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Abstract

We consider dynamic oligopoly models in the spirit of Ericson and Pakes (1995). We introduce a new
computationally tractable model for industries with a few dominant firms and many fringe firms, in
which firms keep track of the detailed state of dominant firms and of few moments of the distribution
that describes the states of fringe firms. Based on this idea we introduce a new equilibrium concept that
we call moment-based Markov equilibrium (MME). MME is behaviorally appealing and computation-
ally tractable. However, because moments may not summarize all payoff relevant information, MME
strategies may not be optimal. We propose different approaches to overcome this difficulty with varying
degrees of restrictions on the model primitives and strategies. We illustrate our methods with computa-
tional experiments and show that they work well in empirically relevant models, and significantly extend
the class of dynamic oligopoly models that can be studied computationally. In addition, our methods
can also be used to improve approximations in other settings such as dynamic industry models with a
continuum of firms and an aggregate shock and stochastic growth models.

1 Introduction

Ericson and Pakes (1995)-style dynamic oligopoly models (hereafter, EP) offer a framework for modeling
dynamic industries with heterogeneous firms. The main goal of the research agenda put forward by EP
was to conduct empirical research and evaluate the effects of policy and environmental changes on market
outcomes in different industries. The importance of evaluating policy outcomes in a dynamic setting and
the broad flexibility and adaptability of the EP framework has generated many applications in industrial
organization and other related fields (see Doraszelski and Pakes (2007) for an excellent survey).

Despite the broad interest in dynamic oligopoly models, there remain significant hurdles in applying
them to problems of interest. Dynamic oligopoly models are typically analytically intractable, hence nu-
merical methods are necessary to solve for their Markov perfect equilibrium (MPE). With recent estimation
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methods, such as Bajari et al. (2007), it is no longer necessary to solve for the equilibrium in order to struc-
turally estimate a model. However, in the EP framework solving for MPE is still essential to perform coun-
terfactuals and evaluate environmental and policy changes. The practical applicability of EP-style models
is severely limited by the ‘curse of dimensionality’ this computations suffers from. Methods that accelerate
these equilibrium computations have been proposed (Judd (1998), Pakes and McGuire (2001) and Doraszel-
ski and Judd (2011)). However, in practice computational concerns have typically limited MPE analysis to
industries with just a handful of firms, far less than the real world industries the analysis is directed at. Such
limitations have made it difficult to construct realistic empirical models.

Thus motivated, we propose a new computationally tractable model to study dynamic oligopolies. Our
framework is suited for industries that have a few dominant firms with significant market shares and many
fringe firms with small market shares. This market structure is prevalent in both consumer goods and inter-
mediate products. Typical examples include industries with few large national firms and many small local
firms. Such industries are intractable in the standard EP framework due to the large number of fringe firms.
Although individual fringe firms have negligible market power, they may have significant cumulative market
share and may collectively discipline dominant firms’ behavior. Our model and methods capture this type
of interactions and therefore significantly expand the set of industries that can be analyzed computationally.

In an EP-style model, each firm is distinguished by an individual state at every point in time. The indus-
try state is a vector (or “distribution”) encoding the number of firms in each possible value of the individual
state variable. Assuming its competitors follow a prescribed strategy, a given firm selects, at each point in
time, an action (e.g., an investment level) to maximize its expected discounted profits. The selected action
will depend in general on the firm’s individual state and the industry state. Even if firms were restricted
to symmetric strategies, the computation entailed in selecting such an action quickly becomes infeasible
as the number of firms and individual states grows. This renders commonly used dynamic programming
algorithms to compute MPE infeasible in many problems of practical interest.

In this work we introduce a new and behaviorally appealing model that overcomes the computational
complexity involved in computing MPE. In a dominant/fringe market structure it is reasonable to expect that
firms are more sensitive to variations in the state of dominant firms than those of individual fringe firms. In
addition, it is unrealistic to believe that managers have unlimited capacity to monitor the evolution of all rival
firms. Therefore, we postulate what we believe is a plausible model of firms’ behavior: firms closely monitor
dominant firms, but keep track of the remainder of the industry—fringe firms—in a less detailed way. More
specifically, we assume that firms’ strategies depend on (1) the detailed state of dominant firms; and (2) few
aggregate statistics (such as few moments) of the distribution of fringe firms (we refer to the fringe firms’
distribution or state interchangeably). We call these strategies, moment-based strategies, where we use the
term ‘moments’ generically as firms could keep track of other statistics of the fringe firm distribution such
as un-normalized moments or quantiles. Based on these strategies, we introduce an equilibrium concept that
we call Moment-Based Markov Equilibrium (MME). In MME firms’ beliefs on the evolution of the industry
satisfy a consistency condition, and firms play their optimal moment based strategies given these beliefs. A
MME in which firms keep track of few moments of the fringe firm state is both computationally tractable
and, in principle, behaviorally appealing.

A natural question that arises, however, is whether MME strategies remain optimal in a larger set of
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strategies that may depend on the full fringe firm state, i.e., not solely on few moments. Unfortunately, it is
simple to observe that MME strategies are not necessarily optimal; a single firm may increase its profits by
unilaterally deviating to such a strategy while competitors continue to play MME strategies. The reason is
that even if moments of the fringe firm state are sufficient to predict static profits, they may not be sufficient
statistics to predict the future evolution of the industry. For example, suppose firms keep track of the first
moment of the fringe firm state. For a given value of the first moment, there could be many different fringe
firm distributions consistent with it, from which the future evolution of the industry is very different. More
formally, moments may not induce a sufficient partition of histories and may not summarize all payoff
relevant history in the sense of Maskin and Tirole (2001); observing the distribution of fringe firms provides
valuable information for decision making. Technically, the issue that arises is that the stochastic process of
moments may not be a Markov process even if the underlying dynamics are.

Hence, even if competitors use moment-based strategies, a moment-based strategy may not be close to
a best response, and, therefore, MME strategies may not be close to a subgame perfect equilibrium. On
one hand, we have a computationally tractable model that, in principle, is also behaviorally appealing. On
the other, the resulting strategies may not be optimal in a meaningful sense. We deal with this tension
by proposing three alternative approaches; each places different restrictions on the model primitives and
strategies being played and has different theoretical justifications.

First, we introduce classes of models for which equilibrium strategies yield moments that form a Markov
process and hence summarize all payoff relevant information in a finite model (or as the number of fringe
firms becomes large). In this case, a MME is a subgame perfect Nash equilibrium (or becomes subgame
perfect as the number of fringe firms grows). While simple and elegant, the models impose relatively
strong restrictions in the model primitives for fringe firms and may be too restrictive for many empirical
applications.

In the second approach we impose less severe restrictions on the model, but instead restrict the strategies
fringe firms can play. Under this restriction, we show that moments again form a Markov process as the
number of fringe firms grows so that they become sufficient statistics to predict the industry evolution.
We show that even under this restriction our model generates interesting strategic interactions between the
dominant and fringe firms. We also provide a method to ex-post test how severe is our restriction on fringe
firms’ strategies. We note that we do not restrict the strategies of dominant firms, hence, they become
optimal as the number of fringe firms grow. Because the first two approaches only impose restrictions over
fringe firms, they may be particularly relevant for applications in which dominant firms are the key focus of
analysis and a detailed model of the fringe is not required.

In the third approach we do not restrict the model nor the strategies of fringe firms. Instead we sup-
pose that firms (perhaps wrongly) assume that moments form a Markov process that summarizes all payoff
relevant information. In these models one postulates a Markov transition process for moments that approxi-
mates the (non-Markov) stochastic process of the industry moments; this can be done for example by using
the empirical transition probabilities. Here, MME strategies will not be optimal, because moments are not
sufficient statistics for the future evolution of the industry. To address this limitation, using ideas from ro-
bust dynamic programming, we propose a novel computationally tractable error bound that measures the
extent of sub-optimality of MME strategies in terms of a unilateral deviation, thus relating it to the notion
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of ε-equilibrium. This bound is useful because it allows one to evaluate whether the state aggregation is
appropriate or whether a finer state aggregation is necessary, for example by adding more moments. If the
bound is small, it may be reasonable to assume firms use MME strategies, as unilaterally deviating to more
complex strategies does not significantly increase profits, and doing so may involve costs associated with
gathering and processing more information.

We propose computationally efficient algorithms to compute our equilibrium concepts and show that
they work well in important classes of models. Specifically, we show that MME generates interesting strate-
gic interactions between dominant and fringe firms, in which for example, dominant firms make investment
decisions to deter growth and entry from fringe firms. We also show the applicability of our robust error
bound.

To further illustrate the applicability of our model and methods we show how they can be used to
endogeneize the industry market structure in a fully dynamic model. In particular, we perform numerical
experiments motivated by the long concentration trend in the beer industry in the US during the years 1960-
1990. Over the course of those years, the number of active firms dropped dramatically, and three industry
leaders emerged. One common explanation of this trend is the emergence of national TV advertising as
an “endogenous sunk cost” (Sutton, 1991). We build and calibrate a dynamic advertising model of the
beer industry and use our methods to determine how a single parameter related to the returns to advertising
expenditures critically affects the resulting market structure and the level of concentration in an industry with
hundreds of firms. As further evidence of the usefulness of our approach, Corbae and D’Erasmo (2012) has
already used our framework to study the impact of capital requirements in market structure in a calibrated
model of banking industry dynamics with dominant and fringe banks.

In summary, our approach offers a computationally tractable model for industries with a dominant/fringe
market structure, capturing important and novel strategic interactions, and opens the door to studying novel
issues in industry dynamics. As such, our model greatly increases the applicability of dynamic oligopoly
models.

Finally, our moment based strategies are similar and follow the same spirit of the seminal paper by
Krusell and Smith (1998) that replaces the distribution of wealth over agents in the economy by its moments
when computing stationary stochastic equilibrium in a stochastic growth model. While our main focus
has been on dynamic oligopoly models, our methods can also be used to find better approximations in
stochastic growth models, as well as in macroeconomic dynamic industry models with an infinite number of
heterogeneous firms and an aggregate shock (see, e.g., Khan and Thomas (2008) and Clementi and Palazzo
(2010)).

The rest of this paper is organized as follows. We discuss related literature in Section 2. Section 3
describes our dynamic oligopoly model. Section 4 introduces our new equilibrium concept. Then, Sections
5, 6, and 7, describe our three approaches to deal with the optimality of MME strategies. Section 8 develops
the error bound for the third approach. Section 9 describes the extensions of our methods to the models
mentioned in the previous paragraph, and Section 10 concludes.
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2 Related Literature

In this section we review related literature. First, we discuss different approaches and heuristics researchers
have used in various applications to deal with the computational complexity involved in the MPE compu-
tation, and how our methods relate to those approaches. Second, we discuss other methods that are being
developed to alleviate the burden when computing equilibria in dynamic oligopoly models.

Researchers have used in practice different approaches to deal with the computational burden involved
in the equilibrium computation in applications. First, some papers empirically study industries that only
hold few firms in which exact MPE computation is feasible (e.g., Benkard (2004), Ryan (2010), Collard-
Wexler (2010a), and Collard-Wexler (2011)). Other researchers structurally estimate models in industries
with many firms using approaches that do not require MPE computation, and do not perform counterfactuals
that require computing equilibrium (e.g., Benkard et al. (2010), Sweeting (2007)). We hope that our work
will provide a method to perform counterfactuals in concentrated industries with many firms.

In other applications, authors do perform counterfactuals computing MPE but in reduced size models
compared to the actual industry. These models include few dominant firms and ignore the rest of the (fringe)
firms (for example, see Ryan (2010) and Gallant et al. (2010)). Computational applied theory papers often
also limit the industry to hold few firms (e.g., Besanko et al. (2010) and Doraszelski and Markovich (2007)).
Other papers make different simplifications to reduce the state space. For example, Collard-Wexler (2010b)
and Corbae and D’Erasmo (2011) assume firms are homogeneous so that the only relevant state variable
is the number of active firms in the industry. Finally, some authors explicitly model heterogeneity but
assume a simplified model of dynamics, in which certain process of “moments” that summarize the industry
state information, is assumed to be Markov (e.g., see Kalouptsidi (2011), Jia and Pathak (2011), Santos
(2010), and Tomlin (2008); Lee (2010) use a similar approach in a dynamic model of demand with forward
looking consumers). This relates to our third approach (Section 7) and we hope that our methods will help
researchers determine the validity of these simplifications.

A stream of empirical literature related to our work uses simplified notions of equilibrium for estimation
and counterfactuals. In particular, Xu (2008), Qi (2008), Iacovone et al. (2009), and Thurk (2009) among
others use the notion of oblivious equilibrium (OE) introduced by Weintraub et al. (2008), in which firms
assume the average industry state holds at any time. OE can be shown to approximate MPE in industries
with many firms by a law of large numbers, provided that the industry is not too concentrated. We hope that
our methods extend this type of analysis to industries that are more concentrated.

Our work is related to recent work that alleviates the burden when computing equilibria in dynamic
oligopoly models. Farias et al. (2012) uses approximate dynamic programming with value function approx-
imation to approximate MPE. Santos (2012) introduces a state aggregation technique based on quantiles of
the industry state distribution to try to break the curse of dimensionality. Fershtman and Pakes (2010) intro-
duces the notion of experienced based equilibria that weakens the restrictions imposed by perfect Bayesian
equilibrium for dynamic games of asymmetric information. As we explain later, the approach by Fershtman
and Pakes has connections with the approach we discuss in Section 7.

Our work is particularly related to Benkard et al. (2011) that extends the notion of oblivious equilibrium
to include dominant firms. In that paper, firms only keep track of the state of dominant firms and assume that
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at every point in time the fringe firm state is equal to the expected state conditional on the state of dominant
firms. Our paper builds on Benkard et al. (2011)’s idea of considering a dominant/fringe market structure;
however, we believe our approach offers several important contributions with respect to them. First, in our
paper firms not only keep track of the dominant firms’ states but also of fringe moments. For this reason,
our approach should generally produce best responses that are closer to optimal compared to theirs. Second,
different to Benkard et al. (2011), our model allows for firms to switch between the fringe and dominant
tier, and hence, to fully endogenize the market structure in equilibrium. Third, we present models for which
MME strategies are in fact optimal and, in addition, our error bound is valid for dominant firms. On the
other hand, the approach of Benkard et al. (2011) does not impose the restriction that the single-period profit
function depend only on few moments of the fringe firm state, as we will require below.

We believe that all the previous approaches are useful complements and have different strengths that
may be important for different industries and empirical applications. For example, if OE is the starting point
of analysis, then the approach with dominant firms provided by Benkard et al. (2011) is a natural refinement.
If researchers want to use a computational approach to approximate MPE, then the method by Farias et al.
(2012) may be more appropriate. Finally, we believe that among all these papers our approach offers a
natural and appealing behavioral model with the advantages discussed in the previous paragraph.

3 Dynamic Oligopoly Model

In this section we formulate a model of industry dynamics with aggregate shocks in the spirit of Ericson
and Pakes (1995). Similar models have been applied to numerous applied settings in industrial organization
such as advertising, auctions, R&D, collusion, consumer learning, learning-by-doing, and network effects
(see Doraszelski and Pakes (2007) for a survey).
Time Horizon. The industry evolves over discrete time periods and an infinite horizon. We index time peri-
ods with nonnegative integers t ∈ N (N = {0, 1, 2, . . .}). All random variables are defined on a probability
space (Ω,F ,P) equipped with a filtration {Ft : t ≥ 0}. We adopt a convention of indexing by t variables
that are Ft-measurable.
Firms. Each firm that enters the industry is assigned a unique positive integer-valued index. The set of
indices of incumbent firms at time t is denoted by St. At each time t ∈ N, we denote the number of
incumbent firms as nt. We assume nt ≤ N, ∀t ∈ N, where the integer number N represents the maximum
number of incumbent firms that the industry can accommodate at every point in time.
State Space. Firm heterogeneity is reflected through firm states that represent the quality level, productivity,
capacity, the size of its consumer network, or any other aspect of the firm that affects its profits. At time t
the individual state of firm i is denoted by xit ∈ X ⊆ <q, q ≥ 1. We define the industry state s̄t to be a
vector that encodes the individual states of all incumbent firms at time t: s̄t = {xit}i∈St .
Exit process. In each period, each incumbent firm i observes a nonnegative real-valued sell-off value φit that
is private information to the firm. If the sell-off value exceeds the value of continuing in the industry then
the firm may choose to exit, in which case it earns the sell-off value and then ceases operations permanently.
We assume the random variables {φit|t ≥ 0, i ≥ 1} are i.i.d. and have a well-defined density function.
Entry process. We consider an entry process similar to the one in Doraszelski and Pakes (2007). At time
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period t, there areN −nt potential entrants, ensuring that the maximum number of incumbent firms that the
industry can accommodate is N (we assume n0 < N ). Each potential entrant is assigned a unique index.
In each time period each potential entrant i observes a positive real-valued entry cost κit that is private
information to the firm. We assume the random variables {κit|t ≥ 0 i ≥ 1} are i.i.d. and independent
of all previously defined random quantities, and have a well-defined density function. If the entry cost is
below the expected value of entering the industry then the firm will choose to enter. Potential entrants make
entry decisions simultaneously. Entrants appear in the following period at state xe ∈ X and can earn profits
thereafter.1 As is common in this literature and to simplify the analysis, we assume potential entrants are
short-lived and do not consider the option value of delaying entry. Potential entrants that do not enter the
industry disappear and a new generation of potential entrants is created next period.
Transition dynamics. If an incumbent firm decides to remain in the industry, it can take an action to
improve its individual state. Let I ⊆ <k+ (k ≥ 1) be a convex and compact action space; for concreteness,
we refer to this action as an investment. Given a firm’s investment ι ∈ I and state at time t, the firm’s
transition to a state at time t+ 1 is described by the following Markov kernel Q:

Q[x′|x, ι, s̄] = P[xi,t+1 = x′
∣∣∣xit = x, ιit = ι, s̄t = s̄]. (1)

Uncertainty in state transitions may arise, for example, due to the risk associated with a research and devel-
opment endeavor or a marketing campaign. The dependence of the kernel Q on the industry state allows,
for example, for the existence of investment spillovers across firms. The cost of investment is given by a
nonnegative function c(ιit, xit) that depends on the firm individual state xit and investment level ιit. Even
though our approach can accommodate aggregate transition shocks common to all firms, for simplicity we
assume that transitions are independent across firms conditional on the industry state and investment levels.
We also assume these transitions are independent from the realizations of all previously defined random
quantities.
Aggregate shock. There is an aggregate profitability shock zt that is common to all firms. These shocks
may represent common demand shocks, a common shock to input prices, or a common technology shock.
We assume that {zt ∈ Z : t ≥ 0} is an independent, finite, and ergodic Markov chain.
Single-Period Profit Function. Each incumbent firm earns profits on a spot market. For firm i, its single
period expected profits at time period t are given by π(xit, s̄t, zt), that depend on its individual state xit, the
industry state s̄t, and the value of the aggregate shock zt.
Timing of Events. In each period, events occur in the following order: (1) Each incumbent firm observes its
sell-off value and then makes exit and investment decisions; (2) Each potential entrant observes its entry cost
and makes entry decisions; (3) Incumbent firms compete in the spot market and receive profits; (4) Exiting
firms exit and receive their sell-off values; (5) Investment shock outcomes are determined, new entrants
enter, and the industry takes on a new state s̄t+1.
Firms’ objective. Firms aim to maximize expected discounted profits. The interest rate is assumed to be
positive and constant over time, resulting in a constant discount factor of β ∈ (0, 1) per time period.
Equilibrium. The most commonly used equilibrium concept in such dynamic oligopoly models is that of

1It is straightforward to generalize the model by assuming that entrants can also invest to improve their initial state.
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symmetric pure strategy Markov perfect equilibrium (MPE) in the sense of Maskin and Tirole (1988). Here,
an incumbent firm uses a Markov strategy that depends on its own state xit, the industry state s̄t, and the
aggregate shock zt to maximize expected discounted profits given the strategy of its competitors. Moreover,
in equilibrium there is also an entry cut-off strategy that depends on the industry state s̄t and the aggregate
shock zt. A limitation of MPE is that the set of relevant industry states grows quickly with the number of
firms in the industry, making its computation intractable when there is more than few firms, even if one
assumes anonymous equilibrium strategies (Doraszelski and Pakes, 2007). This motivates our alternative
approach.

4 Moment-Based Markov Equilibrium

In this section we introduce a new equilibrium concept that overcomes the curse of dimensionality mentioned
above and that we think provides an appealing model of firms’ behavior.

4.1 Dominant and Fringe Firms

We focus on industries that exhibit the following market structure: there are few dominant firms and many
fringe firms. Let Dt ⊂ St and Ft ⊂ St be the set of incumbent dominant and fringe firms at time period
t, respectively. The sets Dt and Ft are common knowledge among firms at every period of time. A simple
version of our model assumes Dt = Dt′ for all t, t′, that is, the set of dominant firms is predetermined and
does not change over time. A more general version incorporates a mechanism that endogenizes the process
through which firms become dominant over time; this is discussed in Subsection 7.2.

The specific division between dominant and fringe firms will depend on the specific application at hand.
Typically, however, dominant firms will usually be market share leaders or, more generally, firms that most
affect competitors’ profits, as illustrated in the next example. Suppose that a firm’s individual state is a
number that represents the quality of the product it produces, like in a quality ladder model (Pakes and
McGuire, 1994). For many commonly used profit functions, such as those derived from random utility
models, firms in higher states have larger market shares. It may then be natural to separate dominant firms
from fringe firms by an exogenous threshold state x, such that i ∈ Dt if and only if xit ≥ x.

We let Xf ⊆ X and Xd ⊆ X be the set of feasible individual states for fringe and dominant firms,
respectively. We assume that Xf ∩ Xd = ∅. This is done with out loss of generality, because we can
always append one dimension to the individual state indicating whether the firm is fringe or dominant.
This construction is useful because the individual state now encodes whether the firm is fringe or dominant
allowing, for example, for fringe and dominant firms to have different model primitives and strategies.

Because we will focus on equilibrium strategies that are anonymous with respect to the identity of
firms, we define the state of fringe firms ft to be a vector over individual states that specifies, for each
fringe firm state x ∈ Xf , the number of incumbent fringe firms at x in period t. We define Sf ={
f ∈ N|Xf |

∣∣∣∑x∈Xf f(x) ≤ N
}

to be the set of all possible states of fringe firms. We call ft the state
or the distribution of fringe firms. We define dt to be the state of dominant firms that specifies the individual
state of each dominant firm at time period t. The set of all possible dominant firms’ states is defined by
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Sd = {d ∈ X kd
∣∣∣k ≤ D}, where D is the maximum number of dominant firms the industry can accommo-

date. We define the state space S = Sf × Sd × Z , where an industry state s ∈ S is given by a distribution
of fringe firms, a state for dominant firms, and the aggregate shock.

In the applications we have in mind, dominant firms are few and have significant market power. In
contrast, fringe firms are many and individually hold little market power, although their aggregate market
share may be significant. This market structure suggests that firms’ decisions should be more sensitive to
the state of dominant firms, compared to the state of fringe firms. Moreover, the fringe firms’ state is a
highly dimensional object and gathering information on the state of each individual small firm is likely to be
more expensive than on larger firms that not only are few, but also usually more visible and often publicly
traded. Consequently, as the number of fringe firms grows large it is implausible that firms keep track of the
individual state of each one. Instead, we postulate that firms only keep track of the state of dominant firms
and of few summary statistics of the fringe firms’ state distribution. Not only do we think this provides an
appealing model of firms’ behavior, but it will also make the equilibrium computation feasible.

4.2 Assumptions

Our approach will require that firms compute best responses in strategies that depend only on a few summary
statistics of the fringe firm state. A set of such summary statistics is a multi-variate function θ : Sf → <n.
For example, when the fringe firm state is discrete and one-dimensional, θ(f) =

∑
y∈Xf y

αf(y) is the
α−th un-normalized moment with respect to the distribution f . For brevity and concreteness, we call such
summary statistics fringe firm moments with the understanding that they could include quantities such as
normalized or un-normalized moments, but also quantiles or other functions of the distribution of fringe
firms. We introduce the following simplifying assumption that we keep throughout the paper. We briefly
discuss how to relax this assumption in Section 10.

Assumption 4.1. The single period expected profits of firm i at time t, π(xit, θ̃t, dt, zt), depend on its
individual state xit, a vector θ̃t ∈ <l of fringe firm moments, the state of dominant firms dt, and the value of
the aggregate shock zt. The transition kernel of firm i at time t, Q[·|xit, ιit, θ̃t, dt] depends on its individual
state xit, its investment ιit, a vector θ̃t of fringe firm moments, and the state of dominant firms dt.

Note that we slightly abused the notation to re-define the single period profit function and the transition
kernel so that their dependence on the state of fringe firms is only through their moments.2 In our approach,
firms will keep track of the moments that determine the profit function and transition function, θ̃t. The
state space spanned by these moments is much smaller than the original one if l is low dimensional and
significantly smaller than |Xf |. In fact, in many applications of interest the transition function is independent
of the industry state (θ̃t, dt), e.g., if there are no spillovers in investments. Moreover, many single profit
functions of interest depend on few functions of the distribution of firms’ states. For example, commonly
used profit functions that arise from monopolistic competition models depend on a particular moment of
that distribution (Dixit and Stiglitz (1977), Besanko et al. (1990)). We describe another important example
below.

2Also, note that assuming that both functions depend on the same set of moment is done without loss of generality.
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Example 4.1 (Quality-Ladder). Similarly to Pakes and McGuire (1994), we consider an industry with
differentiated products, where each firm’s state variable is a number that represents the quality of its product.
Hence, a firm’s state is given by a natural number xit (and another component, that we ignore for simplicity,
indicating wether the firm is fringe or dominant). For clarity, we do not consider aggregate shocks in this
example.

There are m consumers in the market. In period t, consumer j receives utility uijt from consuming the
good produced by firm i given by:

uijt = α1 ln(xit) + α2 ln(Y − pit) + νijt , i ∈ St, j = 1, . . . ,m,

where Y is the consumer’s income, and pit is the price of the good produced by firm i. νijt are i.i.d. random
variables distributed Gumbel that represent unobserved characteristics for each consumer-good pair. There
is also an outside good that provides consumers zero expected utility. We assume consumers buy at most
one product each period and that they choose the product that maximizes utility. Under these assumptions
our demand system is a standard logit model.

All firms share the same constant marginal cost c. We assume that dominant firms compete Nash in
prices with resulting equilibrium prices denoted by p∗it. Similarly to the logit model of monopolistic compe-
tition of Besanko et al. (1990), we assume fringe firms set prices assuming they have no market power, so
they all set the price p∗ = (Y + cα2)/(1 + α2). Let K(xit, pit) = exp(α1 ln(xit) + α2 ln(Y − pit)). It is
simple to see that expected profits are then given by:

π(xit, s̄t) = m(p∗it − c)
K(xit, p∗it)

1 + (Y − p∗)α2
∑

y∈Xf y
α1ft(y) +

∑
j∈Dt K(xjt, p∗jt)

, ∀i ∈ St.

Therefore, π(xit, s̄t) can be written as π(xit, θ̃t, dt), where θ̃t is the α1−th un-normalized moment of ft.

4.3 Moment-Based Strategies

In this section we introduce firm strategies that depend on the individual states of dominant firms and on
few summary statistics or moments of the fringe firm state. For example, in the setting of Example 4.1, it
seems reasonable that firms keep track of their own individual state xit, the state of dominant firms dt, and
the moment θ̃t defined above (and zt if there is an aggregate shock). We call such strategies moment-based
strategies. These strategies depend on the distribution of fringe firms via a set of moments

θt = θ(ft) = (θ̃t, θt), (2)

where θ̃t satisfies Assumption 4.1, and θt are additional moments included in θt. We define Sθ as the set of
admissible moments defined by (2). That is, Sθ = {θ|∃f ∈ Sf s.t. θ = θ(f)}. In light of this, we define the
moment-based industry state by ŝ = (θ, d, z) ∈ Ŝ = Sθ × Sd ×Z .

An investment strategy is a function ι such that at each time t, each incumbent firm i ∈ St invests
an amount ιit = ι(xit, ŝt). Similarly, each firm follows an exit strategy that takes the form of a cutoff
rule: there is a real-valued function ρ such that an incumbent firm i ∈ St exits at time t if and only if
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φit ≥ ρ(xit, ŝt). LetM denote the set of exit/investment strategies such that an element µ ∈M is a pair of
functions µ = (ι, ρ), where ι : X × Ŝ → I is an investment strategy and ρ : X × Ŝ → < is an exit strategy.

Each potential entrant follows an entry strategy that takes the form of a cutoff rule: there is a real-valued
function λ such that a potential entrant i enters at time t if and only if κit ≤ λ(ŝt). We denote the set of
entry functions by Λ, where an element of Λ is a function λ : Ŝ → <. It is assumed that all entrants are
fringe, that is xe ∈ Xf . Note that strategies and the state space are defined with respect to a specific function
of moments (2).

With Markov strategies (µ, λ) the underlying industry state, {st = (ft, dt, zt) : t ≥ 0}, is a Markov
process. We denote its transition kernel by Pµ,λ. In addition, we denote by Pµ′,µ,λ the transition kernel
of (xit, st) when firm i uses strategy µ′, and its competitors use strategy (µ, λ). Note that given strategies,
both these kernels can be derived from the primitives of the model, namely, the distributions of φ and κ, the
kernel of the aggregate shock, and the kernel Q. We emphasize that the underlying industry state st should
be distinguished from the moment-based industry state ŝt.

4.4 Moment-Based Markov Equilibrium

A moment-based Markov equilibrium (MME) is an equilibrium in moment-based strategies, as will be de-
fined next.

Defining our notion of equilibrium in moment based strategies will require the construction of what
can be viewed as a ‘Markov’ approximation to the dynamics of the moment-based industry state process
{(xit, ŝt) : t ≥ 0}, where i is some generic firm. Note that this process is, in general, not Markov even
if the dynamics of the underlying industry state {(xit, st) : t ≥ 0} are. To see this, consider Example 4.1
where firms keep track of a single moment of the fringe firm state and for simplicity, assume that α1 = 1.
Then, θt = θ(ft) =

∑
y∈Xf yft(y), so firms only keep track of the first un-normalized moment of the fringe

firm state. Suppose the current value of that moment is θt = 10; this value is consistent with one fringe
firm in individual state 10, but also with 10 fringe firms in individual state 1. It is unclear that starting
from these two different states will yield the same probabilistic distribution for the first moment next period.
Therefore, while θt is sufficient to compute static profits, it may not be a sufficient statistic to predict the
future evolution of the industry, because there are many fringe firm distributions that are consistent with
the same value of θt. In the process of aggregating information via moments, information is lost, and the
resulting process is no longer Markov.

We note that for this reason the introduction of additional contemporaneous moments θt beyond the
moments θ̃t in equation (2) can improve the predictions of the future evolution of the industry. Alternatively,
it is possible to define an equilibrium concept where in equation (2) firms keep track of past values of the
moment (θ̃t−1, θ̃t−2, ...) and our methods can be extended accordingly. However, to provide a more direct
connection with the commonly used concept of MPE, in which firms keep track only of the current industry
state, and to simplify exposition, in this paper we assume that MME strategies only depend on current
moments of the fringe firm state.

Assuming that firm i follows the moment based strategy µ′, and that all other firms use strategy (µ, λ),
we will describe a kernel, P̂µ′,µ,λ[·|·] with the hope that the Markov process described by this kernel is a
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good approximation to the (non-Markov) process {(xit, ŝt) : t ≥ 0}. To this end, let us suppose that a
kernel P̂µ,λ describes the evolution of an hypothetical Markov process on Sθ. Having supposed this kernel,
the kernel P̂µ′,µ,λ[·|·] is now define according to:

P̂µ′,µ,λ[x′, ŝ′|x, ŝ] = Pµ′,µ,λ[x′, d′, z′|x, ŝ]P̂µ,λ[θ′|ŝ], (3)

where with some abuse of notation Pµ′,µ,λ[x′, d′, z′|x, ŝ] denotes the marginal distribution of the next state
of firm i, the next state of dominant firms, and the next value for the aggregate shock, conditional on the
current moment-based state, according to the kernel of the underlying industry state Pµ′,µ,λ.

One may view the Markov process described by P̂µ′,µ,λ as firm i’s perception of the evolution of its own
state in tandem with that of the industry. As such, the definition above makes the following facts about this
perceived process transparent:

1. Were firm i a fringe firm, the above definition asserts that this fringe firm ignores its own impact on
the evolution of industry moments. This is evident in that x′ is distributed independently of θ′ given
x and ŝ.

2. Given information about the current fringe moments, dominant firms’ states, and the state of the
aggregate shock, the firm correctly assesses the distribution of its next state, the next state of dominant
firms, and the next aggregate shock. Note that because firms use moment based strategies, the moment
based state (x, ŝ) is enough to determine the transition probabilities of (x, d, z) according to the
transition kernel of the underlying industry state Pµ′,µ,λ.

However, it should be clear that the Markov process given by the above definition remains an approximation
since it posits that the evolution of the moments θ are Markov with respect to ŝ, whereas, in fact, the
distribution of moments at the next point in time potentially depends on the distribution of the fringe firms
beyond simply its moments.

In the spirit of approximating the actual moment process, we ask that the perceived transitions described
by P̂µ,λ agree in some manner with the actual transitions observed in equilibrium. In particular, recall that
Pµ,λ denotes the transition kernel of the underlying (Markovian) industry state {st : t ≥ 0} when all firms
use the strategy (µ, λ). We specify the perceived transition kernel P̂µ,λ as some transformation of the actual
transition kernel Pµ,λ. In particular,

P̂µ,λ = ΦPµ,λ

for some operator Φ. We next present a concrete example of such an operator:

Example 4.2 (Empirical transitions). A natural definition for P̂µ,λ is the kernel that coincides with the long-
run average empirical transitions from the moment in the current time period to the moment the next time
period under strategies (µ, λ). More specifically, we let the industry evolve for a long time under strategies
(µ, λ). For each moment based state ŝ that is visited, we observe a transition to a new moment θ′. We count
the empirical frequency of these transitions and set the kernel P̂µ,λ[θ′|ŝ] to be the empirical distribution
corresponding to these frequencies. A similar construction is used by Fershtman and Pakes (2010) in a
setting with asymmetric information.
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We now formalize this definition. We assume a finite state space to simplify the exposition. Recall that
the evolution of the underlying industry state is described by the kernel Pµ,λ. We let R be the recurrent
class of moment-based states the industry will eventually reach. For all θ′ ∈ Sθ and ŝ ∈ R, we define the
operator:

(ΦPµ,λ)(θ′|ŝ) = lim
T→∞

∑T
t=1 1{ŝt = ŝ, θt+1 = θ′}∑T

t=1 1{ŝt = ŝ}
.

We require that
P̂µ,λ(θ′|ŝ) = (ΦPµ,λ)(θ′|ŝ),

for all ŝ ∈ R, and P̂µ,λ is defined arbitrarily outside this set.

Having thus defined a Markov process approximating the process {(xit, ŝt) : t ≥ 0}, we next define
the perceived value function by a deviating firm i when it uses the strategy µ′ in response to an incumbent
strategy (µ, λ). Importantly, this value function is consistent with firm i’s perception of the evolution of
its own state and the moment-based industry state as described by the kernel P̂µ′,µ,λ defined above. In
particular, this value is given by

V (x, ŝ|µ′, µ, λ) = E µ′,µ,λ

[
τi∑
k=t

βk−t
[
π(xik, ŝk)− c(ιik, xik)

]
+ βτi−tφi,τi

∣∣∣xit = x, ŝt = ŝ

]
,

where τi is a random variable representing the time at which firm i exits the industry, and the subscripts of
the expectation indicate the strategy followed by firm i, the strategy followed by its competitors, and the
entry rate function. The expectation is taken with respect to the perceived transition kernel P̂µ′,µ,λ.3 We
will use the shorthand notation V (x, ŝ|µ, λ) ≡ V (x, ŝ|µ, µ, λ) to refer to the expected discounted value of
profits when firm i follows the same strategy µ as its competitors.

A moment-based Markov equilibrium (MME) is defined with respect to a function of moments θ in (2)
and, for every strategy (µ, λ), a transition kernel P̂µ,λ defined via an operator Φ.

Definition 4.1. A MME of our model comprises of an investment/exit strategy µ = (ι, ρ) ∈M and an entry
cutoff function λ ∈ Λ that satisfy the following conditions:

C1: Incumbent firm strategies optimization:

sup
µ′∈M

V (x, ŝ|µ′, µ, λ) = V (x, ŝ|µ, λ) ∀x ∈ X , ∀ŝ ∈ Ŝ. (4)

C2: At each state, the cut-off entry value is equal to the expected discounted value of entering the industry:

λ(ŝ) = β E µ,λ

[
V (xe, ŝt+1|µ, λ)

∣∣∣ŝt = ŝ
]

∀ŝ ∈ Ŝ.

3In the value function above, we have abused notation to denote π(xik, ŝk) = π(xik, θk, dk, zk) instead of π(xik, θ̃k, dk, zk).
However, recall that θ̃k is included in θk.
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C3: The perceived transition kernel is given by

P̂µ,λ = ΦPµ,λ (5)

Note that because the individual state encodes whether a firm is fringe or dominant, fringe and dominant
firms may have different value functions and MME strategies. Also, note that if the function θ is the identity,
so that θ(f) = f , and Φ is such that P̂µ′,µ,λ[x′, ŝ′|x, θ(f), d, z] = Pµ′,µ,λ[x′, ŝ′|x, f, d, z] then MME
coincides with Markov perfect equilibrium. Proving existence of MME is model dependent. For example, if
the state space is finite one can use a similar argument to Doraszelski and Satterthwaite (2010). We note that
in the numerical experiments that we present later in the paper we were always able to computationally find
an MME over a large set of primitives that satisfy the standard assumptions required for existence of MPE
in EP-style models. With respect to uniqueness, in general we presume that our model may have multiple
equilibria.

Computationally, MME is appealing if agents keep track of few moments of the fringe firm state and
there are few dominant firms. In this case, in MME agents optimize over low dimensional strategies so
it is a computationally tractable equilibrium concept. Moreover, MME also provides what we think is an
appealing behavioral model. Theoretically, an MME is appealing if the perceived process of moments is
close to the actual process of moments. This is related to the optimality of moment-based strategies that we
study in the next section.

4.5 Optimality of Moment-Based Strategies

Suppose firms play moment based strategies with moments θ(·) and perceived transition kernel P̂µ,λ. We
evaluate the performance of a MME strategy relative to a strategy that keeps track of the underlying fringe
firm state ft when dynamics are governed by the primitive transition kernel Pµ,λ. As previously noted,
generally {ŝt : t ≥ 0} is not Markov, so it may not be a sufficient statistic to predict the future evolution of
the industry. Hence, θ(·) does not summarize all payoff relevant history in the sense of Maskin and Tirole
(2001). As such, observing the underlying fringe firm state may provide valuable information for decision
making. It is important to note that while some Φ operators may provide better approximations than others,
it may be that few moments are not sufficient statistics for any choice of Φ.

The previous arguments raise a concern regarding the performance of moment-based strategies. Even
if competitors use moment-based strategies, a moment-based strategy may not be close to a best response,
and therefore, MME strategies may not be close to a subgame perfect equilibrium. In the rest of the paper
we will deal with this tension: on one hand we have a behaviorally appealing and computationally tractable
model, while on the other, the resulting strategies may not be optimal in a meaningful sense. To deal with
this tension we consider three approaches:

1. First, we consider a class of models for which equilibrium strategies yield moments that form a
Markov process and hence summarize all payoff relevant information (in a finite model or as the
number of fringe firms becomes large). In this case, MME strategies are subgame perfect (or become
subgame perfect as the number of fringe firms grows). See Section 5 for a discussion of this approach.
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While simple and elegant, these models impose restrictions on the model primitives for fringe firms
and may be too restrictive for many applications; this motivates the next approach.

2. In the second approach we consider less restrictive assumptions on the model primitives, but we
restrict the set of strategies for fringe firms. In this way we are able to obtain similar results to the first
approach for a larger class of models. Note that we do not restrict the strategies of dominant firms,
and therefore, their strategies become optimal as the number of fringe firms increase. See Section 6
for a discussion of this approach.

3. In the third approach we do not restrict the model. Instead we assume that firms assume (perhaps
wrongly) that moments form a Markov process and summarize all payoff relevant information. The
usefulness of this approach relies on a good choice of the set of moments and on the construction of
Φ. Importantly, we introduce a computationally tractable error bound that measures the extent of the
sub-optimality of MME strategies in terms of a unilateral deviation to a strategy that keeps track of
all available information. The error bound is useful because it allows to asses whether the moments
summarize well enough the underlying fringe firm state. See Sections 7 and 8 for a discussion of this
approach.

We conclude the section by formalizing the sense in which MME strategies become optimal. Define
the function of moments θ∗(f) = f . Hence, a moment-based strategy with respect to θ∗ is a Markov
strategy that keeps track of the full fringe firm state. We denote M∗ and Λ∗ as the set of exit/investment
strategies and entry functions, respectively, defined with respect to θ∗. Note that M∗ and Λ∗ are the sets
of standard Markov strategies. Similarly to the value function V defined above, we define a value function
V ∗(x, s|µ′, µ, λ) where transitions are assumed to be consistent with the primitive transition kernel Pµ′,µ,λ.
Hence, V ∗(x, s|µ′, µ, λ) is the expected net present value for a firm at state x when the industry state is
s, given that its competitors each follows a common strategy µ, the entry rate function is λ, the firm itself
follows strategy µ′, and transitions are governed by the kernel of the underlying industry state Pµ′,µ,λ. In
words, V ∗ provides the actual expected discounted profits a firm would get in the industry.

For MME strategies (µ, λ), define the value of the full information deviation by:

∆µ,λ(x, s) = sup
µ′∈M∗

V ∗(x, s|µ′, µ, λ)− V ∗(x, s|µ, λ). (6)

We will use the value of the full information deviation to measure the extent of sub-optimality of MME
strategies.4 If this value is small, the MME strategy achieves essentially the same profits compared to the
best possible unilateral deviation Markov strategy that keep track of all available information. In this sense,
the value of the full information deviation is similar to the notion of ε−equilibrium. Note that we expect
this value to be small when moments in MME are close to being sufficient statistics of the future evolution
of the industry. That is, when P̂µ,λ[θ′|ŝ] ≈ Pµ,λ[θ′|s], so the perceived transition kernel is close to the
primitive transition kernel, and the industry state s does not provide additional information to predict the
future industry evolution beyond the moment based industry state ŝ.

4Note that we are not comparing the value of the optimal deviation to V (x, ŝ|µ, λ), since it is generally not the actual value of
following strategy µ, as P̂µ′,µ,λ is not the actual transition kernel.
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5 First Approach: Moments Become Sufficient Statistics

In this section we present a class of industry dynamic models for which a succinct set of moments essentially
summarize all payoff relevant information and is close to being sufficient statistics. In these models, the
value of the full information deviation is zero, or becomes zero asymptotically as the number of fringe firms
grows large.

A simple class of models for which this holds is when fringe firms are homogeneous, in the sense that
Xf is a singleton. In this case, a single moment, namely the number of incumbent fringe firms, is a sufficient
statistic of the future evolution of the industry. Next, we describe a model with firm fringe heterogeneity
that does not allow for entry and exit, in which moments also become sufficient statistics as the number of
fringe firms grows large.

Constant Returns to Scale Model for Fringe Firms. We take Xf = <+ (with another component that
we suppress for clarity indicating that the firm is fringe). We assume that there is no entry and exit (therefore
µ = ι), and that there are N − D fringe firms. The analysis below can be applied to single-period profit
functions and transition kernels that depend on any integer moments of the fringe firm state. However, to
simplify the exposition we assume that they both depend only on the first moment. A model like Example
4.1 with α1 = 1 would give rise to this type of profit function. Accordingly, we assume that firms keep track
only of the first un-normalized moment of the fringe firm state, that is, θt =

∑
x∈Xf xft(x). We make the

following assumptions on the primitives of fringe firms only; importantly, no restrictions are placed on the
primitives of dominant firms.

1. The single period profit is linear in the fringe firm’s own state, π(x, ŝ) = xπ1(ŝ) + π0(ŝ) with
supŝ∈Ŝ{π1(ŝ), π0(ŝ)} <∞. The assumption imposes constant returns to scale.

2. For a fixed state x, the cost function increases linearly with the investment level ι. In addition, the
marginal investment cost increases linearly with the state. Formally, c(x, ι) = (cx)ιwith ι ∈ I = <+.

3. The dynamics of a fringe firm’s evolution are linear in its own state: xi,t+1 = xitζ1(ι, ŝt, w1it) +
ζ0(ŝt, w0it), where ι is the amount invested. Each of the sequences of random variables {w0it|t ≥
0, i ≥ 1} and {w1it|t ≥ 0, i ≥ 1} is i.i.d. and independent of all previously defined random quantity
and of each other. In addition, we assume the functions ζ0 and ζ1 are uniformly bounded over all
realizations, investment levels, and industry states. The assumption about linear transitions is similar
to assuming Gibrat’s law in firm’s transitions (Sutton, 1997).

In addition, we assume that, under any strategy played by competitors, there exists a unique solution to each
firm’s investment optimization problem (see Doraszelski and Satterthwaite (2010) for a sufficient condition).

We begin by showing that for any perceived kernel P̂µ the corresponding best response investment
strategy for a fringe firm does not depend on its own individual state.5 All proofs are relegated to Appendix
A.

5This result is similar to Lucas and Prescott (1971) that studies a dynamic competitive industry model with similar assumptions
to ours, but with deterministic transitions and stochastic demand.
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Lemma 5.1. Consider the constant returns to scale model described above. For any MME strategy µ and
for every x, x′ ∈ Xf and ŝ ∈ Ŝ we have µ(x, ŝ) = µ(x′, ŝ) = µ(ŝ).

We use this result to characterize the evolution of the moment under MME strategies as the number of
fringe firms grows. To obtain a meaningful asymptotic regime, we scale the market size together with the
number of fringe firms. Formally, we consider a sequence of industries with growing market size m. As
specified above, our model does not explicitly depend on market size. However, market size would typically
enter the profit function, through the underlying demand system like in Example 4.1. Therefore, we consider
a sequence of markets indexed by market sizes m ∈ N with profit functions denoted by πm. We assume
the number of firms increases proportionally to the market size, that is Nm = Nm−D, for some constant
N > 0. We assume that all other model primitives, including the maximum number of dominant firms, are
independent of m. Quantities associated to market size m are indexed with the superscript m. We state the
following assumption.

Assumption 5.1. Let {µm : m ≥ 1} be a sequence of MME strategies followed by all firms in market m.
Then, there exists a compact set X f ⊂ Xf such that for all m ≥ 0, t ≥ 0, and i ∈ Fmt , P[xmit ∈ X f ] = 1.

While the previous assumption imposes conditions on equilibrium outcomes, it is quite natural in this
context; MME is a sensible equilibrium concept only if fringe firms do not grow unboundedly large. We
have the following result.

Proposition 5.1. Consider the constant returns to scale model under Assumption 5.1, and suppose that for
everym ≥ 1 all firms use MME strategy µm. For a given t, conditional on the realizations of {xit ∈ X f |i ∈
Fmt } and ŝmt , we have

(1/Nm)θmt+1 −
[
ζ̃m1 (ŝmt ) (1/Nm) θmt + ζ̃0(ŝmt )

]
→ 0, a.s.,

as m → ∞, where θmt =
∑

i∈Fmt
xit =

∑
x∈Xf xf

m
t (x), ζ̃m1 (ŝmt ) = E µm [ζ1it(µm(ŝmt ), ŝmt , w1it)], and

ζ̃0(ŝmt ) = E µm [ζ0it(ŝmt , w0it)].

The result shows that the first moment becomes a sufficient statistic for the evolution of the next moment.
In particular, the next moment becomes a linear function of the current moment. Heuristically, this suggests
defining the following perceived transition kernel:6

P̂µm [ζ̃m1 (ŝmt )θmt +Nmζ̃0(ŝmt )|ŝmt ] = 1, (7)

which will become a good approximation as m grows large. In fact, with this perceived transition kernel
and under suitable continuity conditions, one can show that the value of the full information deviation
(appropriately normalized) converges to zero as the market size m approaches infinity.7

6Note that a derivation similar to that in Proposition 5.1 will show that any k-th moment of fringe firms’ states for an integer k
would depend on moments k, k − 1, . . . , 1 only, as m grows large. Therefore, if higher integer moments are payoff relevant they
could be accounted for as well.

7This result requires appropriate continuity conditions on the model primitives, and also that the equilibrium investment strategy
is continuous in the moment-based fringe state. The result is omitted for brevity and can be obtained from the authors upon request.
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The previous result provides the ideal setting for using MME; its equilibrium strategies yield moments
that form a Markov process and hence summarize all payoff relevant information. While we did not restrict
the model primitives for dominant firms, we impose several restrictions on the model primitives for fringe
firms. These restrictions limit the dependence of fringe firms’ equilibrium strategies on their own state and,
in this way, the aggregation of fringe firms’ transitions gives rise to Markov moments. Unfortunately, this
type of aggregation is quite limited. To illustrate this, our next result shows that when firms keep track of one
moment, moments are sufficient statistics only if fringe firms’ equilibrium transitions are, in an appropriate
sense, linear in their own state. To our knowledge, such equilibrium transitions arise only in the constant
returns to scale model presented here or in close variations of it. There, as we saw, equilibrium transitions are
linear, because the primitive transitions are linear and the equilibrium investment strategy does not depend
on the fringe firm individual state.

Proposition 5.2. Assume Xf is a closed interval in <,N−D̄ ≥ 3 , there is no entry and exit in the industry,
and the set of moments contains the α un-normalized moment only, that is, θ(f) =

∑
x∈Xf x

αf(x). Suppose
that under MME strategy µ, the moment is a sufficient statistic for the evolution of the industry, that is:

P̂µ,λ[θ′|ŝ] = Pµ,λ[θ′|s],

for all θ′ ∈ Sθ, s= (f, d, z) ∈ S , and ŝ= (θ, d, z) ∈ Ŝ, with θ(f) = θ. Then, fringe firms’ transitions in
MME must be linear, in the sense that E µ[xαi,t+1|xit = x, ŝt] = xαζ̃1(ŝt|µ) + ζ̃0(ŝt).

Finally, we note that this first approach is closely related to the literature in macroeconomics that deals
with the aggregation of macroeconomic quantities from the decisions of a single ‘representative agent’
(Blundell and Stoker, 2005). With heterogeneous agents, similarly to our model, this type of result is
only obtained under strong assumptions on consumers’ preferences that are also akin to linearity (see, for
example, Altug and Labadie (1994)).

6 Second Approach: Restricting Fringe Firms’ Strategies

In this section we impose less severe restrictions on the model primitives for fringe firms. Instead, we restrict
and loosen the optimality requirement of fringe firms’ strategies. This restriction gives rise to a similar
result to the first approach: moments become sufficient statistics for the future evolution of the industry as
the market size grows. We emphasize that no restrictions will be placed on the strategies or primitives of
dominant firms. As such, this approach and the previous one are mostly useful when dominant firms are
the key focus of analysis while the detailed model of the fringe is of lesser importance. Moreover, we note
that it is possible to check ex-post how sub-optimal the restricted fringe firms’ strategies are. Subsection
6.1 provides a numerical experiment that shows that this approach captures interesting strategic interactions
between the dominant and the fringe firms.

Let M̃ ⊂ M be a set of restricted strategies with typical element µ̃. This restriction is binding only
for fringe firms, so that dominant firms play unrestricted strategies. In addition, let P̂µ̃,λ be a perceived
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transition kernel corresponding to the selection of a set of moments and the restricted fringe strategies. We
define equilibrium in this approach to be MME, with one exception: fringe firms play a restricted strategy
that may be sub-optimal. We require, however, that the restricted strategy played in equilibrium is derived
from the optimal unrestricted strategy. Concretely, let µ′ ∈ M be the optimal unrestricted strategy (in the
sense of C1 in the definition of MME), when the remaining firms play (µ̃, λ). Then we say that (µ̃, λ)
constitute an equilibrium in this second approach if: (a) for dominant firms µ̃ = µ′, (b) for fringe firms µ̃
is derived from µ′, (c) λ and P̂ satisfy C2 and C3, respectively, with Φ being appropriately defined given
the restricted fringe firm strategies. With some abuse of terminology we also call this restricted equilibrium
concept MME.

There are many ways in which one could derive the restricted strategy to be played by the fringe from
the optimal unrestricted strategies (step (b) above). For example, one could take the strategy of the average
agent, or take the restricted strategy to be the one that is closest, by some measure, to the optimal unrestricted
strategies, as will be shown next.

A Model with Restricted Fringe Firms’ Strategies. In the reminder of this section, we illustrate these
ideas in a model with entry and exit. The individual states of fringe firm are in Xf = [0, x̄]. Fringe firms’
transition dynamics are assumed to take the form,

xit+1 = (xit)(1−p)ζ(ιit, wit), (8)

where 0 < p < 1 is assumed to be small. The function ζ is uniformly bounded above and below by ζ and ζ̄,
respectively, over all investment levels and realizations. We assume the random variables {wit|t ≥ 0, i ≥
1} are i.i.d. and independent of all previously defined quantities. This functional form has an appealing
property: a fringe firm’s state at time t+ 1 is, ceteris paribus, increasing at a diminishing rate in the state at
time t. Our assumptions imply that a fringe firm cannot grow larger than x̄ = (ζ̄)1/p.

First, we restrict fringe firms’ investment to be ι(x, ŝ) = ι(ŝ), where the investment cost is (cx)ι. With
a common investment strategy, the transitions in (8) implies that for a small p the growth rate of fringe
firms is close to ζit(ιit, wit), that is the growth of fringe firms is close to proportional to their current state.
Proportional and semi-proportional growth of firms is often referred to in the literature as Gibrat’s law.
Although Gibrat’s law is disputed, previous work suggests that it is a good approximation for small firms.8

Second, we restrict fringe firms’ exit strategy so that a fringe firm in state x stays in the industry with
probability (x/x̄)p. This is equivalent to the restriction ρ(x, ŝ) = F−1

φ (xp/x̄p), where Fφ is the cumulative
distribution function of the sell-off values. Note that the probabilities of staying in the industry are increasing
with the firm’s own state, as is reasonable to assume, since the continuation value will generally be increasing
with the fringe firm’s own state. We can generalize the previous specification by allowing the staying
probability to depend on the industry state in the following way: η(ŝ)(x/x̄)p. In this case, the industry
state-dependent constants η(·) need to be determined as part of the equilibrium computation, for example,
by minimizing the distance between restricted and unrestricted exit strategies.9 To simplify the exposition

8See Sutton (1997) for an excellent survey and Evans (1987) for an estimation of p.
9In the numerical experiments we use the 1− norm for this minimization.

19



we ignore the η factors in the remaining of this section.
The restricted investment strategies are chosen to be an average among all fringe firms in different

individual states. Specifically, given strategies (µ̃, λ), consider the optimal unrestricted strategy

µ′(x, ŝ) = argmax
µ∈M

V (x, ŝ|µ, µ̃, λ) (9)

for all x ∈ Xf and ŝ ∈ Ŝ. Note that the optimal unrestricted strategy can be found by solving a single agent
dynamic programming problem over the moment-based state space. We take the restricted strategy to be the
average strategy:

µ̃′(x, ŝ) = µ̃(ŝ) =
1
x̄

∫ x̄

0
µ′(y, ŝ)dy. (10)

In addition, entry takes a simpler form than that described in Section 3: in state ŝ exactly λ(ŝ) firms enter,
where λ is determined in equilibrium and there is a fixed entry cost.

Now, assume that the single-period profit function depends on the first un-normalized moment. Under
the previous restrictions, we show below that this moment becomes a sufficient statistic as the market size
grows. We can also generalize this results in the following way: suppose that the profit function depends on
the α-th moment and that firms stay in the industry with probability (x/x̄)q with q = p/α. Then, under the
same restrictions on strategies, the α-th moment becomes a sufficient statistic as the market size grows.

To formalize the result, we consider a sequence of industries indexed by the market size m and an
associated sequence of MME strategies (µ̃m, λm). We make the following assumption:

Assumption 6.1. There exists a constant C > 0, such that for all sequences of MME strategies {(µ̃m, λm) :
m ≥ 0} and for all t, we have |Fmt | ≤ Cm almost surely, where Fmt is the set of incumbent fringe firms for
market size m.

While the previous assumption imposes conditions on equilibrium outcomes, it is quite natural in this
context; it states that the equilibrium number of fringe firms cannot grow larger than the market size. We
have the following result.

Proposition 6.1. Consider the model with restricted fringe firms’ strategies described above. Suppose that
Assumption 6.1 holds, and suppose that for every m ≥ 1, all firms use MME strategies (µ̃m, λm). For a
given t, conditional on the realizations of {xit|i ∈ Fmt } and ŝmt , we have

(1/m)θmt+1 − (1/m)
[
ζ̃m(ŝmt )θmt /x̄

p + λm(ŝmt )xe
]
→ 0 a.s.,

as m→∞, where θmt =
∑

i∈Fmt
xit and ζ̃m(ŝt) = E µ̃m [ζit(µ̃m(ŝt), wit)].

The result shows that the first moment becomes a sufficient statistic and suggests defining the following
perceived transition kernel:

P̂µ̃m,λm [ζ̃m(ŝmt )θmt /x̄
p + λm(ŝmt )xe

∣∣ŝmt ] = 1, (11)

which will become a good approximation as m grows large. Similarly to the first approach, with this
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Table 1: Industry Averages

State of a dominant firm 9.15
State of a fringe firm 2.22
Number of fringe firms 13.5
First (un-normalized) moment 29.8
Number of fringe firms exiting/entering per period .73
Size of exiting fringe firms 1.8

perceived transition kernel and under suitable continuity conditions, one can show that the value of the
full information deviation (appropriately normalized) converges to zero for dominant firms as the market
size m approaches infinity. In this second approach, we cannot show this result for fringe firms, because
they use restricted strategies in equilibrium. It is possible, however, to measure ex-post the degree of sub-
optimality of the restricted fringe strategy. More formally, let (µ̃, λ) be the MME strategies. Let µ′ be the
unrestricted best response to (µ̃, λ) (see equation (9)). Then, using forward simulation, we can compare
the actual expected discounted profits achieved by µ′ relative to those achieved by µ̃, that is, the difference
V ∗(x, s|µ′, µ̃, λ) − V ∗(x, s|µ̃, λ) over some set of selected industry states (e.g., the most visited states in
the long-run under strategies (µ̃, λ)).

6.1 Numerical Experiments

In this section, we illustrate that even the previous model, where fringe firms’ strategies are restricted,
already generates interesting strategic dynamic interactions between the dominant and fringe firms. We first
solve for the MME of the model, then simulate an industry and report the industry statistics. To illustrate that
the problem we are analyzing could not have been analyzed in a standard dynamic oligopoly framework, we
report upfront that the average number of fringe firms in equilibrium is 13.5 with individual states in [0, 10]
and 2 dominant firms with individual states in {6, 7, . . . , 11}. Solving for MPE with this size of the state
space is computationally intractable.

We discretize the state space for moments and the set of fringe firm states and solve for the MME.
In short, in our algorithm, given strategies (µ̃, λ) the perceived transition kernel is derived. Given these
perceived transitions, we compute firms’ best responses (C1) using value iteration and linear interpolation
around grid points. We then use an inner loop to update the entry strategy until the zero profit condition
(C2) is satisfied. This loop alternates between modifying λ in the appropriate direction and recomputing
the perceived value functions and transition kernel. To speed up the computation, we do not recompute
incumbent firms’ strategies during this subroutine. We iterate these steps until convergence.

We consider 2 dominant firms and a fringe tier with a Dixit-Stiglitz profit function of monopolistic
competition of the form π(xit, s̄t) = m

xbit
xbit+

P
j 6=i x

b
jt

(note that this profit function is very similar to Example
4.1). We take b = 1 for simplicity. The transition probabilities for dominant firms are a generalization
of those found in Pakes and McGuire (1994) and are given in detail in Appendix B as well as a list of
parameters. We assume the identity of dominant firms does not change over time.
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Figure 1: Conditional Moments (Big dominant firm at maximal state, 11)

We compute MME and simulate 10, 500 periods and remove the first 500 periods. Table 1 summarizes
some industry averages. The industry statistics go in the direction one would expect. For example, the
average fringe state is higher than the entry state xe = 1. Some of the strategic interaction between the
fringe firms and dominant firms is captured in Figure 1. The figure shows that on average the higher the
state of dominant firms the lower the un-normalized moment of fringe firms, and consequently the lower the
cumulative size of fringe firms (specifically, we vary the size of one dominant firm when the other dominant
firm state is held constant). Because fringe firms’ spot profit are decreasing with the state of dominant firms,
entry and investment are less profitable for fringe firms the higher the state of the dominant firm. This
suggests that dominant firms invest to deter entry and investment from the fringe tier.

We also compare MME with an EP-style equivalent model with no fringe firms. Ignoring fringe firms
is a common practice in the applied literature to simplify computation. In order to make the comparison
fair we normalize the profit function in the EP model by fixing the fringe firms’ moment to its average state
from the MME simulation. We compute the MPE of the ‘normalized’ EP model and simulate the industry.
The results show that the average dominant firm state decreases to 6.25 from the MME value of 9.15. This
suggests that deterring entry and pushing down the investment in the fringe tier are key determinants in
dominant firms’ investment incentives. Moreover, ignoring fringe firms may bias downwards the predicted
investment efforts exerted by dominant firms. The collective presence of fringe firms, in spite of their weak
individual market power, disciplines dominant firms and forces them to invest more than in the duopoly
case. We conclude that explicitly modeling fringe firms may have important effects on conclusions derived
in counterfactuals.

7 Third Approach: Unrestricted Model

The previous two approaches restrict the model’s primitives and the set of allowable strategies for fringe
firms. In this section, we do not impose such restrictions. Instead we study MME assuming that firms,
perhaps wrongly, suppose that moments form a Markov process that summarizes all payoff relevant infor-
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mation related to fringe firms. In this setting, we discuss how to extend our dynamic industry model to allow
fringe firms to become dominant and vice versa, thus fully endogenizing the market structure in MME.

There are two main challenges that arise in this approach. First, we need to construct natural and
meaningful candidates for the perceived transition kernel, P̂, that is, we need to choose a Φ operator. Such
kernels should ideally approximate well the actual transitions of moments under equilibrium strategies.
Second, MME strategies will generally not be optimal, because moments may not summarize all payoff
relevant information. To assess the extent of sub-optimality of MME strategies, one could ideally compute
the value of the full information deviation. However this is not possible in general; computing a Markov
best response suffers from the curse of dimensionality. To address this issue, we introduce a computationally
tractable error bound that provides an upper bound to the value of the full information deviation. This bound
is useful because it allows one to evaluate whether the state aggregation is appropriate or whether a finer state
aggregation is necessary, for example by adding more moments. In fact, if the value of the full information
deviation is small, it is plausible that firms would use the relatively simpler MME strategies as oppose to
more complex Markov strategies that do not yield significant additional benefits to them.

The reminder of this section is organized as follows: Subsection 7.1 describes two candidates for the
perceived transition kernel. Subsection 7.2 shows how to extend the model to endogenize the set of dominant
firms. Subsection 7.3 describes an algorithm to solve for MME and Subsection 7.4 presents numerical
experiments on a calibrated model of the beer industry in the United States over the second half of the
previous century. Subsection 7.5 numerically compares MME with MPE strategies. The error bound is
discussed in Section 8.

7.1 Candidate Perceived Transition Kernels

A natural choice for the perceived transition kernel is the empirical transitions of industry states of Example
4.2. Note that this kernel does not specify transitions outside the recurrent class induced by firms’ strategies.
Transitions outside the recurrent class, however, may affect the equilibrium play in that firms’ perception
about these transitions may affect their equilibrium actions, and under these actions those states are indeed
never reached. One approach to mitigating the effect of beliefs outside the equilibrium recurrent class is to
assume that firms’ transitions exhibit a small degree of noise, so that all industry states are in the recurrent
class. Alternatively, one can consider the limit of models with diminishing noise in transitions.

In addition, we briefly describe another construction of the perceived transition kernel that has been
successfully used in stochastic growth models in macroeconomics (Krusell and Smith, 1998) and subsequent
literature. This perceived kernel assumes a parameterized and deterministic evolution for moments. That is,
starting from industry state ŝt = (θt, dt, zt), the next moment value is assumed to be

θt+1 = G(θt; ξ(dt, zt)),

where ξ(dt, zt) ∈ Ξ are parameters. For example, this could represent a linear relationship with one mo-
ment, θt+1 = ξ0(dt, zt) + ξ1(dt, zt)θt. In this case the goal would be to choose functions ξ0 and ξ1 that
approximate the actual transitions best, for instance by employing linear regressions. In comparison to
the empirical transitions kernel, this perceived transition kernel has the disadvantage of imposing strong
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parametric restrictions and assuming deterministic transitions. On the other hand, these same restrictions
significantly reduce the computational burden of solving for MME.

7.2 Endogenous Market Structure

We now briefly describe a possible way to endogenize the set of dominant firms. Denote by Kf ⊂ Xf and
Kd ⊂ Xd the sets of states from which a fringe firm may become dominant and a dominant firm becomes
fringe, respectively. In every period, if an incumbent dominant firms enters Kd, it becomes a fringe firm
in state xdf ∈ Xf/Kf in the next period with certainty (one could also assume that this event occurs with
some probability). In every period where |Dt| < D̄, so that the number of incumbent dominant firms is less
than its maximum allowable value, one of the fringe firms who entersKf in that period becomes a dominant
firms in state xfd ∈ Xd/Kd in the next period. If more than one fringe firm enters Kf in that period, one
of them is chosen at random and transitions to xfd, the other firms transition with certainty to some state in
Xf/Kf . Note that under this specification the transitions among the fringe and dominant tiers are naturally
embedded in the transitions of firms. A specific example that fits this specification is that a fringe firm
becomes dominant when growing above a pre-determined size.

While this extension does not require a modification of MME, the perceived transition kernel needs to
explicitly account for the transitions between the fringe and dominant tiers. Recall that Pµ′,µ,λ[x′, d′, z′|x, ŝ]
(see (3)) is the kernel that describes the actual evolution of (xit, dt, zt), which firms can determine exactly
from the primitive transition kernel when transitions between the fringe and dominant tiers are not possible.
However, with such transitions moments may not contain sufficiently detailed information to determine
exactly the transition probabilities between the fringe and dominant tiers. Therefore, in this case, we need
to modify the kernel that describes the evolution of (xit, dt, zt) to incorporate firms’ perceived probabilities
that such transitions will occur given the moment based industry state. In MME Φ will specify consistency
conditions for these events in addition to moments transitions. We note that in the definition of P̂ in (3)
we implicitly assume that the evolution of a single fringe firm does not affect the evolution of the moments.
Although in this more general setting a large fringe firm that leaves the fringe tier this may affect the value
of the moments, for simplicity we keep the independence assumption.

7.3 Computation

To compute MME we employ a best response-type algorithm. The solver starts with a strategy profile,
checks for the equilibrium conditions, and updates the strategies by best responding to the incumbent strat-
egy until an equilibrium is found. In each iteration we construct the perceived transition kernel from firms’
strategies according to the operator Φ. Depending on the operator used this could be done analytically or
by simulation. We illustrate the general algorithm below for the empirical transitions kernel and comment
on the generalization when appropriate. We use simulation to compute the empirical transition kernel P̂µ,λ

given strategies (µ, λ). A more detailed description is provided in Algorithm 1.10 The following remarks

10For simplicity, the algorithm does not specify the formation of the perceived transition kernel when transitions across tiers are
allowed. This is done by keeping track in the course of the algorithm, at each state ŝ, of the probability that a fringe firm becomes
dominant. These probabilities should coincide with the empirical transition probabilities observed under the equilibrium strategies.
We also note that in the algorithm, 0 < σ < 1 is chosen to speed-up convergence.
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are important:

1. The algorithm terminates when the norm of the distance between a strategy and its best responseis
small. We consider the following norm ‖µ − µ′‖h = maxx∈X

{∑
ŝ∈Ŝ |µ(x, ŝ) − µ′(x, ŝ)|h(ŝ)

}
,

where h is a probability vector. We take h to be the frequency in which each industry state is visited,
hence states are weighted according to their relevance. Moreover, this is useful because simulation
errors in the estimated transition kernel are higher for states that are visited infrequently.

2. Even if in theory all states are recurrent, in a finite length simulation it is possible that some states
will not be visited, and for them the perceived transition kernel cannot be computed. For those states
we set the transitions in P̂ to be some predetermined value, for example, transition with probability
one to the closest state (under some suitable norm) that has been actually visited. We tried different
specifications for these states and found that they did not make much difference on MME outcomes.

Algorithm 1 Equilibrium solver
1: Initialize with (µ, λ) and industry state s0 = (f0, d0, z0) with corresponding ŝ0;
2: n := 1, δ := ε+ 1;
3: while δ > ε do
4: Simulate a T period sample path {(ft, dt, zt)}Tt=1 with corresponding {ŝt}Tt=1 for large T ;
5: Calculate the empirical frequencies of industry states h(ŝ) := 1

T

∑T
t=1 1{ŝt = ŝ} for all ŝ ∈ Ŝ;

6: Calculate for every ŝ ∈ Ŝ with h(ŝ) > 0

P̂µ,λ[θ′|ŝ] :=
∑T

t=1 1{ŝt = ŝ, θt+1 = θ′}∑T
t=1 1{ŝt = ŝ}

;

7: Solve µ′ := argmax
µ′∈M

V (x, ŝ|µ′, µ, λ) for all (x, ŝ) ∈ X × Ŝ;

8: Let λ′(ŝ) := Eµ,λ[V (xe, ŝt+1|µ′, µ, λ)|ŝt = ŝ] for all ŝ ∈ Ŝ;
9: δ := max(‖µ− µ′‖h, ‖λ− λ′‖h);

10: µ := µ+ (µ′ − µ)/(1 + nσ);
11: λ := λ+ (λ′ − λ)/(1 + nσ);
12: n := n+ 1;
13: end while;

If the algorithm terminates with ε = 0 (and if all states are recurrent) we have found an MME. A positive
value of ε allows for numerical error. For different perceived transition kernels, lines 4-6 in Algorithm 1 will
be different. For example in the parameterized kernel of Subsection 7.1, line 6 may include a regression for
each (d, z) to find the parameters ξ(d, z) that best fit the simulated transitions.

We found that for the empirical transitions kernel a real time stochastic algorithm similar to Pakes and
McGuire (2001) and Fershtman and Pakes (2010) is much faster than Algorithm 1. In this variant the kernel
is not simulated in every iteration, but instead continuation value functions that allow to solve for firms’
optimal strategies are kept in memory and updated through simulation draws. In this sense, this modified
real-time algorithm performs the simulation and optimization steps simultaneously. We use one step of
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Algorithm 1 to check whether C1 and C2 hold and convergence has been achieved. The details of this
variant of the algorithm are presented in Appendix D.1.

7.4 Numerical Experiments – The Beer Industry

Some questions that have puzzled economists for decades are: What are the determinants of market struc-
ture? Why some industries become dominated by a handful of firms while still holding many small firms?
How does the resulting market structure affect market outcomes? We believe that the approach developed
in this section can be useful to shed light on these questions. In particular, our model and algorithm can be
used to develop counterfactuals in different empirical settings in which the market structure is endogeneized
in a fully dynamic model.

To illustrate the applicability of our method, we perform numerical experiments that are motivated by
the long concentration trend in the beer industry in the US during the years 1960-1990. In the course of
those years, the number of active firms dropped from about 150 to 30, and three industry leaders emerged:
Anheuser-Busch (Budweiser brand among others), Miller, and Coors. Two competing explanations for this
trend are common in the literature (see Tremblay et al. (2005)): an increase in the minimum efficient scale
(MES), and an increase in the importance of advertising that with the emergence of national television has
benefited big firms. The role of advertising as an “endogenous sunk cost” in determining market structure
is discussed in detail in Sutton (1991) (see Chapter 13 for a discussion on the beer industry). In this section
we calibrate a model of the beer industry to examine the role advertising may have on market structure. The
model is similar to the dynamic advertising model by Doraszelski and Markovich (2007). We emphasize
that it is not our goal to develop a complete and exhaustive empirical model of the beer industry, but rather
to illustrate our approach in a setting of potential empirical relevance.

The model follows Example 4.1, where xit is the goodwill of firm i in period t with associated market
share

σ(xit, st) ∝ (xit)α1(Y − pit)α2 .

Firms invest in advertising to increase their goodwill stock over time and compete in prices every period.
The number of dominant firms is determined endogenously in the equilibrium with a maximum number of
three. The transitions between goodwill states are similar to those in Pakes and McGuire (1994), and are
specified in Appendix C. The numerical experiments examine the effect of different specifications of the
contribution of goodwill on firms’ profits as captured by the parameter α1. Firms keep track of the α1-th
unnormalized moment and MME is computed for each parameter specification.

We say that the profit function exhibits: decreasing returns to advertising (DRA) if α1 < 1, constant
returns to advertising (CRA) if α1 = 1, and increasing returns to advertising (IRA) if α1 > 1. We consider
three specifications of returns to advertising with αf1 and αd1 controlling the returns to advertising for fringe
and dominant firms, respectively. These take values in (αf1 , α

d
1) ∈ {αD, αC} × {αD, αC , αI}, where

(αD, αC , αI) = (.85, 1, 1.1). The three cases under consideration are: (1) DRA-DRA with (αD, αD), (2)
DRA-CRA with (αD, αC), and (3) CRA-IRA with (αC , αI). Firms become dominant when their individual
goodwill level becomes larger than a predetermined value.

We calibrate the model parameters from a variety of empirical research that studies the beer industry

26



Figure 2: Average size distribution (un-normalized) of firms in log-scale. The solid line represents fringe
firms and the triangles represent dominant firms.

or related advertising settings.11 For example, the goodwill level captures a measure of the discounted
expenditure on advertising, α2 and Y are chosen to match the price elasticity in the average price, and the
average sell-off value is taken from costs of used manufacturing plants. See Appendix C for a list of the
parameters and their sources.

Figure 2 plots (on a log-scale) the average goodwill distribution of firms for the three cases, and Table 2
reports some average industry statistics. The experiments suggest that higher returns to advertising indeed
give rise to more right-skewed size distributions, as it is expected. Indeed, it is clear that in the DRA-
DRA case there is on average a vacancy in the dominant tier, and dominant firms are not much bigger than
the biggest fringe firms. In both DRA-CRA and CRA-IRA the industry is much more concentrated and
dominant firms are much larger than fringe firms. Also, dominant firms remain dominant for a much larger
period of time. In addition, as the industry becomes more concentrated, there are fewer incumbent fringe
firms, they are smaller, and spend less time in the industry on average. In that sense, large dominant firms
deter the growth of fringe firms.

We emphasize that each experiment includes 200 firms and 29 different individual states, which makes
it much larger than any problem that can be solved if MPE was used as an equilibrium concept. We hope
that these numerical experiments highlight the usefulness of our approach. In particular, we envision that it
may be specially useful to perform counterfactuals when the market structure is endogenously determined.

7.5 Comparison with Markov Perfect Equilibrium

In the previous section, we presented numerical experiments in which MPE is infeasible to compute. In this
subsection we present a set of experiments to compare our equilibrium concept with MPE in small industries
in which we can compute MPE. In particular, we consider industries with a total of 6 firms (dominant and

11We thank Victor Tremblay and Carol Termblay for providing supplementary data.
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Industry averages CRA-IRA DRA-CRA DRA-DRA
Concentration ratio C2 0.42 0.36 0.13
Concentration ratio C3 0.53 0.44 0.17
First moment (normalized by # fringe) 1.085 1.22 1.74
Active fringe firms (#) 147 167 180
Active dominant firms (#) 3 3 2.3
Size incumbent fringe (goodwill) 1.1 1.4 2
Size dominant (goodwill) 83.4 64.9 24.1
Entrants per period (#) 16.5 12.3 7.6
Time in industry fringe 12.9 16 26.2
Time as dominant 1536 360 21

Table 2: Average industry statistics
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Figure 3: Average size distribution of firms under MME and MPE.

fringe) and 9 individual states. In spite of the small number of firms, we find that the two equilibria produce
very similar market outcomes as will be shown below.

We consider the same model specification as the beer industry experiments, expect for the changes
outlined next. We scale down the market size due to smaller number of firms and rule out entry and exit.
We again assume that bigger firms are able to achieve higher returns for advertising, as captured by the
parameter α1. Here the returns to advertising of firms in states 1 to 5 and of firms in states 6 to 9 are
captured by parameters αlow

1 and α
high
1 , respectively. We take αlow

1 = 1 and consider three cases with
α

high
1 ∈ {1.5, 2, 2.5} that we call diffused, semi-concentrated, and concentrated, respectively, as we expect

higher returns to advertising to result in more concentration.
We first solve for MPE for each of the three cases. Then we take individual state 6 to be the one

separating between fringe and dominant firms, and solve for MME with a single moment. That is, firms with
states 5 or lower are fringe, and the rest are dominant. The number of active dominant firms is endogenous
(see Subsection 7.2) with a maximum of 4 dominant firms.

Figure 3 shows the long-run average size distribution of firms in both equilibria for the three cases. No-
tably, the average market structure is almost identical under both equilibria concepts for the three cases.
A closer inspection shows that, on average, firms spend slightly more time in higher states in MPE than
in MME. This is expected, since small (fringe) firms ignore their market power in MME, but not in MPE.
Therefore, small firms have stronger incentives to grow in MPE, resulting in a more right skewed distribu-
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Diffused Semi-concentrated Concentrated
CSMPE/CSMME 6.9% 7.4% 6.5%
PSMPE/PSMME 5.5% 5.7% 4.8%

Table 3: Comparison of consumer and producer surplus under MME and MPE.

tion. This incentive should decrease with the number of firms in the market. Thus it is reasonable to expect
that the gap between the size distributions will be even smaller for industries with many firms. In addition,
Table 3 compares both the consumer and producer surpluses (CS and PS, respectively). The difference
between those quantities under both equilibria is moderate and ranges from 4.8% to 7.4%.

These experiments suggest that MME and MPE can give rise to similar market outcomes, even in in-
dustries with few firms and when moments are not neccesarily sufficient statistics. Finally, we would like
to comment that even with 6 firms, the MME computation was about 10 times faster than MPE. Moreover,
with a fixed number of dominant firms, as the number of fringe firms scales, the running time for the MPE
solver would scale exponentially, whereas the running time for the MME solver would remain constant.

8 Bounding the Value of the Full Informational Deviation

In the third approach moments are not sufficient statistics for the future evolution of fringe firms. We evaluate
the performance of MME strategies by considering the value of the full information deviation, that is, a
unilateral deviation to a strategy that keeps track of the underlying state of the industry s. In theory, one could
compute the value of the unilateral deviation exactly, however this is almost as computationally challenging
as solving for the MPE in the underlying state space. As such, we suggest a novel computationally tractable
error bound that upper bounds the value of the full information deviation. This error bound is derived by
observing a connection between the unilateral deviation problem of a firm in MME and problems in robust
dynamic programming (RDP); see Iyengar (2005) for a reference on this literature.12 We note that to the
best of our knowledge ideas from RDP have not been previously used to derive sub-optimality error bounds
for dynamic programs with partial information as we do here.

Let (µ, λ) be a fixed MME strategy for the reminder of this section, and assume that firms’ profit function
π(x, ŝ) and cost function c(x, ι) are uniformly bounded for all states (x, ŝ) and investment levels ι ∈ I.
Recall that V ∗(x, s|µ, λ) is the actual value of playing MME strategies starting from (x, s). Denote by
V
∗(x, s|µ, λ) = supµ′∈M∗ V ∗(x, s|µ′, µ, λ). The value of the full informational deviation is ∆µ,λ(x, s) =

V
∗(x, s|µ, λ)− V ∗(x, s|µ, λ) (see (6)). Note that given MME strategies (µ, λ), V ∗(x, s|µ, λ) can be easily

computed using forward simulation. However, the problem of finding the optimal strategy that achieves V ∗

is subject to the curse of dimensionality. Instead we find an upper bound to V ∗ with which we can upper
bound ∆µ,λ. To do so we construct a robust Bellman operator as follows. For every ŝ = (θ, d, z) ∈ Ŝ

12RDP considers Markov decision processes with unknown transition kernels in which the decision maker chooses a ‘robust’
strategy to mitigate this ambiguity. In our case, observing the moment, but not the underlying industry state, is equivalent to having
ambiguity about the underlying transition probabilities. Therefore, the unilateral deviation problem of an agent in MME can be
reformulated as a RDP problem.
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define the consistency set Sf (ŝ) = {f ∈ Sf
∣∣θ(f) = θ}, that is the set of all fringe firm distributions that are

consistent with the value of the moments in state ŝ. Note that moments are not sufficient statistics for the
evolution of the industry, because typically Sf (ŝ) is not a singleton and different fringe firm distributions in
the consistency set may have different future evolutions. Now, define

(TRV̂ )(x, ŝ) = sup
ι∈I
ρ≥0

sup
f∈Sf (ŝ)

{
π(x, ŝ) + E

[
φ1{φ ≥ ρ}

+ 1{φ < ρ}
[
− c(x, ι) + β E µ,λ[V̂ (xi,t+1, ŝt+1)

∣∣xit = x, st = (f, d, z), ι]
]]}

, (12)

where V̂ ∈ V̂ is a bounded vector V̂ : X × Ŝ → < and 1{·} is the indicator function. Recall that we
assume all competitors use MME strategies (µ, λ). That is, the robust Bellman operator is defined on X ×Ŝ
and it is identical to the standard Bellman operator associated with the best response in C1 in the definition
of MME, except that the firm can also choose any underlying fringe firm state consistent with the moment
θ.

In Lemma A.1 in the Appendix, we show that the robust Bellman operator TR has a unique fixed point
V̂ ∗ that we call the robust value function. The next result relates it to the optimal value function V ∗.

Theorem 8.1. For all (x, s) ∈ X × S

V
∗(x, s) ≤ V̂ ∗(x, ŝ),

where ŝ is the moment based industry state that is consistent with s, that is, θ = θ(f)

In essence, the robust value function resolves the indeterminacy of moments transitions by choosing the
best fringe firm state from the associated consistency set. Intuitively, this should provide an upper bound for
V
∗. Therefore, we can bound the value of full informational deviation with ∆̂(x, s) = V̂ ∗(x, ŝ)−V ∗(x, s),

where ŝ is the moment-based industry state of s. The advantage of computing V̂ ∗ over V ∗ is that TR operates
on the moment based state space Ŝ which is much smaller than S . Nevertheless, the computation of V̂ ∗ is
still demanding as we explain next.

Finding the fixed point of the operator TR is generally a hard computational problem, in fact it is NP-
complete (Iyengar, 2005, §3). This is not surprising, since the optimization over consistency sets may be
very complex. However, iterating the operator TR becomes much simpler if there is a large number of fringe
firms. In this case, the one-step transition of the fringe firm state is close to being deterministic, because,
conditional on the current state, the transitions of individual fringe firms average out at the aggregate level
by a law of large numbers. When one-step transitions are deterministic, finding the optimal consistent f in
(12) is equivalent to choosing the next moment from a set of moments that are accessible from the current
industry state. This considerably simplifies the computation of the inner maximization in (12), since the
moment accessibility sets are low dimensional. Moreover, characterizating these accessibility sets can be
done efficiently. We provide details of this procedure in Appendix D.2. With this modification in place,
loosely speaking, computing the bound is tractable for problems for which computing MME is tractable.13

13In applications, the number of fringe firms N is finite, hence, the robust bound based on deterministic transitions for the fringe
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It is simple to observe that if moments are sufficient statistics to predict the future evolution of the in-
dustry, then the bound is tight. If this is not the case, the gap between the actual value of the full information
and the quantities computed with the robust bound, ∆̂µ,λ(x, s) depend on the distance V̂ ∗(x, ŝ)− V ∗(x, s).
To lower this gap and make the bound tighter we can compute the robust bound over a refinement of the
moment-based state space used in the equilibrium computation by including moments in the robust operator
not included in MME. For example, we could add another contemporaneous moment like a quantile, or
add a lagged moment. This will reduce the size of the consistency sets making the bound tighter, albeit
increasing the computational cost. We illustrate this with numerical experiments in the next subsection.

Lastly, we comment about the necessary modification to the robust bound when firms can transition
between tiers. In industry states where there are no vacancies in the dominant tier (|Dt| = D), the bound
does not change. In other industry states, the deviating firm can pick a fringe firm state that does not allow
any fringe firm to transition to a state from which it can become dominant, that is, a distribution f with
f(x) = 0 for all x ∈ Kf . In this case the optimization over consistency sets yields the deviating firm more
influence on the evolution of the industry that results in a looser bound. This can be mitigated, however, by
augmenting the state space, for example by keeping track of the number of firms in Kf .

8.1 Numerical Experiments

We have done extensive numerical experiments using the robust bound. First, in one set of experiments we
computed the robust bound for several instances of models in which fringe firms are constrained in their
strategies as in Section 6. Here, when the number of fringe firms is large, the value of the full information
deviation for dominant firms should be small as suggested by the analysis in that section. The robust bound,
indeed, confirmed this, taking very small values.

We also experimented in models of dynamic oligopoly competition when moments are not sufficient
statistics corresponding to the third approach. In particular, we consider two simplified models similar to
the beer industry experiments of Subsection 7.4 with a single dominant firm (D is a singleton) that operates
under constant returns to advertising. In the first model N = 200 and fringe firms can enter and exit the
market (model E), in the second N = 100 and firms cannot enter or exit the industry (model NE). For each
model we vary αf1 , the parameter controlling fringe firms’ returns to advertising, from .45 to .65. The lower
the returns to advertising, the smaller the reward from investment and the more homogenous the fringe firms
are in equilibrium. Since moments are sufficient statistics when fringe firms are homogenous, we expect the
error bound to be lower for low values of αf1 .

In both models E and NE we use the parametric approach of Subsection 7.1 to construct the perceived
transition kernel. In particular, a linear relationship

θt+1 = ξ0(dt) + ξ1(dt)θt

firm state is only an approximation to an upper bound. It is possible to formally derive a probabilistic version of the robust bound
that corrects for this using standard probability bounds. Loosely speaking, by a central limit theorem the correction term is of the
order

√
N . However, given our numerical experience, we believe that in many settings of interest in which N is large, the square

root N correction will not have a significant impact for practical purposes.
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(a) No Entry/Exit (b) Entry/Exit

Figure 4: Error Bound

is assumed, and the parameters {(ξ0(d), ξ1(d))}d∈Sd are taken to fit the simulated transitions best using
ordinary least squares. To simplify, we assume there is no aggregate shock. We report in Figures 4a and 4b
the expected error bound for both dominant and fringe firms as a percentage of the actual value function.
Namely, we plot

E µ,λ

[ ∆̂µ,λ(x, s)
V ∗(x, s|µ, λ)

]
,

where the expectation is taken with respect to the invariant distribution of the underlying industry state s.14

In addition to the standard robust bound, we consider a variation where a lagged fringe firm state enters the
computation of the consistency sets. This reduces the size of these sets and so it decreases the gap between
the actual value of the full information and the error bound. Indeed we see that the lagged state decreases the
error bound, in particular in model E. Adding further contemporaneous or lagged moments should generally
make the error bound even tighter.

The experiments agree with our conjecture that a more homogenous fringe tier (low αf1 ) will result in
a lower error bound. In addition, we see that the error bounds are generally lower for model NE. This is
explained by the better fit of the linear moment transitions without entry and exit. Entry and exit decisions
are inherently nonlinear. As such, the assumed linear moment transitions approximate the actual moment
transitions in NE better than in E resulting in a lower value of the full information deviation.

These experiments suggest that the robust bound can be useful to test the extent of sub-optimality of
MME strategies in terms of a unilateral deviation. Based on our numerical results, we found that depending
on the model, the bound can be sometimes tight indicating that the extent of a unilateral deviation is small,
but it can also be loose. In the latter cases, refining the state space by adding additional moments when com-
puting the robust bound can be helpful to make the bound tighter and more useful. Also, adding additional
moments to firms’ MME strategies should generally improve the accuracy of the perceived transition kernel

14For dominant firms, the expectation is also taken with respect to the invariant distribution of their individual state evolution.
For fringe firms, x is taken to be the most visited fringe state.
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and it is plausible to expect that this would decrease the bound as well. There may still be settings in which
even after adding several moments, the bound will be loose. This is not entirely surprising as the error bound
derived in this paper is very generic and does not use any problem specific information. We leave potential
refinements of our bound that use problem specific information as matter for further research.

9 Extensions

Our approach is, of course, related to the important literature in macroeconomics that studies models with
heterogeneous agents in the presence of aggregate shocks. Notably, Krusell and Smith (1998) studies a
stochastic growth model with heterogeneity in consumer income and wealth. Other papers focus on firm
level heterogeneity in capital and productivity (see, for example, Khan and Thomas (2008) and Clementi
and Palazzo (2010)). All of these models assume a continuum of agents and therefore agents’ dynamic
programming problems are infinite dimensional; strategies depend on the distribution of individual states.
Motivated by the seminal idea in Krusell and Smith (1998), to overcome the curse of dimensionality, in
these papers agents are assumed to keep track of only few statistics of this distribution. Note that while
these macroeconomic models do not have dominant agents, our framework can easily accommodate them,
as an aggregate shock can be understood as an exogenous dominant firm.

While our approach is inspired by this previous literature, we believe that in turn our results can also
be useful in these macroeconomic models as we now explain. We start describing the connections to the
literature that focuses on firm level heterogeneity, because it is more directly related to our model, and then
discuss Krusell and Smith-style models.

9.1 Dynamic Industry Models

Dynamic industry models with a continuum of firms have been applied to several settings in macroeco-
nomics such as business cycles and international trade policy. These models often extend the pioneering
model of Hopenhayn (1992) to include an aggregate shock. Because these models assume an infinite num-
ber of firms we refer to them as infinite models.

In partial equilibrium, infinite models are often similar to the model we introduced in Section 3, with
minor modifications that we now discuss.15 An infinite model represents an asymptotic regime where the
number of firms and the market size become infinite. An industry state is represented by a measure over the
Borel sets of X . The state space is the space of all such measures. There is an infinite mass of potential
entrants. The rest of the model primitives are the same as in the (finite) model of Section 3. Because of
averaging effects across firms, conditional on the current value of the aggregate shock and the industry state,
the next period’s industry state evolves deterministically. Therefore, the only source of uncertainty in the
infinite model is the aggregate shock.16

15Weintraub et al. (2011) provide more details regarding the connection between (finite) dynamic oligopoly models and infinite
models.

16Note that in the presence of an aggregate shock, the commonly used concept of stationary equilibrium (SE), in which the
industry state is assumed to be constant over time due to averaging effects, is no longer a reasonable equilibrium concept, because
the industry state fluctuates with the aggregate shock.
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Our results are connected to infinite models in several levels. Because in an infinite model a law of large
numbers is assumed to hold exactly to predict the one period evolution of the industry state, the perceived
transition kernel defined in equations (7) and (11) for the first and second approaches, respectively, will
coincide exactly with the actual transitions of the underlying industry state. In this case, the first moment is
a sufficient statistic in MME and the value of the full information deviation is exactly zero (recall that the
latter is only true for dominant firms in the second approach). Moreover, the robust bound derived in the
third approach based on a law of large numbers will be a valid upper bound without further corrections. We
explore in more detail the usefulness of the bound in the context of stochastic growth models next.

9.2 Stochastic Growth Models

The seminal paper of Krusell and Smith (1998) studies an infinite-horizon, stochastic general equilibrium
model with aggregate and individual level shocks, and incomplete insurance (see Krusell and Smith (2006)
for a recent survey of this literature). In the model, forward looking agents seek to maximize the stream of
expected discounted utility by making consumption/saving decisions. To make these decisions, consumers
need to forecast the prices in the market, such as interest rates and wages. In equilibrium, those in turn
depend on both aggregate shocks and the distribution of wealth across agents.

Therefore, in principle, to make decisions agents need to keep track of the distribution of wealth, which
is highly dimensional. However, Krusell and Smith (1998) show that in this model the first moment of
this distribution is essentially a sufficient statistic for the evolution of the economy. The reason is that
agents’ equilibrium decisions turn out to be almost linear in their state. They call this property “approximate
aggregation”. In fact, if decisions were exactly linear, the first moment would be an exact sufficient statistic,
as in our first approach.

While the approximate aggregation property has shown to be quite robust in this class of models, Krusell
and Smith (2006) and Algan et al. (2010) acknowledge that it does not hold for all models and may not hold
for important models considered in the future. For this reason, it is important to understand the boundaries
of approximate aggregation by testing its accuracy. Den Haan (2010) describes the limitations of commonly
used accuracy tests, such as the so called “R2 test” and provide other alternatives. These tests often try
to measure the accuracy of the perceived transition kernel proposed. We believe the bound from our third
approach provides a more direct test of the validity of a state aggregation technique, because it directly
measures improvements in payoffs. Note that the accuracy of the perceived transition kernel is embedded in
our bound, as poor approximations of the kernel will lead to large bounds.

More specifically, we have introduced a computationally tractable algorithm that provides an upper
bound on how much an agent can improve its expected discounted utility (in monetary terms) by unilaterally
deviating from the approximate equilibrium strategy to a strategy that keeps track of the full distribution of
wealth.17 In general, the bound provides a direct test on whether the state aggregation is appropriate or
whether a finer state aggregation is necessary, for example by adding more moments.18 In fact, numerical

17Specifically, there exist a nonnegative monetary quantity (that depends on the individual and economy states), such that a
consumer will be indifferent between receiving this quantity and playing the equilibrium strategy (in wealth moments), or not
receiving it and playing the best response that may depend of the wealth distribution. We upper bound this quantity.

18Unlike our dynamic oligopoly model, in this stochastic growth model agents’ individual transitions (whether they are employed
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experiments we have conducted show that our bound is fairly tight and that, as expected, deviating from
approximate aggregation to a strategy that keeps track of all available information provides little gains to
agents in the original model in Krusell and Smith (1998).19

The previous results are encouraging and suggest that our bound and potential extensions can help
exploring the boundaries of approximate aggregation. In particular, our bound can be an aid to decide which
statistic one should add next to the state space if approximate aggregation fails. Researchers have often tried
the second moment of the distribution of wealth, but our preliminary results suggests that in some cases
other statistics such as quantiles can provide more valuable information for agents.

10 Conclusion

In this paper we introduced a new framework to study dynamic oligopoly in concentrated industries that
opens the door to study new issues in the empirical analysis of industry dynamics. Our first two approaches
in Sections 5 and 6 provide models that impose no restrictions over dominant firms primitives and for which
MME strategies for dominant firms become optimal. They do impose, however, restrictions over fringe
firms. We believe these models may be particularly relevant for applications in which dominant firms are
they key focus of analysis and a detailed model of the fringe is not required. In addition, we believe that
our approach in Section 7, in which firms approximate the non-Markov process of moments by a Markov
process and the error in the approximation is measured with our error bound can prove particularly useful in
other empirical applications, because it imposes no restrictions on fringe firms.

We believe that our work suggests several future directions for research. First, our error bound is very
general and we envision that tighter bounds can be derived using problem specific information. Second,
in our definition of MME firms keep track of current moments of the fringe firm state. Our equilibrium
concept and error bound can be modified to allow firms to keep track of past values of the moments. Third,
one can relax the assumption that single-period profits are a function of just few fringe moments. In this
case, firms would need to have perceptions of the expected profits given the moments they observe, for
example, by using the empirical profits received at each state. Finally, our definition of MME and numerical
experiments in Section 7 intend to study the long-run equilibrium market structure. We believe that an
appropriate modification of our approach would allow to study the short-transitional dynamics and how
would the market structure evolve in few years after a policy or an environmental change, such as a merger.

In Section 9 we discussed how our methods can be extended to other important models in economics. In
addition, we envision that some of our ideas could potentially also be useful to study dynamic models with
forward looking consumers. For example, in a dynamic oligopoly model with durable goods, firms may
need to make pricing and investment decisions, keeping track of the distribution of consumers’ ownership,
which is highly dimensional (e.g., Goettler and Gordon (2011)). Our ideas may be useful in this context as
well, where one could replace this distribution by some of its moments. We leave all these extensions for
future research.

or unemployed) are correlated through the aggregate shock even conditional on the current market state. Thus, the computation of
the bound has to be slightly modified to let moment accessibility sets depend on the transition of the aggregate shock as well.

19These results can be obtained from the authors upon request.
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Appendices

A Proofs

Proof of Lemma 5.1. Under the assumptions of model (N) of Chapter 9 in Bertsekas and Shreve (1978) we
have from Proposition 9.8, that the optimal value function satisfies:

(TV )(x, ŝ|µ) := max
ι∈I

{
xπ1(ŝ0) + π0(ŝ0)− cxι+ β E µ

[
V (x1, ŝ1)

∣∣∣ι, ŝ0 = ŝ, x0 = x
]}

= V (x, ŝ|µ)

Moreover, we have that TnV̂→V if V̂ = 0 by Proposition 9.14. We first show that

sup
µ′∈M

V (x, ŝ|µ′, µ) = xV 1(ŝ) + V 0(ŝ)

for appropriate functions V 1(·) and V 0(·) by demonstrating that the posited form of the perceived value
function is stable under an application of the Bellman operator. We have:

(T V̂ )(x, ŝ|µ) = max
ι∈I

{
xπ1(ŝ) + π0(ŝ)− cxι+ β E µ

[
(xζ1(ι, ŝ, w1) + ζ0(ŝ, w0))V̂1(ŝt+1)

+ V̂0(ŝt+1)
∣∣∣ι, ŝt = ŝ

]}

= xmax
ι∈I

{
− cι+ β E µ

[
ζ1(ι, ŝ, w1)V̂1(ŝt+1)

∣∣∣ι, ŝt = ŝ
]}

+ xπ1(ŝ) + Ṽ0(ŝ) (13)

= xṼ1(ŝ) + Ṽ0(ŝ),

where we define Ṽ0(ŝ) = π0(ŝ) + β E µ

[
ζ0(ŝ, w0)V̂1(ŝt+1) + V̂0(ŝt+1)

∣∣∣ŝt = ŝ
]
. Now, let us denote by V̂ n

the iterates obtained by applying the Bellman operator T . Then, we have concluded that

xV̂ n
1 (ŝ) + V̂ n

0 (ŝ)→V (x, ŝ), ∀x, ŝ,

as n→∞, where V is the optimal value function. But since the above holds for at least two distinct values
of x for any given ŝ, this suffices to conclude that V̂ n

1 (ŝ)→V̂∞1 (ŝ) and V̂ n
0 (ŝ)→V̂∞0 (ŝ).

Now, under the additional Assumption C of Chapter 4 in Bertsekas and Shreve (1978), and further
assuming that the supremum implicit in the dynamic programming operator applied to V is attained for every
(x, ŝ) , the second claim follows immediately from equation (13) and Proposition 4.3 of the reference.

Proof of Proposition 5.1. Note that

θmt+1 =
Nm∑
i=1

xi,t+1 =
Nm∑
i=1

[xitζ1(µm(ŝmt ), ŝmt , w1it) + ζ0(ŝmt , w0it)],
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where (w0it, w1it) are i.i.d. We need to show that conditional on smt ,

(1/Nm)
∣∣θmt+1 − E µm [θmt+1|smt ]

∣∣→ 0, a.s.,

where E µm [θt+1|smt ] = ζ̃m1 (ŝmt )θmt +Nmζ̃0(ŝmt ). The result follows by Assumption 5.1 and a law of large
numbers (see, for example, Corollary 7.4.1 in Resnick (1998)).

Proof of Proposition 5.2. If α 6= 1 redefine the state of fringe firms to be y = xα. Without loss of generality
assume Xf = [0, x̄]. Let st, s′t be two consistent underlying industry states, that is, dt = d′t, zt = z′t, and
θ(ft) = θ(f ′t) = θt. For moments to be sufficient statistics it must be that for any such consistent underlying
states the expected next moment are the same E µ[θ(ft+1)|st] = E µ[θ(ft+1)|s′t].

Let us fix a moment-based industry state ŝ and let us define the function g(x; ŝ) = E µ[xi,t+1|xit =
x, ŝt = s]. A function h is midpoint convex if for all x1, x2 ∈ (x, x̄) ⊂ < the following holds h((x1 +
x2)/2) ≤ (h(x1) + h(x2))/2. Midpoint concavity is defined by reversing the inequality. A function that is
midpoint convex (concave) and bounded (and so Lebesgue measurable) is convex (concave) (see Donoghue
(1969)). We will show that g(·; ŝ) is both convex and concave and so linear by showing that midpoint
convexity and midpoint concavity hold. Note that we need to show this only for x ≤ θ as a single fringe
firm cannot be larger than the moment.

For any x0 in the interior of Xf with 2x0 ≤ θt we can find (we assumed N −D ≥ 3) a fringe state f
with f(x0) ≥ 2 and δ > 0 such that x0 ± δ ∈ Xf . Construct f ′ with f ′(x0) = f(x0) − 2, f ′(x0 − δ) =
f(x0− δ) + 1, f ′(x0 + δ) = f(x0 + δ) + 1 and f ′(x) = f(x) for all x 6∈ {x0, x0± δ}. Let s = (f, d, z) and
s′ = (f ′, d, z). Clearly ŝ = ŝ′, because θ(f) = θ(f ′). By assumption E µ[θ(ft+1)|st] − E µ[θ(ft+1)|s′t] =
2g(x0; ŝ)− g(x0 − δ; ŝ)− g(x0 + δ; ŝ) = 0 or g(x0; ŝ) = (g(x0 − δ; ŝ) + g(x0 + δ; ŝ))/2. That is g(x; ŝ)
is midpoint convex and midpoint concave in the variable x, and so linear.

For x0 ≥ θ/2 we use the following construction. From the result above we have that g(θt/2 − δ; ŝ) is
linear for 0 ≤ δ ≤ θt/2. By assumption, g(θt/2 + δ; ŝt) + g(θt/2 − δ; ŝt) = 2g(θt/2; ŝt), or g(θt/2 +
δ; ŝt) = 2g(θt/2; ŝt) − g(θt/2 − δ; ŝt). Substituting for the right hand side we get g(θt/2 + δ; ŝt) =
(θt/2+δ)ζ̃1(ŝt|µ)+ ζ̃0(ŝt|µ) for appropriately defined ζ̃0, ζ̃1 and for all 0 ≤ δ ≤ min(x̄−θt/2, θt/2). This
completes the proof.

Proof of Proposition 6.1. Recall that 0 ≤ xmit ≤ x̄ <∞. For i ∈ Fmt note that

E µm [xmi,t+1|xmit , ŝmt ] = ζ̃m(ŝmt )(xmit )
(1−p)P[i ∈ Fmt+1|xmit ] = ζ̃m(ŝmt )xmit /(x̄)p.

Now,
E µm,λm [θmt+1|smt ] =

∑
i∈Fmt

ζ̃m(ŝmt )xmit /(x̄)p + λm(ŝmt )xe,

and so the result follows via the proof of Proposition 5.1.

Lemma A.1. The operator TR satisfies the following properties:

1. TR is a contraction mapping modulo β. That is, for V̂ , V̂ ′ ∈ V̂ , ‖TRV̂ − TRV̂ ′‖∞ ≤ β‖V̂ − V̂ ′‖∞.
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2. The equation TRV̂ = V̂ has a unique solution V̂ ∗.

3. V̂ ∗ = limk→∞ T
k
RV̂ for all V̂ ∈ V̂ .

Proof. Our result is based on a special case of Iyengar (2005) (see Theorem 3.2). However, to allow for
greater generality in the state space and action space we use a different proof based on classic dynamic
programming results. Define

(T̂RV̂ )(x, ŝ) = sup
f∈Sf (ŝ)
ι∈I
ρ≥0

{
π(x, ŝ) + E

[
φ1{φ ≥ ρ}

+ 1{φ < ρ}
[
− c(x, ι) + β E µ,λ[V̂ (xi,t+1, ŝt+1)

∣∣xit = x, st = (f, d, z), ι]
]]}

. (14)

The statement of the lemma holds for T̂R from the results for model (D) in Bertsekas and Shreve (1978)
(recall that we assumed bounded profits). The statement follows for TR since T̂RV̂ = TRV̂ for all bounded
V̂ .

Proof of Theorem 8.1. Take vectors V̂ ∈ V̂ and V , where V : X × S → <, such that V (x, s) = V̂ (x, ŝ),
for all moment-based industry state ŝ that is consistent with industry state s. Let T ∗ be the Bellman operator
associated with θ∗, that is, with the full Markov best response that keeps track of the entire industry state. It
is simple to observe that T ∗V (x, s) ≤ T̂ V̂ (x, ŝ), for all x, and all ŝ and s consistent. By the monotonicity
of the T̂ and T ∗ operators we conclude that (T ∗)kV (x, s) ≤ T̂ kV̂ (x, ŝ) for all k ≥ 1. Taking k to infinity
we get T̂ kV̂ → V̂ from Lemma A.1, and (T ∗)kV → V

∗ by standard dynamic programming arguments.
Therefore, V ∗(x, s) ≤ V̂ (x, ŝ) for s and ŝ consistent.

B Second Approach: Numerical Experiments

This appendix reports the parameters and transition dynamics of the numerical experiments of the second
approach as well as some details about the algorithm. The transition structure for dominant firms is based
on the investment transitions in Weintraub et al. (2010). For a dominant firm with investment ι,

xt+1 =


min(x̄d, x+ 1) w.p. δaι

1+aι

x w.p. (1−δ′)+(1−δ)aι
1+aι

max(xd, x− 1) w.p. δ′

1+aι ,

where δ, δ′ ∈ (0, 1) and a > 0 are constants, and x̄d and xd are the highest and lowest values that dominant
firms states can take.

Now, we specify the transitions for fringe firms according to equation (8). Let ζ ′f take values in
{ζ1, ζ2, . . . , ζL} with ζl < ζl+1 and let L > l̄ > 1 be some interior index. We define the investment
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Notation Value Description
β .95 Discount factor
m 30 Market size
p .05 Power in fringe transitions
Xd {6, 7, . . . , 11} Dominant firms’ state space
Xf [0, 10] Fringe firms’ state space
(cd, cf ) (1.1,.1) Investment cost rate (dominant, fringe)
δd ,δ′d ,ad .4, .6, 1.5 Dominant firms’ transition parameters
(ζ1, . . . , ζ5) (.93, .96, 1, 1.09, 1.12) Fringe firms’ transition parameters
(δ′1, δ

′
2, δ4, δ5) (.2, .6, .6, .2) Fringe firms’ transition parameters

af 3 Fringe firms’ transition parameters
xe 1 Entry state
κ 29 Entry cost
φ̄ 9.1 Expected sell-off value (exponential distribution)

Table 4: Model parameters for the experiments of Subsection 6.1

transitions by

ζ ′f (ι) =


ζl w.p. δ′l

1+aι for l = 1, . . . , l̄ − 1

ζl̄ w.p. (1−δ′)+(1−δ)aι
1+aι

ζl w.p. δlaι
1+aι for l = l̄ + 1, . . . , L,

with δ′ =
∑l̄−1

l=1 δ
′
l < 1, δ =

∑L
l=l̄+1 δl < 1, δ′l is positive for all l = 1, . . . , l̄ − 1, δl is positive for

all l = l̄ + 1, . . . , L and a is a positive parameter. It is easy to see that ζ ′f is stochastically increasing in
investment and that the distribution is well defined for non-negative investment. In both transition structures
for dominant and fringe firms, the optimal investment level has a closed form solution.

The algorithm discretizes the space of moments linearly (equal spaces) and uses linear interpolation
when computing the perceived value function between grid points. We use geometric discretization for the
set of fringe states Xf since the transition dynamics are essentially proportional (for p small).

Table 4 reports the values of some parameters.

C Beer Industry Experiments

Denote by xit the goodwill of firm i at time t. The evolution of goodwill is similar to Pakes and McGuire
(1994), but with a multiplicative growth model following Roberts and Samuelson (1988):

xit+1 =


min(xn̄, xit(1 + ρ)) w.p. δψ(x)ιit

1+ψ(x)ιit

xit w.p. 1−δ′+(1−δ)ψ(x)ιit
1+ψ(x)ιit

max(x1, xit/(1 + ρ)) w.p. δ′

1+ψ(x)ιit
.
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This is equivalent to a depreciation factor 1/(1 + ρ) as is common in the literature on goodwill. With this
in mind we define a grid of states {x1, . . . , xn̄} for the possible values of goodwill firms can take, where
xk = x1(1 + ρ)k−1 for some x1 > 0. To maintain the relationship between goodwill and advertising costs,
we choose the parameter ψ(x) such that E[xit+1|xit = x, ιit = x] = x, that is, a firm with goodwill x has to
invest x dollars in advertising to maintain goodwill level x on average. It follows that ψ(x) = δ′

δ
1−(1+δ)−1

δx .
Under this condition, the average goodwill (state) of a firm that invests xit in every period is approximately
xit.

The moment space is discretized linearily and we use a bicubic spline to interpolate between grid points
when computing firms’ optimal strategies.

We use the profit function of Example 4.1. We take β = .925 and (δ′, δ) = (1, .55) as the transition
parameters. After some experimentation we choose the market sizem = 30. The other parameters are listed
in the next table with their relevant sources.

Description Value Source

Number of firms (N ) 200 This number is chosen to be greater than the maximal num-
ber of active firms in this period.

Maximal number of dominant
firms (D)

3 This is the actual number of dominant firms in the industry.

Depreciation of goodwill (ρ) .25 Roberts and Samuelson (1988) estimate this by .2 for the
cigarette market.

Production cost per barrel (c) $120 Rojas (2008) estimated the markup to be about a third of
the price, and the average price is $165 per barrel in the
period studied.

Average entry cost (exponential
dist.)

35× 106 Based on costs of new plants.

Sell-off value (exponential dist.) 7× 106 Based on costs of used plants.

Fixed cost per period fringe
(double for dominant)

106 We introduce this fixed cost in the single-period profit
function.

Profit function parameters (Y
and α2)

200 and 1, resp. Chosen to match the price elasticity (-.5) for the average
price, see (Tremblay and Tremblay, 2005, p. 23).

D Third Approach

D.1 Real Time Algorithm for Empirical Transitions Algorithm

Given strategies (µ, λ) and their associated value functions, it is useful to define

W (x, ŝ|µ, λ) = E µ,λ

[
V (x, ŝt+1|µ, λ)

∣∣ŝt = ŝ
]
, (15)
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where the expectation is taken with respect to the perceived transition kernel. The functionW is the expected
continuation value starting from industry state ŝ and landing in state x in the next period. Note that we only
integrate over the possible transitions of ŝ. It is worth emphasizing that if x ∈ Xd in (15) then ŝt+1 depends
on x, whereas if x ∈ Xf the next industry state, ŝt+1, is independent of x. Namely, dominant firm i that
transitions to x will integrate over (θt+1, d−i,t+1, zt+1) with dt+1 = (xi,t+1, d−i,t+1). Now, we can write
the Bellman equation associated with C1 in the equilibrium definition as follows:

V (x, ŝ;W ) = sup
ι∈I
ρ≥0

{
π(x, ŝ) + E

[
φ1{φ ≥ ρ}+ 1{φ < ρ}

[
− c(x, ι) + β E µ,λ[W (xi,t+1, ŝ)

∣∣xit = x, ι]
]]}

,

where the first expectation is taken with respect to the sell-off random value φ, and the second with respect
to the firm’s transition under investment level ι. Note that when evaluated at the optimal value function, the
function W is sufficient to compute a best response strategy. Based on this formulation we introduce our
real-time dynamic programming algorithm to compute MME; see Algorithm 2.

The steps of the algorithm are as follows. We begin with W functions with which firms’ optimal de-
cisions can be computed (investment, exit, and entry). Once these are determined, we can simulate the
next industry state. The continuation value in the simulated state is used to update the W functions. The
update step depends on the number of times the state was visited e(ŝ) and on the number of rounds (we
take σ(n) = min(n, n̄) for some integer n̄ > 0 to allow for quick updating in the early rounds). At the
end of the simulation/optimization phase we check whether the W functions have converged, and if so
check for convergence with Algorithm 1 as well. If convergence has not occurred we iterate on the simula-
tion/optimization phase.

D.2 Computation of Robust Bound

The reminder of the appendix provides details on the computation of the robust bound under the assumption
that there is large number of fringe firms and therefore the one-step transition of the fringe firm state is
assumed to be deterministic. When transitions are deterministic, finding the optimal consistent f in (12)
is equivalent to choosing the next moment from an accessibility set of moments that can be reached from
the current industry state. As we will explain in detail now, this considerably simplifies the computation
of the inner maximization in (12), since the moment accessibility sets are low dimensional. Moreover,
characterizating these accessibility sets can be done efficiently.

We assume throughtout that the set of individual fringe firm states is discrete and univariate, Xf =
{x1, . . . xn̄}, where xn ∈ <, for all n = 0, 1, . . . , n̄ <∞.20 In addition, for simplicity, we assume that there
are no transitions between the dominant and fringe tiers.

Finding the set of accessible moments amounts to solving an integer feasibility problem. To simplify,
let us assume that θ consist of only one moment of the form θ =

∑
x∈X̃f f(x)(x)α for α ≥ 0, where

X̃f ⊆ Xf . This representation is general enough to include moments and other statistics. The extension to
more moments is direct.

Assuming that the next fringe firm state is deterministic and equals to its expected value, we say that
20The extension to multivariate xn is simple, and the extension to a continuous state space will require discretization.
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Algorithm 2 Equilibrium solver with real-time dynamic programming

1: Initiate W (x, ŝ) := 0, for all (x, ŝ) ∈ X × Ŝ;
2: e(ŝ) = 0 for all ŝ ∈ Ŝ;
3: Initiate industry state (f0, d0, z0) and ŝ0 := (θ(f0), d0, z0));
4: ∆w := δw + 1; n := 1
5: while ∆w > δw do
6: W ′(x, ŝ) := W (x, ŝ) for all (x, ŝ) ∈ X × Ŝ;
7: t := 1;
8: while t ≤ T do
9: for all x with ft(x) > 0 or x ∈ dt, do

10: Compute optimal strategies using V (x, ŝt;W ′) and store them;
11: end for;
12: Compute optimal entry cutoff from V (xe, ŝt;W ) and store it;
13: Simulate (ft+1, dt+1, zt+1) and ŝt+1 from these strategies;
14: Let γ := 1

σ(n)+e(ŝt)
;

15: for all x′ ∈ Xf do
16: Compute V (x′, ŝt+1;W ′);
17: Update W (x′, ŝt) := γV (x′, ŝt+1;W ′) + (1− γ)W ′(x′, ŝt);
18: end for;
19: for all Dominant firm i and x′ ∈ Xd that is accessible in one step from xit do
20: Define ŝ′t+1 to be the industry state ŝt+1 when firm i transitions to state x′;
21: Compute V (x′, ŝ′t+1;W ′);
22: Update W (x′, ŝt) := γV (x′, ŝ′t+1;W ′) + (1− γ)W ′(x′, ŝt);
23: end for;
24: e(ŝt) := e(ŝt) + 1, t := t+ 1;
25: end while;
26: ∆w := ‖W ′ −W‖∞;
27: e(ŝ) := 0 for all ŝ ∈ Ŝ;
28: (f0, d0, z0) := (fK+1, dK+1, zK+1), and ŝ0 := (θ(f0), d0, z0);
29: n := n+ 1;
30: end while;
31: Compute µ(x, ŝ) and λ(ŝ) from V (x, ŝ;W ) for all (x, ŝ) ∈ X × Ŝ;
32: Run Algorithm 1 with these strategies (used as stopping criteria);
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moment θ′ is accessible from moment θ in industry state ŝ if there exists a fringe firm state f ∈ Sf (ŝ) that
solves the following system of linear equations,∑

x∈X̃f

f(x) (x)α = θ

∑
x∈X̃f

f(x) E µ[(xi,t+1)α|(xit, ŝt) = (x, ŝ)] + 1{xe ∈ X̃f}(xe)αP(κit ≤ λ(ŝ))N e(f) = θ′ (16)

∑
x∈Xf

f(x) ≤ N, f ∈ Nn,

where the first equation states that the current moment is consistent with the fringe firm state, and the second
that the expected next moment is θ′. We denote by N e(f) as the number of potential entrants at fringe firm
state f . We say that moment θ′ is accessible from ŝ if this system of linear equations has a solution. This
motivates the definition of the accessibility set A(ŝ), where θ′ ∈ A(ŝ) if and only if it is accessible from ŝ,
that is, if there is a fringe firm state consistent with ŝ such that the expected next moment is θ′. Note that the
accessibility sets depend on the investment and entry MME strategies that control the expected next moment
in (16). Due to the integrability constraint f(x) ∈ Nn, the computation of A(ŝ) is demanding. However,
we can relax this integrability constraint by replacing it with f ≥ 0. With that, the accessibility problem
amounts to solving a feasibility problem of a system of linear equations that can be solved easily. We denote
the relaxed accessibility set by Â(ŝ); this set contains A(ŝ).

Define the operator

(T̂ V̂ )(x, ŝ) = sup
ι∈I
ρ≥0

sup
θ′∈Â(ŝ)

{
π(x, ŝ) + E

[
φ1{φ ≥ ρ}

+ 1{φ < ρ}
[
− c(x, ι) + β E µ,λ[V̂ (xi,t+1, (θ′, dt+1, zt+1))

∣∣xit = x, ŝt = ŝ, ι]
]]}

,

where V̂ ∈ V̂ . The next proposition states that we can search over accessibility sets instead of the much
larger consistency sets.

Proposition D.1. Assume that there are no transitions between tiers and that the fringe firm state follows
deterministic transitions given by the expected next state (equation (16)). Then

(TRV̂ ) ≤ (T̂ V̂ ),

for every V̂ ∈ V̂ . Moreover, the operator T̂ satisfies the same properties than the operator TR given in
Lemma A.1.

Proof. Without tier transitions the evolution of the moments is independent of the evolution of dominant
firms. If fringe firms’ transitions are also deterministic each f ∈ Sf (ŝ) maps to an expected next moment
and so we can optimize over the set of these moments instead. The inequality follows because we consider
the relaxed accessibility sets, so we optimize over a larger set in T̂ .

Based on this, we propose the following computationally tractable algorithm to find the robust error
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bound: (1) construct the relaxed accessibility sets by solving the relaxed feasibility problem for all ŝ ∈ Ŝ
and θ′ ∈ Sθ and store them; and (2) iterate the operator T̂ over the relaxed accessibility sets until a fixed
point is found. Since the relaxed accessibility sets contain the accessibility sets, this provides an upper bound
to V ∗, assuming deterministic fringe transitions (by Theorem 8.1 together with the previous proposition).
For problems for which MME is solvable this procedure is generally computationally manageable.
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