as we know, has assumed that firms can instantaneously and seamlessly introduce new technologies.\(^3\) Switchover disruptions are not considered.

There is an old saying “if you have a good thing going, don’t rock the boat.” Here, a firm with a lucrative monopoly may decide not to adopt a technology that, in the short-run, disturbs its lucrative position. There is another old saying “if you have nothing to lose, swing for the fences.” There are recent papers that have attempted to capture this idea in models where firm’s R&D investment is a choice of variance in outcomes (see, e.g., Anderson and Cabral (2007)). The point is to show that firms that are far behind may decide to choose high variance R&D programs. Again, switchover disruptions are not considered.

Having switchover disruptions in economic models is by no means new. There is a large

\(^3\)In some papers there is uncertainty regarding how long it may take to develop an innovation. Similarly, there are models where there is uncertainty as to how much better an innovation will be. But once an innovation is developed, it can be seamlessly adopted.
literature where switchover disruptions play an important role, for example, in Jovanovic and Nyarko (1996), Chari and Hopenhayn (1991), Klenow (1998), Parente (1994) and Schivardi and Schneider (2008). A major focus of these papers has been to see how switchover disruption influences investment. In that sense, they are close cousins to this paper. However, they have not considered how switchover disruptions in adopting technology might change the relationship between market power and the incentive to innovate.

2 Motivating Switchover Disruption

We use this section to motivate introducing switchover disruptions into the incentive-to-innovate literature. In particular, this section provides evidence that firms often experience such disruptions when they adopt new technologies. In fact, of course, some new technologies never succeed.

One note before we begin. If new technologies can yield higher costs than old ones, firms would obviously run “pilot” projects to learn if new technologies were better or not. Firms obviously do this. But as argued and seen below, for many technologies testing can only reduce uncertainty a modest amount. Pilot projects can often test only one dimension of the technology in isolation from others. To know if a technology works can only be learned by turning on all the systems at once. And then the system must be run for substantial periods of time before the productivity of the technology is learned. In this paper, we do not delve into why technology has this feature but explore its consequences.4

Let us start by presenting evidence on switchover disruptions faced by three well-known firms. We then turn to more formal studies, looking at switchover costs in manufacturing, supply-chains, and in organizational innovation in general.

2.1 Switchover Costs in Specific Adoption Episodes

When discussing evidence, we think its productive to begin with concrete examples of switchover disruptions. We’ll give three such cases, though a much larger list is easy to

4A related issue is why a firm does not immediately switch back to its old technology if costs initially increase with adoption. Again, it is not possible to do so in many (all?) cases as is also seen below.
compile. The specific episodes are not meant to be a “test” of our model (i.e., one should not be asking whether the firms have lots of, or little, market power), but simply evidence that disruption is important. A more productive way to test the idea is to look at cases where firms faced large changes in market power, and ask how this changed their adoption decisions. (We’ll address this a bit below).

Boeing. For building the 787 Dreamliner, Boeing chose a new technology, one that involved its suppliers assembling more of the parts off-site than usual, and then shipping to Boeing for final assembly. Such a process had been pursued successfully in other manufacturing industries. However, Boeing has faced major problems – switchover disruptions – in implementing the technology. Suppliers have been slow to send assembled parts, spurring Boeing to request suppliers to ship unassembled work to them. But “Boeing has ended up with a pile of parts and wires, and lots of questions about how they all fit together, not unlike a frustrating Christmas morning at home.” With ever growing delays in promised delivery dates, Boeing may lose substantial business to Airbus. Its clear that it is taking Boeing a substantial period of time to learn whether the new system is better than the old.⁵

General Motors. In the 1980s, after suffering large losses in market share to Japanese producers, General Motors (GM) invested heavily in automation and robots in order to stem losses in market share. But when factories reopened with their new automation systems, there were major production problems. Robots often did not run. When they did, they “often began dismembering each other, smashing cars, spraying paint everywhere and even fitting the wrong equipment.” GM found that “technologies that worked well in isolated pilot projects [weren’t] easily coordinated in the real world of high-volume manufacturing.” Many of the factories were able to produce only a small share of their rated capacity for months and months.⁶

United Airlines. When a new Denver airport was built in the mid 1990s, United Airlines and the city decided to install a highly automated baggage handling system. There were major switchover disruptions. The system “immediately became known for its ability to

mangle and misplace a good portion of everything that wandered into its path.” A year after opening, United sued the builder of the system claiming it “performed miserably.” For the first decade of operation, United used only a stripped down version of the system. Finally, United decided to turn the system off in 2005.7

2.2 Switchover Costs in Manufacturing

Steel Manufacturing. Nakamura and Ohashi (2005) examine the experience of Japanese steel manufacturers when they shifted from the open-hearth furnace (OHF) to the basic oxygen furnace (BOF) in the 1950s and 1960s. They found that plants adopting the new technology experienced significant declines in productivity (TFP) at the time of adoption. They estimated a 14% drop in productivity initially, and that it was three years before the BOF-productivity approached the level of the old OHF-productivity.

General Manufacturing. Some researchers have looked at the productivity experience of manufacturing plants after they have undergone a major surge in investment. Using these surges as proxies for adoption of technology, they have found that productivity has initially fallen after adoption. Studies include Huggett and Ospina (2001) who looked at what happened to trend productivity growth after adoption, and Sakellaris (2004) who looked at the impact on levels of productivity.

2.3 Switchover Costs in Supply-Chain Management

Changes in supply-chain systems will almost certainly cause switchover disruptions. There is no way of knowing if a system is better without trying it. Boeing is now in the process of such learning. There is a thriving literature in operations research and management that has studied the consequences of supply chain disruptions, brought on by glitches in moving to new technology and other sources of disruption. The literature has found large losses in productivity and share value as a result of glitches (see, e.g., Hendricks and Singhal (2003,

7United’s lease (in 2002) requires it to pay the city $60 million a year for the automated system (for 25 years). Hence, United must swallow this loss. However, United will reduce its operating costs by returning to manual baggage handling, and expects to save $12 million a year on these costs. For coverage of this story, see “United Abandons Denver Baggage System,” Associated Press, June 7, 2005, and “Denver Airport Saw the Future. It Didn’t Work,” New York Times, August 27, 2005.
2.4 Switchover Costs in Organizational Changes

Organizational changes will almost certainly cause switchover disruptions. A new organizational structure might be better or worse, but there is really no way of knowing without the entire organization trying it. If it is worse, there is no way to switch back to the old organization overnight if at all. We’ll discuss a few areas in which firms attempt to improve their organizations (and lower their production costs).

Work Rule Changes. A subset of organizational innovation involves firms changing work rules of a union. Here it may be clear that a new set of work rules (e.g., more flexible ones) would lead to much lower costs. Yet introducing the changes might lead to a union strike and a considerable period of downtime. Indeed there are many episodes where firms were shut down for long periods before being able to change the work rules, and in some instances, were not able to change them at all.

A Potpourri of Workplace Changes. To finish this section, we’ll simply list some examples of other switchover disruption discussed in the organization literature. Marketing departments have faced disruptions introducing sales force automation technology (see, e.g., Speier and Venkatesh (2002)). Human resource departments have faced disruptions in introducing new workplace compensation schemes (see, e.g., Beer and Cannon (2004)). And, of course, introducing new information technology systems often leads to significant disruptions (see, e.g., Ginzberg (1981)). Lastly, there are obviously switchover disruptions as CEOs are changed.

3 Baseline Model

Consider a homogenous products industry in which production takes place over a unit time interval $t \in [0, 1]$. There is one firm, the incumbent, that initially has a cost advantage over its rivals. Let c^o denote the initial marginal cost of the incumbent. The rival firms (assume there are two or more of them) each have marginal cost equal to $c^o + \tau$, for $\tau \geq 0$. The
parameter τ governs the degree of market power that the incumbent has over the rivals, and it will be the key element in our comparative statics analysis.

One interpretation of the τ parameter is that the incumbent is a domestic firm and the rivals are foreign firms. All firms have the same production cost c^o, but the foreign firms must incur an additional cost of τ per unit which could be a tariff or a transportation cost.

We assume Bertrand competition, that is, that firms compete in price.

3.1 New Technology

At time $t = 0$, a new technology becomes available. If the new technology is adopted at time $t = 0$, then marginal cost at time t equals $c_t = f(t)$. We assume marginal cost falls over time and consider two cases. The first case is where $f(\cdot)$ is a continuous strictly decreasing function, $f'(t) < 0$. Let $\bar{c} = f(0)$ be the high initial cost and $\underline{c} = f(1)$ be the low cost ultimately attained, $\underline{c} < \bar{c}$. For one result, we will also consider a second case where marginal cost takes only two values. It starts at \bar{c} and is initially flat and then at some point discontinuously drops to \underline{c} and is flat thereafter. We call this the two-point case.

We assume that $\underline{c} < c^o$ so that ultimately the new technology is better than the original. The key innovation in our analysis is to allow for the possibility that $\bar{c} > c^o$. When that happens we say there is a switchover disruption at the initial point of adoption. Figure 1 illustrates an example. We can think of there being some prior period $t \in [-1, 0)$ over which cost was constant at c^o. When the new technology is adopted, marginal cost goes up initially, but eventually is lower.

3.2 Demand Structure

The quantity demanded (at each $t \in [0, 1]$) in the industry at price p is $Q^D(p)$. Let the price that maximizes pure-monopoly profit be

$$p^M(c) \equiv \arg \max_p (p - c) Q^D(p). \quad (1)$$
(By “pure,” we mean profit if there were no rivals.) For some results we consider a general demand model, that is, a $Q^D(p)$ that satisfies two assumptions: (1) for any c, the “pure”-monopoly price $p^M(c)$ exists and is unique, and (2) the pure-monopoly price $p^M(c)$ is weakly increasing in cost c.

We will also sometimes assume that

$$\tau < \bar{\tau} \equiv p^M(c^\circ) - c^\circ. \quad (2)$$

This states that at the initial technology c°, the pure-monopoly profit margin exceeds the incumbent’s cost advantage τ. If there was no new technology, then the incumbent would set the limit price, $c^\circ + \tau$, the entire time interval to exactly match the rivals’ cost.

At some points, it will be convenient to assume that demand is weakly inelastic, that is

$$Rev(p) = Q^D(p)p$$

is weakly increasing in p. \(3\)

Note in the case of weakly inelastic demand, $p^M(c) = \infty$. This simplifies the analysis since it will imply limit pricing.\(^8\)

3.3 Who Can Adopt?

The final issue to be determined is: Who gets to adopt the new technology? Our baseline approach follows Arrow (1962). Here the incumbent alone has a choice to adopt. The incumbent can pay a fixed cost $F \geq 0$ to adopt the new technology or pay no fixed cost and use the original technology instead. If the incumbent does adopt, the rivals can be excluded and the rivals’ fixed cost remains at $c^\circ + \tau$. The essence of the Arrow setup is that the incumbent is choosing between having the new technology for itself and no one having it.\(^9\)

\(^8\)Note that the weakly inelastic demand case is a special case of the general demand case under the convention that there is a solution to (1) and it equals $p^M(c) = \infty$.

\(^9\)In many cases, this setup is clearly appropriate. When a firm decides whether to adopt a new supply system, a new human resource system, and so on, it is the only firm that has a say.
4 Monopoly and the Incentive to Innovate

This section provides our baseline analysis of how the incentive to innovate depends upon the monopoly power parameter τ. The analysis highlights two forces for how a decrease in τ increases incentives to innovate. The first is the familiar Arrow Output Effect. The second is the new effect, the Switchover Disruption Effect, that we introduce with this paper.

In this baseline model, recall that only the incumbent has the option to adopt. Consider the incumbent’s decision at $t = 0$ (if it does not adopt at $t = 0$, it would never adopt). If the incumbent does not innovate, then from (2), the equilibrium price from Bertrand competition is the limit price $p^\circ = c^\circ + \tau$. This yields a profit margin of $p^\circ - c^\circ = \tau$ per unit sold. The incumbent’s sales will be $Q^\circ = Q^D(c^\circ + \tau)$ at each instant along the unit time interval and the profit flow $\tau Q^D(c^\circ + \tau)$.

In calculating the present value of profits, it will be convenient in the analysis to integrate over the cost path $c(t)$ rather than over t. For the case where f is continuous and strictly decreasing, let $G(c)$ denote how much time remains when marginal cost equals c, for $c \in [\underline{c}, \bar{c}]$. That is, $G(c)$ is the value of x solving $f(1 - x) = c$. Thus $G(\bar{c}) = 1$ and $G(\underline{c}) = 0$, and $0 < G(c) < 1$ for $\underline{c} < c < \bar{c}$. The c.d.f. over marginal cost during the time interval is $1 - G(\cdot)$ and let $g(c) = -G'(c)$ be the density of marginal cost. Finally, letting ρ be the discount rate, define $h(c)$ as

$$h(c) \equiv e^{-\rho(1 - G(c))} g(c).$$

This will show up in the formulas below as the weight on profits when cost is c. The first term takes into account discounting, since the time is $t = 1 - G(c)$ when cost is c. The second term takes into account the density of c.

The present value of the profit flow $\tau Q^D(c^\circ + \tau)$ then equals (as a function of τ)

$$v^\circ(\tau) = \tau Q^D(c^\circ + \tau) \int_{\underline{c}}^{\bar{c}} h(c) dc.$$ \hspace{1cm} (5)

Next we derive the value when the incumbent adopts. If the incumbent adopts, it obtains

\footnote{As a help to the reader regarding notation, consider the case if there was no discounting. Then since $h(c)$ is the “weight” at each c, the integral of $h(c)$ over costs equals one, that is, $\int_{\underline{c}}^{\bar{c}} h(c) dc = 1$. With discounting, we have that $\int_{\underline{c}}^{\bar{c}} h(c) dc = \int_0^{\infty} e^{-\rho t} dt$.}
a cost path that starts with \bar{c} and monotonically decreases to c. If the initial cost \bar{c} is above $c^o + \tau$, it drops out of the market until its cost falls to the limit price. Beyond this point, the incumbent’s cost c is below $c^o + \tau$, and it sets the limit price $p = c^o + \tau$.\footnote{If the initial cost \bar{c} is below $c^o + \tau$, the incumbent sets the limit price over the entire interval.} The present value to the incumbent from adoption, netting out the fixed cost of adoption F, then equals

$$v(\tau) = Q^D(c^o + \tau) \int_{\bar{c}}^{\min\{\bar{c}, c^o + \tau\}} h(c) [c^o + \tau - c] dc - F. \quad (6)$$

The net return to adoption is the difference between v and v^0,

$$W(\tau) = Q^D(c^o + \tau) \left[\int_{\bar{c}}^{\min\{\bar{c}, c^o + \tau\}} h(c) [c^o + \tau - c] dc - \int_{\bar{c}}^{\bar{c}} h(c) dc \right] - F. \quad (7)$$

Differentiating the net return to adoption with respect to the cost advantage τ yields

$$\frac{dW(\tau)}{d\tau} = \frac{dQ^D}{dp} \left[\int_{\bar{c}}^{\min\{\bar{c}, c^o + \tau\}} h(c) [c^o + \tau - c] dc - \int_{\bar{c}}^{\bar{c}} h(c) dc \right] - Q^D \int_{\bar{c}}^{\min\{\bar{c}, c^o + \tau\}} h(c) dc. \quad (8)$$

The slope is the sum of two terms. The first is the Arrow Output Effect. The second is the Switchover Disruption Effect. We next state Proposition 1 which provides sufficient conditions under which falls in the tariff increase innovation.

Proposition 1. Suppose (A) Demand is weakly inelastic, or (B) Demand is the general demand structure, with (2), and new technology takes the two-type cost distribution, $c(t) \in \{\bar{c}, c\}$, where $\bar{c} \notin [c^o, c^o + \tau]$. Then at a τ where the return to adoption is positive, $W(\tau) > 0$, the slope is weakly negative, $W'(\tau) \leq 0$, and is strictly negative if either (i) $D'(c^o + \tau) < 0$ (strict downward sloping demand) or (ii) $\bar{c} > c^o + \tau$ (significant switchover disruption).

Proof of (A). If $W(\tau) > 0$, since $F \geq 0$, it must be the case that

$$\left[\int_{\bar{c}}^{\min\{\bar{c}, c^o + \tau\}} h(c) [c^o + \tau - c] dc - \int_{\bar{c}}^{\bar{c}} h(c) dc \right] > 0. \quad (9)$$

This says that, on average, profitability per sale increases. Plugging (9) into the slope formula
(8) immediately implies \(W'(\tau) \leq 0 \) and the claims about the strict inequality follow as well.

Proof of (B). See appendix.

Proposition 1 says that if the new technology is worth adopting \((W(\tau) > 0) \), then an increase in \(\tau \) decreases the return to adoption \((W'(\tau) < 0) \). This implies that the return to adoption takes the form of a cutoff rule \(\hat{\tau} \) where the incumbent adopts if \(\tau < \hat{\tau} \) and does not adopt if \(\tau > \hat{\tau} \). (Let \(\hat{\tau} = 0 \) in cases where it never adopts and \(\hat{\tau} = \infty \) in cases where is always adopts). If we think of \(F \) as a random variable with some distribution, then the cutoff \(\hat{\tau} \) will decrease in \(F \). Hence adoption is more likely the lower is \(\tau \).

To get a clearer picture of the first term of \(\frac{dW}{d\tau} \) in (8), the Arrow Output Effect, it is helpful rewrite this term when \(\bar{c} \leq c^\circ + \tau \). In this case, it reduces to

\[
\text{Arrow Output Effect: } \frac{dQ^D}{dp} \int_{\bar{c}}^{\hat{c}} h(c) [c^\circ - c] \, dc, \text{ if } \bar{c} \leq c^\circ + \tau.
\]

It equals the average (marginal) cost reduction from the new technology times the change in market quantity from higher market power. The big idea is that there exist scale economies from adoption. There is one fixed cost and cost savings per unit are applied to multiple production units. The greater the market power through \(\tau \), the lower the production volume, and the fewer units over which to average the expense of the fixed cost. In short, an incumbent with high market power does not sell many units and so is less inclined to pay a given fixed cost to lower marginal coat. This well-known idea from Arrow is also called the replacement effect.

To get a clearer picture of the second term of \(\frac{dW}{d\tau} \) in (8), it is helpful to rewrite this term when \(\bar{c} > c^\circ + \tau \). In this case the term reduces to

\[
\text{Switchover Disruption Effect: } -Q^D \int_{c^\circ+\tau}^{\hat{c}} h(c) \, dc, \text{ if } \bar{c} > c^\circ + \tau \quad (10)
\]

This equals (minus) the present-value-weighted total time of the switchover disruption period times the volume of lost sales. If the monopoly power index \(\tau \) increases by one dollar, this is the additional profit foregone during the switchover disruption. This effect can be seen in Figure 2. In that figure, there are two identical panels, except that the switchover disruption
in the left hand panel is “small” (that is, $c^o + \tau > \bar{c}$) and is “large” in the right hand panel. Assume that there is no discounting. Then the dark shaded area in both panels represents the total profits that are lost as a result of the disruption, and the light shaded area are the profits that are gained when costs fall below original costs. In the left hand panel, increases in τ do not change either shaded area. So the Switchover Disruption terms drops to zero. In the right hand panel, increases in τ increase the size of the dark shaded area. The opportunity cost of the foregone sales during the disruption period is greater, decreasing the incentive to innovate. This is the term (10).

5 First Extension: Declining Output

Arrow’s view that competition leads to greater innovation has been challenged on theoretical grounds. Perhaps the most fundamental critique is that, as a matter of theory, when an industry faces increased competition (say through unilateral tariff reduction), its output may very well fall, and the Arrow logic then implies less innovation. In this section we show that if the baseline model above is extended to allow for decreasing output, then competition still leads to increased innovation (under some conditions, of course).

To begin addressing this issue, consider what happens if demand $Q^D(p)$ is perfectly inelastic so that $dQ^D/dp = 0$. The Arrow output term in the slope (8) reduces to zero. If there is no significant switchover disruption ($\bar{c} \leq c^o + \tau$), the second term is zero as well, so a change in market power τ has no impact on the incentive to innovate. However, if there is significant switchover disruption, $\bar{c} > c^o + \tau$, the second term is strictly negative, and our result that the incentives to innovate decline with τ goes through.\(^{12}\)

A decrease in the monopoly index τ might decrease the incumbent’s output. For example, suppose the industry here is an intermediate good industry in the manufacturing sector. Suppose it sells its output to other domestic manufacturing firms. Now imagine that there is a unilateral tariff reduction across all manufacturing industries. The tariff reduction will lead to a price reduction in the intermediate good industry, but some of its local market may simply disappear. Some of its upstream industries (or firms) may be eliminated by

\(^{12}\)The reader will notice that this situation was covered by Proposition 1.
imports. Then, even as the intermediate industry’s price falls, industry output falls. This was the case in the U.S. iron ore industry in the 1980s. Foreign competition led the domestic industry to significantly reduce its price, yet the sales of the industry also fell significantly (since U.S. steel producers lost sales to foreign steel producers).

We could extend the baseline model along the lines suggested in the paragraph above (distinguishing intermediate manufactures, etc.) But to keep things simple, we’ll assume a reduced form relationship between industry demand and the tariff rate, that is, we’ll assume demand is $Q^D(p, \tau)$. Holding p fixed, quantity demanded falls in τ. Again, one interpretation is that τ is a manufacturing-wide tariff, and its reduction means a smaller market for this intermediate industry.

In terms of the analysis above, in equation (7), we replace $Q^D(c^o + \tau)$ with $Q^D(c^o + \tau, \tau)$. To look at the impact of an increase in τ on the incentive to innovate, we need only replace dQ^D/dp in first term of the slope (8) with $dQ^D/d\tau$, where of course this latter derivative is a “total derivative.” If the total derivative $dQ^D/d\tau < 0$, everything is qualitatively the same. But if $dQ^D/d\tau > 0$, then the sign of the first term in (8) (the Arrow Output effect) flips. If particular, if there is no significant switchover disruption so that $\bar{c} \leq c^o + \tau$, the incentive to innovate $W(\tau)$ strictly increases with the market power parameter τ, as opposed to decreasing. This is the “declining-output” critique. However, if there is significant switchover disruption, there are two offsetting effects. If the output effect from $dQ^D/d\tau$ is not too big, the Switchover Disruption effect will dominate, and an increase in τ will decrease incentives to innovate.

As we mentioned in the introduction, our model helps explain the accumulating evidence that competition leads to productivity increases. Let’s show how here.

The evidence comes primarily from two sources, studies of specific industries that have undergone a dramatic increase in competition, and from unilateral trade liberalizations. The industry studies, and trade liberalization studies, uniformly show that as competition increases, productivity (e.g., TFP) at the establishment level increases.13

13Studies looking at specific industries include xxx. Studies of trade liberalization’s impact on plant productivity have grown significantly in the last decade. The studies, which uniformly find a positive impact on plant productivity, include Amiti and Konings (2007) (Indonesia), Bloom, Draca, and Van Reenen (2008) (OECD), de Loeckner (;) Hay (2001) (Brazil), Fernandes (;) (Columbia), Muendler (2004) (Brazil), Pavcnik (; Chile), Topalova (;) (India), Trefler (;) (Canada), Tybout (;) (Mexico)
What happened to the size of the industry and individual establishments as competition increased (and spurred productivity)? Here, too, the studies speak with one voice: competition reduced industry and establishment size.

Consider first the study of specific industries. When competition hit the U.S. iron ore industry, its output fell in half. It was only after more than a decade that industry output returned to a level close to its pre-competition level. This was also true at the establishment (i.e., mine) level. [to be finished: In cement, xxxx. In U.S. transportation (by water).]

In the studies of (unilateral) trade liberalization’s impact on productivity mentioned above, not all studies looked at the consequences of liberalization on industry (and establishment) size. But among those that did, size falls. [to be finished: (mention: hay, tybout, bloom, treher)]

It is hard to understand these findings in Arrow-type models, the findings that as a plant shrinks from foreign competition its TFP (and technology adoption) increases. Our theory here provides an interpretation of these findings. As competition lowered price in these industries, it reduced the opportunity costs of lost sales if adopters ran into switchover disruptions. Not only is the argument consistent with the facts, but in the industry studies noted above its clear this was the mechanism by which adoption increased.

Consider for example the U.S. iron ore industry. For nearly a century, until the early 1980s, the U.S. and Canadian iron ore industries were the exclusive suppliers to steel plants in the Midwest manufacturing belt (e.g., Chicago and Cleveland). At that time they faced a significant increase in competition in these markets. In response, they adopted a technology that led to a surge in productivity. The technology was a change in organization, in particular, a change in work rules (see, for example, Galdon-Sanchez and Schmitz (2002) and Schmitz (2005)). The firms could have instituted these changes prior to the reduction in market power, but there would have been a switchover disruption, namely, a likely protracted strike by the union. With significant market power, and high iron ore prices, the opportunity costs of lost sales were too high. With the surge in competition, prices and rents fell dramatically. The opportunity costs of a protracted strike were now much lower, and the

\[\text{to be finished} \text{ There is another literature that looks at the impact of trade liberalization on average firm and plant size (but does not focus on productivity). The factual findings from this literature also Head and Reiss, Tybout}\]
firms decided to pursue new work rules. Similar developments occurred in the U.S. cement industry and U.S. transportation industries.

To close this section, let's return to another theoretical critique of the Arrow model, one that is related to the declining-output issue: What happens if the new technology reduces fixed costs, leaving marginal cost alone? Suppose there is a flow fixed cost ϕ that must be paid each instant when output is positive, but not paid at zero output. Suppose initially, the cost is ϕ^o, but if the new technology is adopted the fixed cost goes from $\bar{\phi}$ at the beginning to ϕ^0 in the end. If $\bar{\phi}$ is high enough, the incumbent will shut down initially to avoid paying it. It is straightforward to see how we could redo the analysis of the previous section with this setup. The Arrow Output effect would of course disappear because it depends upon production volume which is irrelevant with a fixed cost. However, the Switchover Disruption term remains, and competition again leads to adoption (if the switchover costs are large enough).

6 The Second Extension: Gilbert and Newbery

A famous critique of Arrow is Gilbert and Newbery's (1982). They change the model setup and allow the rivals to also bid for the new technology. They show the monopolist has the greatest willingness to pay and that it increases in τ. In this section we show that if the baseline model above is extended to allow for the rivals to bid, then competition still leads to increased innovation (under some conditions, of course).

Formally, we assume an outside researcher can sell exclusive rights to use the technology to the incumbent or one of the rivals. If a rival uses the new technology, it still needs to pay the friction τ, in addition to the marginal production cost. Assume that the outside researcher can commit to an auction technology that extracts the full surplus from the bidder.

15 It's also quite possible that the firms thought the possibility of a strike, and its duration if it did happen, had fallen as well. But our model predicts this, too, is a force for technology adoption.

16 [to be finished] One possibility is that as a result of the unilateral tariff reduction, the plant can now purchase a foreign machine that it could not before. But this clearly did not happen in the U.S. iron ore industry, or the U.S. cement industry, or U.S. transportation industry. Purchases of foreign inputs were not the sources of productivity gains. Moreover, in some of the trade liberalization studies above, when the authors considered the impact of lower tariffs on an industry’s product, they were also able to control for ("keep constant") the tariffs that the industry faced on foreign inputs. (see, e.g., Amiti and Konings.)
with the highest willingness to pay. In the analysis, we need to determine: Who has the highest willingness to pay, the incumbent or a rival, and how much is the high bidder willing to pay? We examine how the answers to these questions depend upon τ.

We proceed by first working things out when there is no switchover disruption. We then determine how things change when we put switchover disruption into the model. To highlight the role of switchover disruption, we zero out the Arrow Output effect by assuming demand is *perfectly inelastic* at unit demand, i.e., $Q^D(p) = 1$ for all p.

We begin with some additional notation. As in the previous section, let v denote the present value to the incumbent when it acquires the new technology. Now let u denote the present value to the *incumbent* when a *rival* obtains the new technology. Finally, let r be the present value to a *rival* when it acquires the new technology.

6.1 Adoption with no switchover disruption

Suppose there is no switchover disruption, $\bar{c} \leq c^o$. Define value v^{No_SD} to be the value to the *incumbent* of acquiring the rights to the new technology. This is just the formula (6) in the previous subsection with $Q^D(c^o + \tau) = 1$ and $\min\{\bar{c}, c^o + \tau\} = \bar{c}$. The value u^{No_SD} to the incumbent if the rights are acquired by a rival firm is

$$u^{No_SD} = \int_{\max\{\bar{c}, c^o - \tau\}}^{\max\{\bar{c}, c^o - \tau, \bar{c}\}} h(c) [c + \tau - c^o] dc. \quad (11)$$

By using the max operator in (11) above, we subsume different cases. If $\max\{\bar{c}, c^o - \tau\} = c^o - \tau$ (equivalently $c^o \geq \bar{c} + \tau$), the incumbent is immediately undercut at the point of adoption by a rival and the integral above is 0 (limits of integration are $c^o - \tau$ and $c^o - \tau$). If alternatively $c^o < \bar{c} + \tau$, the incumbent is at least initially the low cost producer, taking into account the friction τ, but it will have to set the price to $c + \tau$ to match the adopting rival.

Finally, the value to a *rival* if the rival acquires the new technology rights is

$$r^{No_SD} = \int_{\min\{\bar{c}, c^o - \tau\}}^{\min\{\bar{c}, c^o - \tau\}} h(c) [c^o - \tau - c] dc,$$
where, again, by using the min operator above we subsume different cases.

The maximum willingness to pay for the rights to the new innovation is

\[
W^{No_{-SD}} = \max\left\{ u^{No_{-SD}} - u^{No_{-SD}}, r^{No_{-SD}} \right\}
= \max\left\{ \int_{\bar{c}}^{\tilde{c}} h(c) [c^o + \tau - c] \, dc - \int_{\max\{\bar{c}, e^o - \tau\}}^{\max\{\bar{e}, e^o - \tau\}} h(c) [c + \tau - c^o] \, dc,
\right.
\left. \int_{\min\{\bar{e}, e^o - \tau\}}^{\min\{\bar{c}, e^o - \tau\}} h(c) [e^o - \tau - c] \, dc \right\}.
\]

The first term in the maximization is the willingness to pay by the incumbent, the difference in return between having the production rights and a rival having them. The second term is the return to a rival owning the rights (a rival without rights gets profit equal to zero.)

Observe that at \(\tau = 0 \), the willingness to pay by the incumbent and a rival is the same and equal to

\[
W^{No_{-SD}} = \int_{\bar{c}}^{\tilde{c}} h(c) [c^o - c] \, dc, \text{ when } \tau = 0,
\]

the present value of the cost reduction. This expression follows from the fact that, with no switchover disruption, \(\max\{\bar{c}, e^o - \tau\} = \max\{c^o - \tau, \bar{c}\} = c^o \) (when \(\tau = 0 \)), and \(\min\{\bar{c}, e^o - \tau\} = \bar{c} \text{ and } \min\{\bar{e}, e^o - \tau\} = \bar{e} \). Next observe that the willingness to pay \(r^{No_{-SD}} \) of the rival strictly decreases in \(\tau \). Finally, we differentiate \(u^{No_{-SD}} - u^{No_{-SD}} \). Let us first note that

\[
\frac{dv^{No_{-SD}}}{d\tau} = \int_{\bar{c}}^{\tilde{c}} h(c)dc.
\]

The derivative \(du^{No_{-SD}}/d\tau \) is the sum of the following three terms,

\[
-\frac{d}{d\tau} \max\{c^o - \tau, \bar{c}\} h(\max\{c^o - \tau, \bar{c}\}) [\max\{c^o - \tau, \bar{c}\} + \tau - c^o],
\]

and

\[
\frac{d}{d\tau} \max\{\bar{c}, c^o - \tau\} h(\max\{\bar{c}, c^o - \tau\}) [\max\{\bar{c}, c^o - \tau\} + \tau - c^o],
\]

and finally

\[
\int_{\max\{e^o - \tau, \bar{e}\}}^{\max\{e^o - \tau\}} h(c) dc.
\]

The first two terms are zero (in each term, either the derivatives are zero, or if not, the rest
of the expression is zero). Hence,

\[\frac{d u^{No_SD}}{d\tau} = \int_{\max\{c^o-\tau, \bar{c}\}}^{\max\{\bar{c}, c^o-\tau\}} h(c) dc \]

and hence

\[\frac{d v^{No_SD}}{d\tau} - \frac{d u^{No_SD}}{d\tau} = \int_{\bar{c}}^{\bar{c}} h(c) dc - \int_{\max\{c^o-\tau, \bar{c}\}}^{\max\{\bar{c}, c^o-\tau\}} h(c) dc. \]

This last derivative is strictly positive if \(\tau < c^o - \bar{c} \) and zero for \(\tau \geq c^o - \bar{c} \). Hence for \(\tau > 0 \), the willingness to pay by the incumbent strictly exceeds that of the rival, and the willingness strictly increases in \(\tau \) up to the threshold. In summary, we have proved:

Proposition 2. Assume the Gilbert and Newbery setup applies, that demand is perfectly inelastic, and that there is no switchover disruption (\(\bar{c} \leq c^o \)).

(i) If \(\tau > 0 \), the incumbent has a higher willingness to pay for the new innovation and so will outbid the rival so \(W^{No_SD} = v^{No_SD} - u^{No_SD} \).

(ii) \(W^{No_SD}(\tau) \) strictly increases in \(\tau \) for \(\tau < c^o - \bar{c} \) and is constant above this point.

Part (i) of the proposition is a variant of Gilbert and Newbery’s famous result that innovation is worth more to the incumbent than to a new entrant and so the incumbent will preemptively patent before a rival. The incumbent will take into account that if it does not preemptively innovate and the entrant adopts instead, the incumbent will lose its monopoly rent. In contrast, the rivals have no rent to forego if they don’t innovate.

Part (ii) of the result is really an elaboration on part (i). The larger is \(\tau \) the larger is the incentive of the incumbent to hold onto its monopoly rents and so the more the incumbent is willing pay for the innovation. This remains true until \(\tau > c^o - \bar{c} \). When the friction is bigger than this threshold, a rival cannot displace the incumbent even when its costs have fallen to \(\bar{c} \). So the incumbent will enjoy the full value of the friction \(\tau \) whether or not the incumbent or a rival have the new technology, meaning changes in \(\tau \) don’t impact willingness to pay. Part (ii) of Proposition flips the Arrow result because if there is a given underlying cost \(F \) to create the innovation, the higher is the monopoly index \(\tau \), the more likely it is that the underlying willingness to pay exceeds the innovation’s cost.
6.2 Adoption with switchover disruption

The intuition embodied in Proposition 2 for how monopoly can raise the incentive to pay for innovation is well understood. The key point we want to make here is that this result depends heavily on the assumption that there are no switchover disruptions. We will show that the presence of switchover disruptions can overturn the results in Proposition 2. Note that in introducing switchover disruption, we must now allow the possibility that the incumbent might buy the technology and leave it idle. (With no switchover disruption, \(\bar{c} \leq c^o \), the incumbent would always use the new technology it it owned the rights.)

The statement of our result will require two additional pieces of notation. Let

\[
H^{\text{disrupt}} \equiv \int_{c^o}^{\bar{c}} h(c) \, dc \\
H^{\text{beyond}} \equiv \int_{\bar{c}}^{c^o} h(c) \, dc.
\]

Here \(H^{\text{disrupt}} \) is the (weighted) duration of the switchover disruption, where the weight depends upon the cost density and the discount factor, and \(H^{\text{beyond}} \) is the (weighted) duration “beyond the disruption,” when cost is lower than its initial value \(c^o \).

We start by determining what happens when the degree of market power \(\tau \) is small.

Proposition 3. Assume the Gilbert and Newbery setup applies, that demand is perfectly inelastic, and that there is a period of switchover disruption \((\bar{c} > c^o) \). Suppose that \(\tau \) is small.

(i) If \(H^{\text{disrupt}} < H^{\text{beyond}} \), then the incumbent obtains the innovation and \(W^{SD} \) strictly increases in \(\tau \).

(ii) If \(H^{\text{disrupt}} \in (H^{\text{beyond}}, 2H^{\text{beyond}}) \), then the incumbent still obtains the innovation, but \(W^{SD} \) strictly decreases in \(\tau \).

(iii) If \(H^{\text{disrupt}} > 2H^{\text{beyond}} \), then a rival obtains the innovation and \(W^{SD} \) strictly decreases in \(\tau \).

Proof. Suppose \(\bar{c} > c^o \) and \(\tau \in (0, c^o - \bar{c}) \). To do the analysis, we need to derive four different returns.

First Return: \(v^{SD} \)
This is the return to the incumbent from adopting the technology,

\[v^{SD} = \int_{\cdot}^{\min\{c^o + \tau, \bar{c}\}} h(c) [c^o + \tau - c] \, dc \]

(12)

where if \(\min\{c^o + \tau, \bar{c}\} = \bar{c} \), the incumbent is always the low cost producer.

Second Return: \(i^{SD} \)

This is the return if the incumbent acquires the rights to the new technology but leaves it idle. Hence no rival adopts. We ignored this possibility in the non-disruption case because it was irrelevant there. But it can be relevant here. The return is

\[i^{SD} = \int_{\cdot}^{\bar{c}} h(c)\tau \, dc \]

since the markup is \(\tau \), and demand is unity.

Third Return: \(u^{SD} \)

This is the return to the incumbent of not acquiring the technology (so that it ends up in the hands of a rival),

\[u^{SD} = \int_{c^o}^{\bar{c}} h(c)\tau \, dc + \int_{c^o - \tau}^{c^o} h(c) [c + \tau - c^o] \, dc. \]

(13)

The first term is the return over the disruption interval, that is, the time before the adopting rival’s cost (not including the friction \(\tau \)) has fallen to \(c^o \), that is, the interval \([c^o, \bar{c}]\). The adopting rival begins with total cost \(\bar{c} + \tau \) (which satisfies \(\bar{c} + \tau > c^o + \tau > c^o \)), but since there are other rivals (we assumed multiple rivals) with cost \(c^o + \tau \), the incumbent’s limit price is \(c^o + \tau \), and its markup \(\tau \). The second term is the return after the disruption interval. In this period, the adopting rival has a cost \(c + \tau < c^o + \tau \). For the first part of this period, the incumbent’s cost \(c^o \) remains lower than \(c + \tau \), during which period the equilibrium price is \(c + \tau \). Eventually, since \(\bar{c} < c^o \) and since \(\tau < c^o - \bar{c} \) by assumption (since \(\tau \) is assumed “small”), a point is reached (i.e., \(c + \tau = c^o \)) where the rival that adopts is the lowest cost producer (including the friction \(\tau \)) and the incumbent’s profit is zero from that point on.

Fourth Return: \(r^{SD} \)
The return to a rival of adopting the technology is

\[r^{SD} = \int_{c^0-\tau}^{c^0} h(c) [c^0 - \tau - c] \, dc, \]

since its limit price is \(c^0 \), and its marginal cost is \(c + \tau \).

Willingness to pay in the switchover disruption case is given by

\[W_{GN}^{SD} = \max \{ v^{SD} - u^{SD}, i^{SD} - u^{SD}, r^{SD} \}. \]

We begin by noting that for \(\tau \) close to zero, it is immediate that \(v^{SD} > i^{SD} \), so we can ignore the idling possibility for the rest of this proof. So we compare \(v^{SD} - u^{SD} \) and \(r^{SD} \). Note at \(\tau = 0 \) they are equal. Let us differentiate the difference, \(v^{SD} - u^{SD} \), with respect to \(\tau \). First, we have that

\[\frac{dv^{SD}}{d\tau} = \frac{d}{d\tau} \min \{ c^0 + \tau, \bar{c} \} h(\min \{ c^0 + \tau, \bar{c} \}) (c^0 + \tau - \min \{ c^0 + \tau, \bar{c} \}) + \int_{c^0-\tau}^{c^0} h(c) dc, \]

where note that the first term is zero. Hence, we have that

\[\frac{dv^{SD}}{d\tau} - \frac{du^{SD}}{d\tau} = \int_{c^0-\tau}^{\min \{ c^0 + \tau, \bar{c} \}} h(c) dc - \int_{c^0-\tau}^{\bar{c}} h(c) dc, \]

(14)

and note that, at \(\tau = 0 \), \(dv^{SD}/d\tau - du^{SD}/d\tau = H^{beyond} - H^{disrupt} \). Next, we have

\[\frac{dr^{SD}}{d\tau} = - \int_{c^0-\tau}^{c^0} h(c) dc \]

(15)

and note that, at \(\tau = 0 \), \(dr^{SD}/d\tau = -H^{beyond} \).

If \(H^{beyond} > H^{disrupt} \), then for \(\tau = 0 \), (14) is positive and greater than (15). This implies that the incumbent has the highest willingness to pay for small \(\tau \). Thus \(W_{GN}^{SD} = v^{SD} - u^{SD} \), and this is strictly increasing for small \(\tau \), proving (i).

If \(H^{disrupt} \in (H^{beyond}, 2H^{beyond}) \), then (14) is strictly negative but still greater than (15). Thus \(W^{SD} = v^{SD} - u^{SD} \) and is strictly decreasing for small \(\tau \), proving (ii).

If \(H^{disrupt} > 2H^{beyond} \), then (14) is strictly less than (15). So a rival has the highest
willingness to pay. So $W_{SD} = r_{SD}$ which is strictly decreasing, proving (iii). Q.E.D.

The above is a local result, holding around $\tau = 0$. The next result (Proposition 4) generalizes the two ways that big switchover costs overturn Gilbert and Newbery (which are parts (ii) and (iii) of Proposition 3) to a wider range of τ. Before stating Proposition 4, we need to deal with the complication that for certain parameters, it may be the case that the incumbent obtains the rights to the innovation but then leaves it idle. The following lemma shows that if this ever happens for any τ, it happens for all higher τ.

Lemma 1. Fix all the parameters of the model except for τ. If there exists any τ where the incumbent obtains the new innovation rights but then idles it (and has a strict preference to do so), there is a $\hat{\tau} > 0$ such that for all $\tau < \hat{\tau}$, the incumbent does not obtain and idle the new innovation but if $\tau > \hat{\tau}$ the incumbent does obtain the rights and idles it.

Proof. See appendix.

Define $\hat{\tau} = \infty$ in the event that there is no idling for any τ. Proposition 4 requires an additional assumption.

Assumption 1: Assume that $f'(t)e^{\rho t}$ increases in t.

A few remarks about assumption 1. We earlier assumed that $f'(t) < 0$. Now if the discount rate were $\rho = 0$, this assumption would be simply be that $f'' > 0$, i.e. that f is convex such as in the example in figure 1. This would be a standard assumption in any kind of learning over time setup where the initial advances come in at a faster rate than later advances. If $\rho > 0$, we need more than convexity since the $e^{\rho t}$ term works against the assumption (note $f'(t) < 0$). We need f to be convex *enough*. For example, if $f(t) = ke^{-\gamma t}$, then we need $\gamma > \rho$ for the assumption to hold. Assumption 1 directly implies that $h(c)$ decreases in c.\(^{17}\)

With this setup, we can now generalize the two ways that big switchover costs overturn Gilbert and Newbery (which are parts (ii) and (iii) of Proposition 3) to a wider range of τ.

Proposition 4. As in Proposition 3, assume the Gilbert and Newbery setup applies, that demand is perfectly inelastic and that there is a period of switchover disturbance ($\bar{c} > c^\circ$). Assume further that Assumption 1 holds.

(i) If $H_{\text{disrupt}} > H_{\text{beyond}}$, W_{SD} strictly decreases in τ for $\tau < \min\{c^\circ - \zeta, \hat{\tau}\}$.

\(^{17}\)Recall that $h(c) = e^{-\rho(1-G(c))}g(c) = e^{-\rho t}f(t)^{-1}$, for t solving $c = f(t)$.
(ii) If $H_{\text{disrupt}} > 2H_{\text{beyond}}$, a rival obtains the innovation for all $\tau < \min \{ c^o - \zeta, \hat{\tau} \}$.

Proof. For $\tau < \min \{ c^o - \zeta, \hat{\tau} \}$, by the definition of $\hat{\tau}$, the incumbent is not idling the technology. Hence, the formula (14) is valid for τ in this range. Differentiating again yields

$$\frac{d^2 v^{SD}}{d\tau^2} - \frac{d^2 u^{SD}}{d\tau^2} = h(c^o + \tau) - h(c^o - \tau), \text{ if } c^o + \tau < \bar{c},$$

$$= -h(c^o - \tau), \text{ if } c^o + \tau > \bar{c}$$

Assumption 1 implies $h' < 0$, so the above is strictly negative. Since $H_{\text{disrupt}} > H_{\text{beyond}}$, $v^{SD} - u^{SD}$ is strictly decreasing for small τ. Since the function is strictly concave, it is then strictly decreasing for all $\tau \in (0, c^o - \zeta)$. Next note from (15) that r^{SD} is strictly decreasing. Now $W^{SD} \equiv \max \{ v^{SD} - u^{SD}, r^{SD} \}$ where $v^{SD} - u^{SD}$ and r^{SD} are both decreasing functions of τ. The maximum of decreasing functions is a decreasing function, proving (i). Next observe from differentiating (15) with respect to τ that r^{SD} is (weakly) convex. If $H_{\text{disrupt}} > 2H_{\text{beyond}}$, the slope of r^{SD} at $\tau = 0$ is strictly greater than the slope of $v^{SD} - u^{SD}$. Since r^{SD} is convex and $v^{SD} - u^{SD}$ is concave and since $v^{SD} - u^{SD} = r^{SD}$ at $\tau = 0$, $r^{SD} > v^{SD} - u^{SD}$ for $\tau \in (0, \min \{ c^o - \zeta, \hat{\tau} \})$ as claimed. Q.E.D.

The intuition of the results for the Gilbert and Newbery structure can be gleaned from a simple example. Ignore discounting by setting $\rho = 0$. Suppose that during the disruption period, marginal cost is infinite, that is, $\bar{c} = \infty$, so that no production can take place. Once the disruption period is over, then marginal cost is $\zeta < (c^o - \tau)$. If the incumbent adopts the technology, it enjoys a profit only after the disruption interval has passed. Hence,

$$v^{SD} = H_{\text{beyond}} (c^o + \tau - \zeta).$$

If the incumbent doesn’t adopt so that the rival gets it, it makes a profit only as long as the adopting rival is still in the disruption phase, that is,

$$u^{SD} = H_{\text{disrupt}} \tau.$$
The willingness of the incumbent to pay for the innovation is

\[
W^{SD}_{GN} = v^{SD} - u^{SD} = H^{beyond}(c^\circ + \tau - c) - H^{disrupt}\tau.
\]

We can easily see here that if the \(H^{disrupt} \) period is longer than the \(H^{beyond} \) period, an increase in \(\tau \) will lower the incumbents willingness to pay for the innovation. Obviously, the disruption period has to be quite big here, half of the entire period. But note that if we add discounting, the disruption period need not be so long for the result to go through since the disruption is borne up front. So adding discounting magnifies the effect.\(^{18}\)

7 The Third Extension: Learning by Doing

The previous two sections considered critiques of Arrow’s logic that competition increased adoption. In this section we consider whether our logic about switchover disruption’s impact on adoption holds under different assumptions about how costs fall after adoption.

In the baseline model, if a firm adopts, then the path of its costs depends only on time. In particular, its costs do not depend on output, as they would if there was learning-by-doing (LBD). Since costs only depend on time, if the incumbent adopts and there is a large switchover disruption, that is, \(\bar{c} > c^\circ + \tau \), then its always best for the incumbent to drop out of the market until \(\bar{c} = c^\circ + \tau \). So, the incumbent always loses sales.

If there is LBD, then a firm’s production rate influences its costs. In this case, perhaps the firm will choose to produce when \(\bar{c} > c^\circ + \tau \). If it produces, there is a current loss (since marginal cost exceeds price), but costs also come down faster. So, if there is LBD, perhaps an incumbent does not choose to reduce sales after adoption. If it did not reduce sales, then the effect we have introduced disappears.

In this section, we address this issue with a simple version of our model with learning by doing. We show that under general conditions that our effect does not disappear.

Suppose for simplicity that demand is perfectly inelastic at \(Q^D = 1 \) and that there is no

\(^{18}\)Note that there are other forces that act like discounting that will also magnify the impact of switchover disruptions. One example is if there is a small probability each “period” that the market disappears (for example, because of the development of a substitute product).
discounting. Suppose there are two cost levels after adoption, \(\bar{c} > c \), and that cost remains at the high level \(\bar{c} \) until the firm attains a critical knowledge \(K^* \). In general, knowledge comes from both raw time and production experience. Specifically, conditioned upon adopting the new innovation at time \(t = 0 \), knowledge at time \(t \) evolves according to

\[
K(t) = \int_0^t [\lambda + \beta q(t)^\alpha] \, dt, \tag{17}
\]

where \(q(t) \) is the incumbent’s production at time \(t \). Assume \(\alpha \in (0, 1) \). Specification (17) nests the pure time model that we formulated in Section 3. To see this, if \(\beta = 0 \) and \(\lambda > 0 \), then at time \(t^* \) defined by

\[
K^* \equiv \lambda t^*,
\]

the critical level of knowledge is obtained and cost drops from \(\bar{c} \) to \(c \). This is the pure time model.

For the rest of this section, to stack things against us, we assume that time has no impact on learning, that is, \(\lambda = 0 \). We also assume that \(\bar{c} > c^\circ + \tau \). So if the incumbent does adopt, if it ever wants hopes to lower costs to \(c \), it will have to initially produce at a loss. Finally, assume

\[
\frac{K^*}{\beta} < 1,
\]

so that if the incumbent does produce the unit demand through the time interval, it obtains the required knowledge level before \(t = 1 \).

Suppose that the firm adopts and attains the critical knowledge at time \(\hat{t} \). Assuming the curvature parameter \(\alpha < 1 \), and given no discounting, it is immediate that the firm should be smoothing production at a constant \(q \) solving

\[
K^* = \hat{t} \beta q^\alpha.
\]

Alternatively, if the firm chooses a constant production rate \(q \), it achieves \(K^* \) by \(\hat{t}(q) \), where

\[
\hat{t}(q) = \min \left\{ \frac{K^*}{\beta q^{-\alpha}}, 1 \right\}
\]
and the bound at one covers the case where accumulated knowledge is insufficient by \(t = 1 \).

The incumbent chooses a learning-period production level \(\bar{q} \) to solve

\[
v = \max_{\bar{q} \leq 1} \hat{t}(\bar{q}) \bar{q} (c^o + \tau - \bar{c}) + (1 - \hat{t}(\bar{q})) (c^o + \tau - \bar{c}). \tag{18}
\]

In the learning period, the incumbent sells \(\bar{q} \leq 1 \) units at a loss \(c^o + \tau - \bar{c} \), and the balance of the unit market demand is met by the rivals. When cost gets to \(\bar{c} \), the incumbent takes the entire unit demand and earns the profit \(c^o + \tau - \bar{c} \). We have the following characterization to this problem

Proposition 5. (i) The solution to problem to problem (18) depends upon \(\bar{c} \) in the following way. There is a cutoff \(\bar{c}_1 \) solving

\[
\frac{\bar{c} - c^o - \tau}{c^o + \tau - \bar{c}} = \frac{\alpha}{1 - \alpha}
\]

and a second cutoff \(\bar{c}_2 \) solving

\[
\frac{\bar{c} - c^o - \tau}{c^o + \tau - \bar{c}} = \left(\frac{K^*}{\beta} \right)^{-\frac{1}{\alpha}} \left[\left(\frac{\alpha}{1 - \alpha} \right)^{1 - \alpha} + \left(\frac{1 - \alpha}{\alpha} \right)^{\alpha} \right]^{\frac{1}{\alpha}},
\]

where \(c^o + \tau < \bar{c}_1 < \bar{c}_2 \), such that: If \(\bar{c} \in (c^o + \tau, \bar{c}_1) \), then \(\bar{q} = 1 \) during the learning period. If \(\bar{c} \in (\bar{c}_1, \bar{c}_2) \), then output during the learning period is

\[
\bar{q} = \frac{\alpha \ c^o + \tau - \bar{c}}{1 - \alpha \ c - c^o - \tau} < 1. \tag{19}
\]

If \(\bar{c} > \bar{c}_2 \), then the solution to problem (18) is to set \(\bar{q} = 0 \) for all \(t \) and never attain knowledge \(K^* \).

Proof. See appendix.

As before, define \(W(\tau) = v(\tau) - v^o(\tau) - F \) to be the net value of adopting the new technology. Our result is

Proposition 6. If \(\bar{c} < \bar{c}_1 \), then \(W'(\tau) = 0 \). If \(\bar{c} > \bar{c}_1 \), then \(W'(\tau) < 0 \).
Proof. The slope equals

\[\frac{dW}{d\tau} = \frac{dv}{d\tau} - \frac{dv^o}{d\tau} = \left[\hat{t}(\bar{q})\bar{q} + (1 - \hat{t}(\bar{q})) \right] - 1. \]

The bracketed term is the slope of \(v \) obtained from 18 using the envelope theorem. The impact of a change in \(\tau \) is simply the average output. If \(\bar{c} > \bar{c}_1 \), then from Proposition 5, \(\bar{q} < 1 \), and average output under adoption is strictly less then one, implying \(W'(\tau) < 0 \). If \(\bar{c} < \bar{c}_1 \), average output under adoption is one, and \(W'(\tau) = 0 \). Q.E.D.

Proposition 6 shows that our basic insight continues to hold if we cast the disruption period as learning by doing. If \(\bar{c} \) is large enough so that losses during the learning period are big enough, an incumbent that is adopting will contract its sales below the full market level of one unit. The bigger is \(\tau \), the more costly these lost sales, and the less the return to adoption.\(^{19}\)

8 More Extensions

In this section, we briefly discuss some straightforward extensions of the model. These extensions show how the model can be interpreted more broadly, and how the effects we talk about can be magnified.

8.1 Incumbent faces rivals in many markets (i.e. variation in \(\tau \))

In the analysis above where there is a large switchover disruption, the incumbent loses its entire market for a period of time. But in more general models, the incumbent need not lose

\(^{19}\)One important thing to note is that in the extreme case where \(\alpha = 1 \) so there are no diminishing returns to learning, the incumbent goes to the corner upon adopting and either sets \(\bar{q} = 1 \) or \(\bar{q} = 0 \). Now it will never choose to adopt and set \(\bar{q} = 0 \). So if the turn to adoption is positive, then the return does not vary with \(\tau \), because the incumbent does not lose sales if it adopts. It is crucial for our result that there be diminishing returns in learning, so that the incumbent smooths out its learning and loses some sales. Another thing worth noting is even though an incumbent with higher \(\tau \) is less likely to adopt, given that it does adopt we can see from (19)) that it will operate at a higher output \(\bar{q} \) during the learning period and hence attain the required knowledge \(K^* \) faster.
its entire market in order for the effect we are talking about to go through.\footnote{Another extension (besides the one we consider below) would be for the incumbent, upon adoption, to be able to produce only a certain fraction y of its pre-adoption output for a period of time. We could assume during this period it produced at marginal cost \bar{c} (or \underline{c}), and that once the period is over, it produced at \underline{c}.} We illustrate this here by allowing the incumbent’s advantage over rivals to be big in some markets, and small in others. In this setup, even during the switchover disruption when the incumbent has high costs it will nonetheless continue to sell to consumers over whom it has high monopoly power. The incumbent will lose mobile consumers during the disruption and on account of these mobile consumers our results will go through.

So now assume that there are multiple markets that differ by τ, in particular, let $\tau \in [0, \bar{\tau}]$. To keep things simple, assume demand is perfectly inelastic in each market and that the level of demand in each market differs by a scaler weight $a(\tau)$. Furthermore, assume that firms can perfectly discriminate between the markets, being able to offer a distinct price $p(\tau)$ to each market τ. This simplifies things considerably, as we can determine the Bertrand Equilibrium in each market separately.

This structure can be given several interpretations. In terms of the tariff example mentioned earlier, it may simply be the case that different consumers face different tariffs. Or we can interpret this as heterogeneity in transport costs in a spatial context with a Hotelling-like structure. We can put the incumbent in the center of a country. Buyers located in the center of the country have high τ because in addition to paying any tariff they have to incur transportation costs to ship imports inland. Buyers located on the coast have lower τ.

Let $W_{\text{many-markets}}$ be the net return to innovation in this new many-markets model. Given that the equilibrium can be determined in each τ market separately, we can use equation (7) of Section 3 to determine the return to innovation $W(\tau)$ in each τ market and then integrate over τ to obtain the net return over all markets,

$$W_{\text{many-markets}} = \int_0^{\bar{\tau}} a(\tau)W(\tau) d\tau. \tag{20}$$

Since we have assumed perfectly inelastic demand here, the first term in the slope of $W(\tau)$ in equation (8) (the Arrow Output effect) is zero. It is immediate then that $W'(\tau) \leq 0$ and
that the inequality is strict for those τ markets where $\bar{c} > c^\circ + \tau$, i.e. where the incumbent is initially out of the market just after adoption. It is then clear that an upward shift in the distribution of τ (in the sense of first-order stochastic dominance) strictly decreases willingness to pay and our result goes through. We also see that in the very high τ markets (where $\bar{c} < c^\circ + \tau$), the incumbent retains its sales just after adoption, so the incumbent’s aggregate output never goes all the way to zero.

8.2 Consumer Dynamics

Our consumer model features no dynamics. Fixing the prices of the incumbent and all rivals, quantity sold by the incumbent is independent of history. There is a large literature that emphasizes the importance of dynamics on the consumer side. Consumers may bear “switching costs” when they shift from one provider to a second provider. If the consumer goes ahead and makes such a switch, the first provider might have a difficult time getting the consumer back. See Klemperer (1995) for a survey of this literature.

If we introduce these kinds of dynamics on the consumer side, the effects we are isolating here are magnified. We make our point with a stylized example but our point is more general. Suppose that when consumers purchase from a rival, there is some probability they never will come back to the incumbent. Specifically, demand available to the incumbent decays at rate δ when demand is met by a rival firm. In this case we can rewrite the incumbent’s willingness to pay (16) for the innovation in the example at the close of Section 6 as

$$W^{SD} = e^{-\delta H^{disrupt}} H^{beyond} (c^\circ + \tau - \bar{c}) - H^{disrupt} \tau.$$

This is the same as (16), except the first term now includes a decay factor for consumers lost over the course of the disruption interval (which has length $H^{disrupt}$). In the original analysis, $\delta = 0$ is implicitly assumed. The comparative static that W^{SD} decreases in τ now holds if

$$e^{-\delta H^{disrupt}} H^{beyond} < H^{disrupt}.$$

For any positive disruption interval $H^{disrupt}$, the above condition will hold for large enough consumer decay δ.

31
8.3 Uncertainty

The model is set up with a deterministic cost structure. Often there is a great deal of uncertainty in the adoption of a new technology and this reinforces our point. It may be that a new technology is worse than the existing one, even in the long run, but the only way to find out is to try it. Moreover, once a firm tries it, it may be stuck with it, at least for a substantial period of time. For example, the adoption of a new baggage handling system in the Denver airport turned out to be a mistake, but it took ten years before they abandoned it.

We can capture this with a simple relabeling. Suppose that the model is a static one, in which there is uncertainty about the realization c of a new technology. Assume that if the cost draw ends up $c > c^\circ$, the adopting firm is stuck with it—that is, the cost of reverting to the previous technology is prohibitively high. If we simply let $h(c)$ be the density of the cost draw c for the new technology, the model is formally identical to the model studied, and all of our results go through.

9 Conclusion

Overall, while the Arrow theory provides a possible explanation of why monopolies are observed to be sluggish innovators, it does not seem to fit the evidence particularly well. Indeed, monopolists tend to be conservative in a great many ways. And indeed, this makes sense: if you have a good thing going you do not want to rock the boat. The one thing a monopolist fears most is the loss of monopoly. This is exactly the driving force that explains why switchover disruptions can be so important: a competitor has little to fear from a disruption as they are earning little to begin with. A firm with a lucrative monopoly is well advised not to jeopardize it by adopting a technology that may in the short-run at least, threaten its lucrative position.
Appendix

Proof of Part (ii) of Proposition 1

We need to prove that the results from part (i) hold for the general demand with (2) for the two-type cost distribution, \(c(t) \in \{\bar{c}, \underline{c}\} \), if \(\bar{c} \geq c^o + \tau \) (significant switchover disruption) or \(\bar{c} \leq c^o \) (no switchover disruption). Now if there is limit pricing at the low cost \(\underline{c} \), i.e. \(P^M(\underline{c}) \geq c^o + \tau \), then then proof from part (i) goes through for this case. So assume that \(\bar{p} \equiv P^M(\bar{c}) < c^o + \tau \). There are two cases for \(\bar{c} \). Assume first that \(\bar{c} \leq c^o \). In this case, the incumbent limit prices at the initial high cost if it adopts, \(\bar{p} = c^o + \tau \). The equivalent to (7) giving the net return to adoption is (where \(\bar{H} \) and \(\bar{H} \) are the time weights for the two cost intervals)

\[
W(\tau) = Q^D(c^o + \tau) (c^o + \tau - \bar{c}) \bar{H} + Q^D(p) (p - \bar{c}) H
- \tau (\bar{H} + \bar{H}) Q^D(c^o + \tau) - F
\]

(21)

The slope is

\[
\frac{dW}{d\tau} = \left[\frac{dQ^D}{dp} (c^o + \tau - \bar{c}) + Q^D \right] \bar{H}
- \left[\frac{dQ^D}{dp} \tau + Q^D \right] (\bar{H} + \bar{H})
= \left[\frac{dQ^D}{dp} (c^o - \bar{c}) \right] \bar{H} - \left[\frac{dQ^D}{dp} \tau + Q^D \right] H
\]

(22)

where \(Q^D \) and the slope are evaluated at the limit price \(c^o + \tau \) in both bracketed terms. The second equality is obtained by combining terms. Since it is optimal to limit price when cost is \(c^o \), for \(Q^D \) evaluated at \(p = c^o + \tau \), it must be that

\[
\frac{dQ^D}{dp} \tau + Q^D \geq 0.
\]

This implies the second term in bottom line of (22) is negative. Since \(c^o \geq \bar{c} \), the first term is negative as well, as we needed to show.
Next suppose that $\bar{c} \geq \bar{c} + \tau$. In this case during the switchover disruption, the incumbent is out of the market. In the net return to adoption, the first term of (21) is zero. A change in τ then has no effect on profit under adoption, but it increases profit without adoption, so the net return to adoption strictly decreases in τ. Q.E.D.

Proof of Lemma 1

Following the notation and formulas found in the proof of Proposition 3, we have

$$\frac{dv^{SD}}{d\tau} - \frac{du^{SD}}{d\tau} = \int_{c^\circ}^{\min\{\bar{c} + \tau, \bar{c}\}} h(c)dc - \int_{\max\{c^\circ - \tau, \bar{c}\}}^{\bar{c}} h(c)dc$$

$$\frac{di^{SD}}{d\tau} - \frac{du^{SD}}{d\tau} = \int_{\bar{c}}^{\min\{\bar{c} - \tau, \bar{c}\}} h(c)dc - \int_{\max\{c^\circ - \tau, \bar{c}\}}^{\bar{c}} h(c)dc$$

$$\frac{dr^{SD}}{d\tau} = -\int_{\bar{c}}^{\max\{\bar{c} - \tau, \bar{c}\}} h(c)dc.$$

Note that at $\tau = 0, i^{SD} - u^{SD} = 0$, while $v^{SD} - u^{SD} = r^{SD} > 0$. Next note for $\tau \in (0, \bar{c} - c^\circ)$, that $i^{SD} - u^{SD}$ is strictly increasing while r^{SD} is strictly decreasing. For $\tau > \bar{c} - c^\circ$, $i^{SD} - u^{SD}$ is weakly increasing, while r^{SD} is flat. Hence if there is ever a point τ where $i^{SD} - u^{SD} > r^{SD}$, there is a unique cutoff τ' where $i^{SD} - u^{SD} = r^{SD}$, and $i^{SD} - u^{SD} = r^{SD}$ if and only if $\tau < \tau'$.

If $c^\circ + \tau < \bar{c}$, then the slope of $i^{SD} - u^{SD}$ is strictly greater than the slope of $v^{SD} - u^{SD}$ and otherwise the slope is equal. Hence if there is ever a point τ where $i^{SD} - u^{SD} > v^{SD} - u^{SD}$, there is a unique cutoff τ'' where $i^{SD} - u^{SD} = v^{SD} - u^{SD}$, and $i^{SD} - u^{SD} < v^{SD} - u^{SD}$ if and only if $\tau < \tau''$.

If the points τ' and τ'' don’t exist, then for no τ is there a strict preference to idle. If both exist, then let $\hat{\tau} \equiv \max\{\tau', \tau''\}$. Q.E.D.
References

Bertrand, Marianne

Bloom (China

Bridgman

Figure 1
An Example of a Cost Structure with Switchover Disruption
Figure 2
The Incentives to Adopt with Small and Large Switchover Disruption

(a) Small Switchover Disruption

(b) Large Switchover Disruption