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1 Introduction

There is wide variation in the sizes of manufacturing plants, even within the most narrowly-

defined industry classifications used by statistical agencies. For example, in the wood

furniture industry in the United States (NAICS industry code 337122), one can find plants

with over a thousand employees and other plants with as few as one or two employees. The

dominant theory of such size differentials, like these that occur within-industry, models plants

as varying in terms of productivity. See Lucas (1978), Jovanovic (1982), and Hopenhayn

(1992). In this theory, some plants are lucky and draw high productivity at startup, others

are unlucky and draw low productivity. The size distribution is driven entirely by the

productivity distribution.

The approach has been extremely influential. It underpins recent developments in the

international trade literature. Melitz (2003) and Bernard, Eaton, Jensen, and Kortum

(BEJK) use the approach to explain plant-level trade facts. In Melitz, plants with higher

productivity draws have large domestic sales and also have the incentive to pay fixed costs

to enter export markets. In this way, the Melitz model explains the fact–documented by

Bernard and Jensen (1995)–that large plants within narrowly-defined industries are more

likely to be exporters than small plants. Relatedly, in BEJK, more productive plants have

wider trade areas. Both the Melitz and the BEJK theories have a sharp implication about

how increased exposure to import competition impacts a domestic industry. The smaller

plants in the industry–which are the low productivity plants in the industry–are the first

to exit.

In our view, the dominant approach goes too far in attributing all differences in plant

size within narrowly-defined Census industries to differences in productivity. It is likely that

plants that are dramatically different in size are doing different things, even if the Census

happens to put them in the same industry. Moreover, these differences in function may be

systematic and may very well be directly related to how increased import competition would

impact the plants.

Take wood furniture. The large plants in this industry with more than 1,000 employees

are concentrated in North Carolina. These plants make the stock kitchen and bedroom

furniture pieces one finds at traditional furniture stores. Also included in the Census clas-

sification are small facilities making custom pieces to order, such as small shops employing

Amish skilled craftsman. Let us apply the standard theory of the size distribution to

this industry. Entrepreneurs entering and drawing a high productivity parameter open up
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megaplants in North Carolina; those with low draws perhaps open Amish shops. The Melitz

model and the Eaton Kortum model both predict the large North Carolina plants will have

large market areas, while the small plants will tend to ship locally. So far so good, because

this is consistent with the data as we show. But what happens when China enters the wood

furniture market in a dramatic fashion as has occurred over the past ten years? While all of

the U.S. industry will be hurt, the Melitz and Eaton and Kortum theories predict the North

Carolina industry will be relatively less impacted because it is home to the large, productive

plants. In fact the opposite turned out to be true.

Our theory takes into account that typically in any industry there tends to be some

segment providing speciality goods, often custom-made goods, the provision of which is

often facilitated by face-to-face contact between buyers and sellers. This speciality segment

is the province of small plants. Large plants tends to make standardized products. Here

we follow the ideas of Piore and Sable (1984) and a subsequent literature distinguishing

between the mass production of standardized products taking place in large plants and the

craft production of speciality products taking place in small plants. When China enters the

wood furniture market, naturally it enters the standardized segment of the market, following

its comparative advantage, making products similar to the stock furniture pieces produced

in North Carolina. In this theory, the North Carolina industry is hurt the most, as actually

happened.

Our starting point is the Eaton and Kortum (2002) model of geography and trade as

further developed in Bernard, Eaton, Jensen, and Kortum (2003) (BEJK). In its basic form,

plants vary in productivity and location, but are otherwise symmetric in terms of trans-

portation costs and underlying consumer demand. We take this model “off the shelf” as

our model of the standardized segment of an industry, and we fold in a simple model of a

speciality segment. We explore two issues in the model. First, how is the size distribution of

plants connected to the geographic distribution of plants (call this the plant size/geographic

concentration relationship)? Second, if there is a surge in imports, what is the relative

impact of the trade shock across locations that vary by geographic concentration and mean

plant size?

We estimate the model separately for individual industries, using Census data that in-

cludes survey information on the origins and destinations of shipments (the Commodity

Flow Survey). The shipment information is critical for our analysis because it enables us to

recover parameters related to the transportation cost structure in the BEJK framework.

We obtain three main empirical results. First, we estimate that in most industries,
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more than half of the plants in an industry can be classified as being in the speciality-

goods segment; i.e. this segment dominants plant counts. The second finding relates to

the ability of the model to fit the observed plant size/geographic concentration relationship.

In the High Point area where the wood furniture industry concentrates, average plant size

is four times the national average. A similar pattern holds widely in the data. We find

that a constrained version of the model that only allows for the standardized sector can

fit the qualitative pattern but it fails as a quantitative: the predicted differences are too

small. The model fits the data once the speciality goods segment is brought in. Variations

in average plant size across locations are primarily driven by variations in the share of

speciality-good plant counts. The third result concerns the impact of a surge in imports

from China. In the constrained model, locations where an industry concentrates that have

large plants are predicted to increase their domestic shares after such a trade shook. The

opposite happened.

We find it particularly revealing to analyze what has happened in large metropolitan

areas. Generally speaking, in recent decades large cities have not been home to huge

manufacturing plants in the kinds of industries, like furniture and clothing, that China now

dominates. In the United States, large plants in these industries have been concentrated

in smaller, manufacturing-oriented areas, like High Point. We show that over the period

1997 to 2007, in industries where exports from China have surged, the domestic industry

has shifted towards large metropolitan areas like New York and Los Angeles, places where

average plant size has typically been small. These are places where we expect to see a large

demand for speciality and custom goods. And we also expect to find there a large supply of

inputs suited for speciality and niche products. These are different from the low skill inputs

used in mass production of standardized products in large plants–inputs readily available

in China and places like Highpoint. Our theory with a specialized good sector can account

for how import pressure from China shifts industries from places like Highpoint to places

like New York City. Without the specialized-good segment in the model, the shift goes

the other way. The early case study of Hall (1961) of the garment industry circa 1960 is

interesting to bring up at this point. It explains how the large plants in places like North

Carolina were tending to mass produce the standardized garments like nurses uniforms while

the small plants in New York city tended to produce fashion items. The new development

is that China has entered to play the role of North Carolina, while New York still plays New

York (albeit in a relative sense given the overall decline of manufacturing).

There is an emerging new literature that allows for richer forms of heterogeneity across

3



plants than the first generation of trade models with heterogeneous firms found in Melitz

(2003) and BEJK. Hallak and Sivadasan (2009) allow plants to differ in the standard way

regarding cost structure, but also in a second dimension in terms the plant’s ability to

provide quality. Their theory can explain why sometimes smaller plants export more than

larger plants. (This can happen in their model if the smaller plant has sufficiently higher

quality). Bernard, Redding and Schott (2009) develop a multi-product model of a firm

with differences not only in an overall firm productivity levels, but heterogeneity in product-

specific attributes as well. Our paper is in the spirit of these papers it that it allows for richer

heterogeneity. One difference is that we are adding heterogeneity within narrowly-defined

industries in the extent to which the goods being produced are tradeable, with customized

versions of goods being more difficult to trade. Holmes and Stevens (2004) include a margin

like this in regional model linking plant size and geographic concentration. This paper

is different from our earlier paper because it (1) uses BEJK to develop a entirely different

modeling structure, (2) takes the model to the data and estimates its parameters, and (3)

examines the impact of a trade shock.

2 Theory

The first part of this section presents the model. The second part derives analytic results.

2.1 Model

There is a fixed set of  locations, indexed by . Each location will typically produce goods

in a variety of industries. When we go to the data, we will take into account that industries

differ in their model parameters. Here we describe the model in terms of a particular

industry and leave implicit the industry index.

Consumers have Cobb-Douglas utility function for industry composites. Assume  is

the spending share on the particular industry we are looking at. For this industry, let  be

the composite industry price index and  be the composite industry quantity. Given the

Cobb-Douglas assumption, spending  =  on the industry at location  equals

 = ,

given income 
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The industry has two segments, the standard segment indexed by “” and the speciality

segment indexed by “b” (where “b” denotes “boutique.” ) The industry composite  is

made up of a standard good  composite and a speciality (or boutique) good composite

 in the usual CES way,

 =
³
 ()

−1
 + 

¡

¢−1



´ 
−1
, (1)

where  is the elasticity of substitution between the two segments and the segment weights

sum to one,  +  = 1. We next describe each segment in turn.

2.1.1 The Standard Good Segment

We use the BEJK model as our model of the standard segment. There is a continuum of

differentiated standard goods indexed by  ∈ [0 1]. For example, if the industry is the wood
furniture industry, then  specifies a particular kind of wood furniture, such as a kitchen table

of a particular size, a particular finish, a particular shape, and a particular kind of wood.

The different standard goods  are aggregated to obtain the standard segment composite

 in the usual CES way. Let  be the elasticity of substitution and let () be the price

of good  at location . (For simplicity we leave the "" superscript implicit here as the 

index only refers to tradable goods.) Then the expenditure at location  for good  equals

() = 

µ
()



¶1−
where  is spending on the standard segment composite at location  and  is the price

index,

 =

∙Z 1

0

()
1−

¸ 1
1−
.

As in BEJK, there are potential producers at each location with varying levels of technical

efficiency. Let () index the efficiency of the th most efficient producer of good  located

at . This index represents the amount of good  made by this producer, per unit of input.

There is an “iceberg” cost to ship tradable segment goods across locations. Let  be

the amount of good that must be shipped to location  from location  in order to deliver

one unit. There is no transportation cost for delivering to the location where the good is

produced, i.e.,  = 1. Otherwise,  ≥ 1, for  6= . Assume that the triangle inequality
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 ≤  holds.

The distribution of efficiencies are determined as follows. Let  denote the wage at

location , and let  denote a parameter governing the distribution of efficiency of the

standard segment at location . Suppose the maximum efficiency 1 is drawn according to

() = −
−
.

The parameter  governs the variance of productivity draws.

Eaton and Kortum (2002) show that for a given standard segment good , the probability

location  is the lowest cost producer to location  is

 =
P

=1 
, (2)

for

 ≡ 
−
 (3)

 = ()
−
.

We refer to  as the cost efficiency index for location  and  as the distance adjustment

between  and . Let Γ = (1 2 ) be the cost efficiency vector and  (with elements

) be the distance adjustment matrix. We can think of  as an index of the compet-

itiveness of origin  at destination . It starts with location ’s overall cost efficiency and

adjusts for distance to . Location ’s probability  of getting the sale at  equals its own

competitiveness at  relative to the sum of all the other locations’ competitiveness at .

BEJK consider a rich structure with multiple potential producers at each location who

each get their own productivity draws. Then firms engage in Bertrand competition for

consumers at each location. The equilibrium may feature limit pricing, where the lowest

cost producer matches the second lowest cost. Or the lowest cost may be so low relative

to rivals’ costs that the price is determined by the inverse elasticity rule for the optimal

monopoly price. The very useful result of BEJK is that allowing for all of this does not

matter. Conditional on a location  landing a sale at  (i.e. that location  is the low cost

producer for ), the distribution of prices to  is the same for all originations . This implies

that the sales revenues from  are allocated according to . That is, total sales revenue of
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origin  to destination  is

 = 

.

Total sales revenues on standard segment goods originating in  across all destinations is

 =

X
=1



.

Like BEJK, we associate a plant with a particular good  produced at . The measure

of standard segment goods produced at  equals , the measure of goods location  sells to

itself.2 We allow for a scaling factor , so that the number of standard segment plants at

location  is

 =  (4)

2.1.2 Speciality Segment

We allow for the speciality segment to be modeled in two different ways. Conceptually these

two cases are very different. Yet for much of what we do in this paper, the results for the

two cases are similar.

Our first case is the speciality-segment-as-nontradeable-goods model. As an example of

this case, consider the wood furniture industry. This industry includes plants that look like

retail stores in a shopping center. A consumer can go into such an establishment and meet

face to face with designers to come up with a design for a custom piece. When the furniture

is actually made on the premises, the Census classifies the establishment as being a wood

furniture manufacturer. This kind of speciality establishment is aimed at a local market, as

consumers do not want to drive long distances to meet with a designer. For simplicity, we

assume for this case that the transportation cost across locations is infinitely high precluding

trade. For this first model then, total sales by specialty segment plants (also called boutique

plants) at  equals expenditure at ,

 =  .

Next we simplify by assuming average plant size in terms of sales volume is constant across

locations and equals ̄. Define  ≡ 1̄ as inverse size. The number of speciality plants
2On account of the triangle inequality  ≤ , if a particular plant is the most efficient producer at

any location, it is also the most efficient producer at its own location

7



at  equals

 =

̄
=  . (5)

The idea here is that there tends to be some efficient size of retail-like, speciality establish-

ments. If speciality-good expenditure doubles at a location, all expansion of the industry at

the location occurs on the extensive margin of a doubling of the number of establishments,

rather than any increase in size of establishments. Implicitly, there are diseconomies of scale

when plants get too big. This is plausible for retail-like, custom operations.

Our second case is the speciality-segment-as-high-end-niche model. For this, we go the

other extreme and treat the speciality goods as being perfectly tradable. The products have

high value to weight and if face-to-face contact between buyer and seller is not important

transportation costs are then immaterial. The price  the these goods is the same at all

locations . The amount of high-end niche activity at a location depends the supply of factors

specific to the segment at the location. We think of this as creative talent or artisanship

that is unrelated to the factor  determining suitability for standardized goods. The total

value of production  at  depends implicitly on the supply of creativity. Again, assume

average plant sales volume is constant at ̄ across locations with inverse  ≡ 1̄. The

number of speciality plants at origin  then equals

 =  . (6)

This high-end-niche model of the speciality segment can be regarded as the limiting case

of the BEJK model where transportation cost is zero (or  = 1). As we will see below,

average plant size is constant across locations in this limiting case of BEJK. In particular,

as comparative advantage increases, the resulting expansion of output is met entirely on the

extensive margin of more plants.3

We limit ourselves to these two extreme cases for technical tractability. We expect that in

many cases the speciality good sector will be some combination of these two extreme cases.

That is, it will have a hard-to-trade element (because face-to-face contact between the buyer

and producer is desirable) and a high-end fashion element (because comparative advantage

for the segment depends upon the supply factors like creative talent that is different from

3It is worth noting that the nontradeable model of the speciality segment is not a limit case of the BEJK

model where 

 = 0. In that limit case, as local demand expands, sales volume expands on the intensive

margin of larger average size plants. In our model of the nontradeable segment, an expansion of demand is

met on the extensive margin of more plants.
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the supply of factors used to produced standardized goods).

2.2 Results

This subsection uses the model to examine two issues. First, how is average plant size at a

location related to the concentration of industry at a location? Second, how does an import

surge impact the distribution of domestic production? We begin the analysis discussing

what happens with only standardized goods. Then we discuss how adding speciality goods

impacts the results.

2.2.1 The Plant Size/Geographic Concentration Relationship

To relate average size to industry concentration, we use the location quotient at  to measure

industry concentration at . Recall that  is total sales volume of producers located at 

and  is total expenditure of consumers located at . Letting  and  be the aggregate

totals, the sales location quotient 
 is a location’s share of the value of production over

its share of expenditure, i.e.,


 ≡ 


. (7)

If the distribution of production exactly follows expenditure, it equals one everywhere and

no locations specialize in the industry. Otherwise, if there are locations where this is greater

than one, we say the location specializes in the industry and is a net exporter.

Following Holmes and Stevens (2002), we can think of there being two margins over

which a location can specialize in an industry: the extensive margin of more plants and the

intensive margin of higher average plant size. To highlight these two margins, we decompose

the sales location quotient as the product of a count quotient and a size quotient,


 ≡ 


=




× 


(8)

= 
 ×

 . (9)

recalling that  is the plant count at  and letting  be the aggregate plant count. The

count quotient is a locations’s share of plant count relative to its expenditure share. The

size quotient is a location’s average plant size (in sales) relative to the aggregate average

plant size.
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For now, suppose there is only a standardized good segment so that model reduces to

off-the-shelf BEJK. For the benchmark case with no transportation costs we have

Proposition 1. With only standardized goods and no transportation costs ( = 1 all

 6= ), then 
 = 1 for all  so average plant size (in sales volume) is identical at all

locations. All variation in 
 is through the extensive margin 

 .

Proof. With  = 1 all  6= , the probability  serves  in (2) reduces to

 =
P
 

which is independent of destination . From BEJK this also equals sales share at each

location. So average plant size at each location is

̄ =

P
 


=

P
 


=

P
 


(10)

which is constant across locations. Q.E.D.

Following intuition about the Eaton Kortum setup in Alverez and Lucas, the productivity

at a location has an interpretation of being a function of the first-order statistic of draws

from the exponential distribution. A location  with productivity  twice as high as another

location can be interpreted as having twice as many underlying draws. With transportation

costs that are zero, it is intuitive that a location with twice as many underlying draws will

produce twice as many products.

When transportation cost is positive, the BEJK model can deliver differences in average

plant size across locations. Analytical results are difficult to come by, but some basic

patterns can be readily discerned by numerical examples. Table 1 illustrates a numerical

example with two locations. For all the parameters considered, 
2 = 4, so location 2

specializes in the industry to a substantial degree. For location 1, 
2  1, and the

extent to which this is less than one depends upon assumptions related to the distribution of

expenditure 1 and 2 across locations. We consider three possibilities for the expenditure

distribution: in the first, expenditure is equal across the two locations, in the second it is

three times higher in location 2, in the third it is three time higher in location 1. We

also vary the distance adjustment parameter 12 = (12)
−
. For different levels of 12, we

back what the ratio 21 must be that would result in 
2 = 4 and then calculate the

corresponding 
2 and 

2 .
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We start by discussing the equal expenditure case. Note that as 12 is decreased as we

move down the table (so the distance adjustment becomes more important), the productivity

advantage of location 2 (21) must be increased to hold constant the net trade between

the two locations (i.e. to keep 
2 = 4). At the limiting case where  = 1, average size is

the same in both places, 
2 = 1, consistent with Proposition 1. For this limiting case, the

expansion in sales at location 2 comes entirely through the count margin, 
2 = 

2 .

As 12 is decreased, average size in location 2 increases, so both the size margin and the

count margin play a role. But even as  shrinks to extreme levels (and the implied 21

goes to extreme levels), the establishment margin is always greater than the size margin.

This holds more generally in other numerical examples with 1 = 2. This discussion gives

a sense of how the the BEJK model has trouble accounting for large differences in average

plant size across locations, particularly if transportation costs are relatively small.

If expenditure is larger in location 2 and if trade is sufficiently difficult, the size margin

will be significant. It is intuitive that when trade is difficult in the BEJK model, plants in

locations with high local expenditure will tend to be big, as most sales are local. In what

we discuss below, high local demand will not be a relevant explanation for the large average

size plants to be found in industrial centers like Highpoint, North Carolina. There places

are relatively small cities with low local demand.

2.2.2 Response to an External Trade Shock

We next examine how a trade surge in the standardized segment impacts the distribution of

the production of standardized goods across locations. We model trade in a simple fashion.

Suppose as above there are two domestic locations. Now add a third location that we

call location  (China). We assume location  does not have any expenditure,  = 0.

Assume the transportation cost is the same from location  to both domestic locations,

1 = 2 =   1 and let  = − . Let  ≡  be ’s competitiveness index (which

is the same at locations 1 and 2). Then extending (2), the probability location 2 sells at 1

is

12 =
122

111 + 122 + 
(11)

and the general formula for  is analogous. In the location quotients below, only domestic

sales are used to calculate sales share (the aggregate  excludes sales from ).

Proposition 2. Suppose there are only standardized goods. Suppose the parameters are

such that location 2 is more cost efficient than location 1, 2  1, that expenditures are the
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same 1 = 2, and that there is some distance adjustment 12  1. (i) Then location 2 is

the high concentration location,


2  1  

1 


2  1  

1 


2  1  

1 

(ii) The sales location quotient 
2 strictly increases in the competitiveness index of

location .

Proof. See appendix.

The expansion of the foreign location  hurts sales at both locations. But it hurts sales

relatively less in location 2 where the industry is concentrated.

We note that our result is a partial equilibrium result for a particular industry. When

we increase competitiveness  of  in this industry, we are holding fixed wages  at each

location.

2.2.3 How Introducing the Speciality Sector Changes the Results

It is straightforward to see how introducing the speciality sector changes the results. Con-

sider first average plant size at a location. It equals the weighted average of the mean plant

size in the standard segment and speciality segments.

̄ =



=


 + 



+


 + 




=


 + 
̄ +


 + 

̄

It is plausible that average size of standardized plants ̄ is typically much larger than the

average size ̄ of speciality plants. So differences in mean plant size across locations can

be driven by differences in the composition of types of plants. Highpoint can have a large

average plant size if it has a large share of standardized plants.

Next consider the impact of the trade shock. For simplicity, assume the elasticity of

substitution  between the two segments equals one (Cobb-Douglas) fixing the spending

shares on the two segments. To discuss the impact of the shock, we need to distinguish

between the two models of the speciality sector that we have put forth. We begin with
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the nontradable case. The emergence of the new foreign location  is irrelevant for the

nontradable speciality sector because the infinitely high transportation costs keeps any goods

from  outside of this segment. Suppose there are two domestic locations as in Proposition

2 and the standardized segment lies completely within location 2. The nontradable segment

is distributed across the two locations following expenditure. Assume the Census combines

the standardized and speciality segments into one combined industry. Then location 2 will

be measured as specializing in the overall industry. If average plant size of standardized

plants is greater than speciality plants, then location 2 will have larger plants than the

domestic average. So part (i) of Proposition 2 continues to hold. But now consider the

trade shock from the increase in comparative advantage of location . This displaces sales of

standardized goods at location 2, but has no impact on sales of speciality goods at location

1 (the only type of products sold at 1). Thus part (ii) of Proposition 2 does not hold

here. Location 2 with high industry concentration and the large plants loses share relative

to location 1 on account of the surge from location .

In the alternative model where the speciality goods are high-end niche goods, but very

tradable, the outcome depends upon the emerging trade partner’s ability to compete in the

speciality segment as well as the standardized segment. It is likely that the circumstances

that make location  a strong competitor in the standardized segment (e.g. an abundance

of unskilled labor) are unrelated to its competitiveness in the speciality segment. If that is

the case, the speciality segment is not impacted and part (ii) of Proposition 2 won’t hold in

this case either.

The discussion so far imposes Cobb-Douglas utility so spending on speciality goods stays

fixed. Suppose instead that the elasticity of substitution  between speciality and standard-

ized goods is greater than one. But also assume that the elasticity  cross standardized

goods exceeds . So standardized goods are better substitutes for each other than speciality

goods. Then the advent of location  in standardized goods will carry over to the speciality

goods, as consumers substitute high price niche goods with low price standardized goods.

Nevertheless, the standardized sector is impacted relatively more and Proposition 2 part (ii)

goes the other way. The location with high market share and large plants loses domestic

market share.
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3 The Data and some Descriptive Results

The first part of this section discusses data sources and industry and geographic classifica-

tions. The second part provides some initial descriptive results.

3.1 The Data

We analyze the confidential micro data for two programs of the U.S. Census Bureau. The

first is the 1997 Census of Manufactures (CM), The data are collected at the plant level,

e.g. at a particular plant location, as opposed to being aggregated up to the firm level. For

each plant, the file contains information about employment, sales, location, and industry

classification.

The second data file is the 1997 Commodity Flow Survey (CFS). The CFS is a survey

of the shipments that leave manufacturing plants. See Hillberry and Hummels (2008) for

details about these data. Respondents are required to take a sample of their shipments

(e.g. every 10 shipments) and specify the destination, the product classification, the weight,

and the value of the shipment at origin. On the basis of this probability weighted survey,

the Census tabulates estimates of figures such as the total ton miles shipped of particular

products. There are approximately 30,000 manufacturing plants with shipments in the

survey. Holmes and Stevens () provides more details..

While we have access to the raw confidential Census data, in some instances, we report

estimates based partially on publicly-disclosed information rather than entirely on the confi-

dential data. These are cases where we want to report information about narrowly-defined

geographic areas, but strict procedures relating to the disclosure process for the micro-data

based results get in our way. In these cases, we make partial use of the detailed public

information that is made available about each plant in the Census of Manufactures. Specif-

ically, the Census publishes the cell counts in such a way that for each plant, we can identify

its six-digit NAICS industry, its location, and its detailed employment size class (e.g., 1-4

employees, 5-9 employees, 10-19 employees, etc.). We use this and other information to

derive sales and employment estimates for narrowly-defined geographic areas. The data

appendix provides details.

Plants are classified into industries according to the North American Industry Classifica-

tion System or NAICS. The finest level of plant classification in this system is the six-digit

level and there are 473 different manufacturing industries at this level. When we estimate
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the model, we focus on a more narrow set of 172 manufacturing industries. These are in-

dustries with diffuse demand that approximately follows the distribution of population. We

do this so we can use population to proxy demand when we estimate the model.4 Specifi-

cally, through use of the input-output tables, we selected industries that are final goods for

consumers. In addition, we included intermediate products used in things like construction

and health services that have diffuse demand. We excluded intermediate products used

downstream for further manufacturing processing. See the data appendix for additional

details.

We use Economic Areas (EAs) as defined by the Bureau of Economic Analysis (BEA) as

our underlying geographic unit. There are 177 EAs that form a partition of the contiguous

United States. The BEA defines EAs to construct meaningful economic geographic units,

using counties as building blocks. A metropolitan statistical area (MSA) is typically an EA.

In addition, rural areas not part of MSAs get grouped into an EA. To calculate distances

between locations, we take the population centroids of each EA and use the great circle

formula.

4 Some Descriptive Results

This subsection presents descriptive evidence that sheds light on the plausibility of our thesis.

We begin by looking at a selected set of seven industries for which we are able to exploit

additional information about what the plants do beyond the NAICS code. We then discuss

some preliminary findings for a broader set of industries.

In 1997, the Census changed its industry classification from the SIC system to the NAICS

system. Seven NAICS manufacturing industries were redefined to include plants that had

previously been classified as retail under SIC. For example, under the SIC system, estab-

lishments that manufactured chocolate on the premises for direct sale to consumers were

classified as retail. Think here of a fancy chocolate shop making premium chocolate by

hand. These were moved into NAICS 311330, "Confectionery Manufacturing from Pur-

chased Chocolate.” This industry also includes chocolate factories with more than a thou-

sand employees. This situation–where retail candy operations are lumped into the same

4There are a variety of ways we can potentially improve our demand measure. For example, for consumer

goods industries, we could take into income. For some of our industries that sell investment goods to the

general manufacturing sector, we could use the distribution of manufacturing. While our population-based

measure is crude, it gets the order of magnitude of demand correct. Iis useful as a first cut in making it

possible to consider a wide swath of industries.
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industry as mass-production factories making standardized goods–epitomizes what we are

trying to capture in our model. Analogous to chocolate, facilities making custom furniture

and custom curtains in storefront settings were moved from retail under SIC to manufac-

turing under NAICS. The logic underlying these reclassifications was an attempt under the

NAICS system to use a “production-oriented economic concept” (Office of Management and

Budget, 1994) as the basis of industry classification. The concept is that plants that use the

same production technology should be grouped together in the same industry. The previous

SIC system sometimes followed this logic but was inconsistent in its application.

Table 2 shows the seven NAICS manufacturing industries that were impacted this way.

We will refer to these industries as the 1997 Reclassification Industries and sometimes the

7 industry sample. All are consumer goods industries (some kind of candy, textiles, or

furniture). We do not regard these reclassifications in 1997 as a “mistake” by the statistical

authority or any kind of deviation from normal philosophy about how to aggregate plants

into industries. It is not feasible for the Census to define industry boundaries too narrowly

because otherwise cells become so thin in tabulations that disclosure issues preclude pub-

lication. The Census must aggregate in some way and its general procedure is to group

standardized versions and speciality versions of the same product into the same industry.

That the Census cleaned up what it considered an earlier mistake is fortunate for our

purposes as it yields additional information that can be exploited. The micro data for

1997 contains a plant’s SIC code in addition to its NAICS code (because tabulations were

published both ways for this switchover year.) We take the sample of seven NAICS industries

and refer to the plants that are in retail under SIC as SIC/Retail plants and the remaining

plants as SIC/Man. The first thing to note in Table 2 is the large differences in mean plant

size between these two groups. The SIC/Retail plants are significantly smaller than the

SIC/Man plants.

A well known result due to Bernerd and Jensen is that large plants are relatively likely

to export compared to small plants. Table 2 reports exports by type. There is a consistent

pattern that the SIC/Man plants (which are large on average) have a 3 percent export share

while the SIC/Retail plants (which are small) don’t export at all. Furthermore, we can think

of retail status as an extreme form of non-exporter status; retailers (typically) do not sell

to domestic destinations outside their own immediate vicinity, let alone foreign destinations.

So the connection reported here between plant size, export status and retail status can be

interpreted as a variant of a well-known empirical pattern.

Suppose we take the speciality-segment-as-nontradeable-good variant of our model. Sup-
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pose we take SIC/Retail status as a proxy indicator for our speciality, nontradable good. An

immediate implication of the model is that the geographic distribution of the SIC/Retail seg-

ment will closely track the distribution of demand. The last column of Table 2 provides

evidence consistent with this pattern. It reports a measure of the distribution of industry

sales which shows that plants in the SIC/Retail segment tend to closely follow population (as

retail does more generally) while plants in the SIC/Man segment tend to be geographically

concentrated.

To explain the measure, recall the definition of the location quotient 
 (7) at location

 for a given industry, but now use population share to approximate expenditure share in

the denominator. Analogous to Holmes and Stevens (2004b), for each industry we sort

locations (economic areas) by the location quotient and then aggregate locations into ten

approximately equal-sized population-decile classes. (This aggregation helps smooth the

data. It is approximate because of lumpiness in location size.) Let 
 be the location

quotient of decile . By definition, 
 ≤ 

+1 . If all sales are concentrated in the top

decile then 
10 = 10, as 100 percent of the industry is concentrated among 10 percent of

the population.

We are interested in comparing the geographic dispersion of different groups of firms

within the same industry. Let  index a particular group of firms. (For example, for what

we do in Table 2, the index  signifies whether a plant is SIC/Retail or SIC/Man.) Suppose

plants located in decile  of type  are indexed by  and let  be the sales of plant  of

type  at decile . Let ̄ be the sales-weighted overall mean location quotient across

plants from all locations of all types. Then

̄ ≡
P



P


P
 


P



P


P
 

=

P
 



1
10


= 10

"
10X
=1

µ




¶2#
.

So the mean location quotient ̄ is exactly the standard Herfindahl index of industry

concentration, times a factor of 10. If the entire industry is concentrated in the top decile,

then ̄ = 10. If it is spread equally across the ten deciles then ̄ = 1. The main

interest for this subsection is the conditional mean location quotient of plants of type ,

̄
 =

P


P
 


P



P
 

.
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Note that conditioning on type  enters only through the weights; plants of all types in

decile  are used to define the 
 associated with a sale.5 Conceptually, we are taking

each dollar of sales in the data and associating it with the location quotient of its origin and

taking means.

The last column of Table 2 presents the mean location quotients conditional on SIC/Retail

or SIC/Man status.6 There is a clear pattern in the table that the SIC/Man segments

tend to have significantly higher concentration than the corresponding SIC/Retail segments.

Moreover, the measures for the SIC/Retail segments are close to one. For example, in the

wood furniture industry, the mean is 1.52 for SIC/Retail and 7.11 for SIC/Man.

The SIC/Retail plants in these industries are clearly what we have in mind by speciality

plants. But what about the many small plants in the SIC/Man segment in these industries?

We can address this by exploiting data on product shipments. The Census of Manufactures

asks a sample of plants to itemize their shipments in various product categories. In most

cases, the product definitions are unrelated to the speciality product versus standardized

product distinction that would be useful for our paper. However, for the reclassification

industries, new product definitions were created as part of the 1997 reclassification that get

directly to the core of what we wish to look at. New product categories were created for

custom-made furniture products and for candy manufactured for retail sale on premises.

We define such products as speciality products (see the appendix for the full definition) and

determine for each plant with the requisite data the speciality product share of shipments.

(Not all small plants are required to fill out the detailed survey of shipments and we throw

out imputed values, so our data here is for a sample of plants rather than for the universe.)

We have usable data for five of the reclassification industries. Table 3 reports unweighted

means of this variable for the five industries together as well as three different industry

subgroups.

For all five industries together, the mean speciality share is .82 in the SIC/Retail segment

and falls to .40 in the SIC/Man segment. Within the SIC/Man segment, mean share falls

sharply with plant size, ranging from .57 in the smallest plant category to .07 in the largest.

Looking within the more narrow industry groupings, we see the speciality share is uniformly

high in the SIC/Retail segment for all narrow industry groupings. Looking within the

5In Holmes and Stevens (2002) we calculate analogous measures that for each plant excludes the plant’s

own contribution to the location quotient and only uses the neighboring plants. This correction makes little

difference in what we do here.
6Note: in the current version, the geographic partition being used for Table 2 is Census Divisions. Table

4 below uses the deciles described above.
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SIC/Man segment, the speciality share is quite high in the wood kitchen cabinet industry.

The share falls sustantially with plant size within this segment, .70 to .28. For the SIC/Man

plants within the furniture industry, the speciality share also falls sharply with plant size,

from .08 to .03.

Naturally, our interest extends beyond the seven reclassification industries in Table 2.

Outside these seven industries, we do not have useful product and SIC code distinctions to

work with. We do have plant size for each establishment and our last descriptive exercise

makes use of it. We break plants down into four employment size categories and calculate

the conditional mean location quotient ̄
 for each size category . This is the column

labeled “raw” in Table 3. Next we add six-digit NAICS fixed effects and report how the

fitted values vary with plant size, holding industry effects fixed (at the mean level).7 These

go in the column labeled "fixed effects.”

As a reference point, we begin with the seven reclassification industries and the results are

in the top panel of Table 4. In the column labeled raw, we see the mean location quotient is

only 1.36 in the smallest size category and it rises all the way to 6.13 for the largest category.

We expect that part of this relationship stems from the fact that some industries (like wood

cabinets) tend to have small plants and be geographically disperse. While the inclusion

of 6-digit NAICS fixed effects does attenuate the relationship, it remains quite large, going

from 2.46 in the smallest plant size category to 5.83 at the top. This pattern is consistent

with the pattern established in Table 2 for these industries. There, the large plant category

is more geographically concentrated than the small plant category.

In the second panel we do the same exercise for the 165 other Industries with diffuse

demand for which we will estimate the model. The same pattern holds. Using fixed effects,

mean location quotient increases from 3.72 in the smallest plant size category to 5.41 in

the largest category. The spread found here, 3.72 to 5.41 (a difference of 1.69), is half the

spread of 2.46 to 5.83 (3.37). This is not surprising as the seven are a selected sample

that exemplify that factors we are highlighting. However, the same qualitative relationship

that holds in our narrow reclassification sample also holds in the broad sample. We obtain

similar results in the bottom panel for the remaining 302 industries that do not have diffuse

demand.

7We regress plant LQ on the size categories and industry fixed effects, weighting by sales. We then

contstruct fitted values by plant size category evaluated at the mean fixed effects.
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5 Estimation of the Model

This section estimates the model. The first subsection considers a constrained version of

the model where the standardized goods segment is the entire industry. This subsection

serves the role of providing first-stage estimates that are used later. The next subsection

brings the speciality-goods segment into the analysis.

5.1 First-Stage Estimates: The Constrained Model with Only

Standardized Goods

In what we call the first-stage estimates, the model is estimated under the assumption that

each six-digit NAICS is a distinct standardized-products industry, i.e. each industry has its

own BEJK model parameters. This procedure pins down distance adjustment parameters

that will be used throughout the paper.

For each industry , the data generating process for the industry is summarized by

a vector Γ = (1  

2  


) that parameterizes the relative productive efficiencies of the

various locations and a  ×  matrix , with elements  that parameterize the distance

adjustments in (3). We normalize so the  sum to one across locations .

Assume the distance adjustment for industry  takes the form

 = (dist) = exp(−1dist − 2dist
2
) (12)

so that ln  is quadratic. If 

2 = 0, then 1 is the decay rate per mile for industry ..

We have restricted attention to the 172 industries listed in the appendix for which demand

is diffuse and roughly follows population. For simplicity, we assume this is exactly true so

that expenditure  at location  in industry  is proportional to population and normalize

so
P

 

 = 1. The Census of Manufactures (CM) covers the universe of all plants in the

United States. Subtracting out the exports of each plant, we can aggregate the plant-level

sales data to get  , the value of domestic shipments originating at location  in industry .

Other then export information, there is no destination information in the CM. However,

the CFS provides survey information on shipments and their destinations that we can link

to plants (and thereby determine industry). A concern we have with the CFS data is that

local shipments may be over-represented in the data. These seem too high, more than can

be absorbed by local demand. We expect that sometimes shipments intended for far away
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destinations get there by way of a local warehouse In cases like these, the destination

found in the CFS may be the local warehouse rather than the ultimate destination. In the

appendix, we provide some preliminary evidence of a link between excess local shipments for

an industry and an industry’s use of the wholesaling sector.

The form of our data leads us to the following strategy for estimating  =
¡
1  


2

¢
and

the productivity vector Γ for each industry. We pick (Γ) that perfectly match the

distribution of sales at originating locations as we directly observe the universe of sales at

each location. Because of our concern about excessive local shipments, we throw out all

local shipments in the CFS that are less than one hundred miles and fit the conditional

distribution of the longer shipments. Formally, set dist = 100 and let ( dist) be the set of

all destinations at least dist from an originating location . The conditional probability that

an industry  shipment originating in location  goes to a particular destination  ∈ ( dist)

equals



 =

P
0∈(dist) 


0
.

For each value of , we solve for the vector Γ such that the predicted total sales of the

industry at a given location equals total sales in the CM data. We show in the appendix there

is a unique solution Γ() to the 177 nonlinear equations for the 177 locations and derive

an iterative algorithm for calculating it. We can then write the conditional probability above

as a function of . We pick  to maximize the conditional likelihood of the destinations

observed in the shipment sample.8 We provide details about the estimation algorithm in

the appendix.

Table 5 reports estimates for several selected industries. The parameter estimates ̂1

and ̂2 are in the table, the corresponding 177-element productivity vector Γ
() for each

industry can be obtained as a separate data file. The reported industries are those at the 25th

percentile points in the distribution of the implied value of (100), the distance adjustment at

100 miles. The bottom industry in this dimension is “ready mixed concrete,” a well-known

example of an manufacturing industry in which shipments are overwhelming local. (see

Syverson ()). For this industry and four other industries where shipments are overwhelming

local (such as “ice” and “concrete blocks”) we used all shipments, including those below one

hundred miles.9 We see in the table that the estimate of (100) for ready mix concrete is

8The sample of plants selected for the CFS is stratified. We use the establishment sampling weights to

reweight the cell count realizations and follow a pseudo-maximum likelihood approach. In writing down the

likelihood, we condition on the origination of a given shipment.
9If after exlcuding shipments below 100 miles, the implied value of turned out to satisfy (100) ≤ 2,
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.01. For ice (not shown in the the table), (100) = 06 and for asphalt paving it equals

(100) = 09. These industries are virtually nontradable beyond one hundred miles. Butter

is the 25th percentile industry. For this industry there is a high degree of tradability at one

hundred miles ((100) = 74), but things drop of steeply at five hundred miles ((500) = 27).

The highest ranked tradability industry is “Other Hosiery.” We truncate the () function

at one in a few industries like this where the unconstrained value exceeds one. Imposing this

constraint makes little difference; unconstrained, the distance adjustment for “other hosiery”

at one hundred miles is (100) = 106

Table 5 also reports the mean values of the parameter estimates across all industries. On

average, 1 = 003 meaning that if we look only at the linear component of (12), the average

dropoff in  is .3 percent per mile. The fact that the coefficient 2 on the quadratic term

is negative adds a convexity element to the relationship; the dropoff decreases with distance

at a decreasing rate.

We have also reestimated the model using the data from the previous census. We call

this the 1992 SIC sample because industry classification was based on SIC that year. We

use the same selection criterion to identify industries with diffuse demand and arrive at 175

industries. The mean values of the estimates are virtually the same as in the baseline 1997

NAICS case. For those industries with no change in definition between the 1992 SIC and

1997 NAICS there is a very high correlation in the implied values of (). The CFS survey

for the earlier period was a larger, better-funded survey, with many more observations. In

particular, the average number of shipments used to estimate the parameters of each industry

is 8,500 for the earlier period and about 4,000 in the later period. Thus, estimates for the

1992 SIC sample are more precise.

Table 5 also shows what happens to the estimates when the distance threshold for includ-

ing shipments in the analysis is varied. As discussed above, CFS manufacturing shipments

may overstate local shipments, as some local shipments may end up in the wholesale sector

to be ultimately shipped to distance destinations. When we set dist = 0, so that no obser-

vations are excluded, the average value of (100) falls from the baseline level of .80 to .71.

With local shipments included, the model is accounting for the high relative likelihood of

local sales by making transportation costs higher. If we go in the other direction and raise

the cutoff to dist = 200, the average value of (100) rises from .80 to .85. We later discuss

the robustness of our main results to choice of dist.

we reestimated the model with all the shipments and used this estimate instead. For the five industries

impacted this way, we constrained 2 = 0 and just allowed for linear term 1.
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The last topic of this subsection is goodness of fit. Recall that by construction, the total

shipments originating in each location in the estimated model perfectly fits the data. For

a notion of goodness of fit, we look at the distance pattern of shipments. We break the

shipments above 100 miles into three distance categories, (1) 100 to 500 miles, (2) 500 to

1000 miles and (3) over 1000 miles. For industry , let  be the share of the shipments

above 100 miles that are in distance category  ∈ {1 2 3} in the data. Let ̂ be the fitted
value in the estimated model. Table 6 presents descriptive statistics. In the data, on

average across the industries, a share .44 of the 100-mile-plus shipments are in the 100 to

500 mile category. This compares to an average share of .38 in the estimated model. The

model has a tendency to somewhat understate the shortest distance category and somewhat

overstate the two longer distance categories. By construction, the destination of shipments

in the model exactly follows the distribution of population. So locations far away from

any producers will nevertheless be required in the model to receive their share of shipments.

The last part of Table 6 shows that the fitted values of the model do a very good job in

accounting for the cross-industry variation in the distance distribution. The slope of  in

a regression on ̂ is approximately one for all three categories.

5.2 Including Speciality Goods

We now introduce the speciality-goods segment into the estimation. It is reasonable to

expect that this segment may typically account for a relatively small share of industry

sales receipts but while at the same time potentially account for a nonnegligible fraction of

establishment counts. This expectation motivates the following estimation strategy. We

proceed under the assumption that the standard-segment weight  in utility (1) for each

industry  is close to one and the specialty-segment weight  is close to zero. In this case,

the sales distribution by origin and destination is approximately the same as it is in the

limiting case where  = 1 and  = 0. We then take our estimate (Γ) for each 

from above as an approximation to what we need here.

With an estimate of  and Γ in hand, we can determine the plant counts for stan-

dardized goods (subject to the scaling normalization ). Recall from (4) this equals



 = (

Γ), where we now add a superscript for the industry . Next consider

plant counts for speciality goods. In the nontradable case, using equation (5), speciality

plant counts equal 

 = . In the high-end niche case, counts will depend on supply

of speciality-specific factors through (6). As a first cut, assume supply is proportional to
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population. This delivers 

 =  for this case as well. So for either case, the total

number of plants in industry –standardized plus specialty–equals

 = (
Γ) + . (13)

To take this to the data, we introduce an error term. Suppose the observed total number

of plants in industry  at location  equals the above plus an error term  +  ,

̃ = (
Γ) +  +  +  , (14)

where  is mean zero and has variance proportional to location ’s population (i.e. propor-

tional to ). We use weighted least squares to estimate for each industry the slopes 

and  and the constant  (Given the results of the first stage, (
Γ) is data at this

point.)

Table 7 presents the results. The individual estimates are reported for the seven reclassi-

fication industries from Table 2; just means are reported for the broader set of industries. We

first note that allowing for the constant term  makes little difference; when we reestimate

(14) without an intercept we get similar results. Next note that the coefficient estimate ̂

for speciality goods tends to be quite large. Given the scaling that the  sum to one, ̂

is an estimate of the total count of speciality goods plant in industry  across all locations

Define the implied speciality count share to be

Speciality Count Share for industry  =


 +
P

 
(

Γ)

This model statistic is reported in Table 7 and it is quite high for all the reclassification

industries, averaging .75 across the seven industries.

The last two columns of the table report the share of plant counts and the share of sales,

for plants with less than 20 employees. We call these small plants. We do not necessarily

associate all small plants with the speciality goods segment. In the BEJK model, plants can

be small if they draw low productivity but have some other advantage that enables them

to be open (like the nearest efficient rival being a great distance away). So in our theory,

plants can be small because they are speciality plants or because they are low productivity

standardized good plants. Even though there is no one-to-one mapping between small plants

in the data and speciality plants in the model, we expect there to be some connection so it
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is useful to relate our estimates to the empirical shares of small plants in the data. In the

data for the seven reclassification industries, on average small plants make up a .81 share

of establishments but only a .13 share of sales. Small sales shares like these motivate our

approach of ignoring the speciality segment when we estimate  and Γ in the first stage.

Next consider the results for the remaining 165 diffuse demand industries. The 2 of

regression (14) averages .71 across the industries. This is high, even though it is lower then

the average of .84 for the reclassification industries. The average speciality plant share of

.65 is high, through lower than the .75 average for the reclassification industries. These 165

industries have relatively fewer small plants then the 7 reclassification industries (.57 instead

of .81), so is perhaps not surprising that the average estimated speciality plant count comes

in lower.

Figures 1 and 2 are a scatterplots across industries with the speciality plant count share

in the model on the horizontal axis and the small plant count share in the data on the vertical

axis. Figure 1 does this for the 7 reclassification industries. The positive connection is

readily evident. The industry with the highest speciality share has the highest small plant

share in the data. (In Table 7 we can see this is the curtain industry.) The industry with

the lowest speciality share (upholstered wood furniture) has the lowest small plant share.

Figure 2 is a plot for the remaining 165 industries. The first thing to note is that the vast

majority of industries are on the right side of the graph meaning they have an estimated

speciality plant share above .5. Next look at the curve that is fitted by locally-weighted

regression. There is an upward slopping relationship with a slope on the order of one

half. The correlation coefficient equals .37 ( = 0001). This compares to a correlation

coefficient of .77 ( = 05) for the 7-industry sample. Analogous to earlier results, the same

qualitative pattern found to hold in the 7-industry selected sample also holds for the broader

165-industry sample, albeit in an attenuated fashion.

It is instructive to examine outliers in the relationship of Figure 2. There are three

industries with small plant shares that exceed .70 in which the estimated speciality share is

less than half this level. These are:

• Industrial mold mfg (In model, speciality count share is.16; in data, small plant count
and sales shares are .72 and .23)

• Special die & tool, die set, jig, & fixture (In model, speciality count share is.04; in data,
small plant count and sales shares are .77 and .25)
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• Costume jewelry & novelty mfg. (In model, speciality count share is.30; in data, small
plant count and sales shares are .87 and .18)

Essentially the entire industry for each of these three cases can be viewed as speciality

goods. The industrial mold industry makes custom molds for other factories. The “special

die” industry has “special” in is name. The validity of the procedure used in this section

relies on the assumption that standardized goods make up the vast bulk of sales in a given

industry. This assumption is not true for the above three industries and so we get anomalous

results.10

This subsection can be summarized as follows. Proceeding under the assumption that

the speciality goods sales share is small, we estimate speciality goods make up more than

half of the plants in the vast majority of industries. This result emerges because of the high

estimate on the speciality-good coefficient  relative to standardized-good coefficient 

that we obtain for a typical industry . By construction in the first stage, the BEJK model

of the standardized segment fully accounts for the sales distribution. But plant counts are

a different story. These depend heavily on population shares, even after accounting for the

sales information through (
Γ).

6 Analysis of the Model

We use the model to analyze two issues. The first is the plant size/geographic concentration

relationship. The second is the impact of imports.

6.1 The Plant Size/Geographic Concentration Relationship

Define a high-concentration industry location to be one where the sales location quotient is

above 2 and in addition the location has at least 5 percent of the industry’s sales. Across

the 7 reclassification industries, there are 23 different high-concentration industry locations

and these are listed in Table 8, sorted for each industry by descending sales quotient. The

breakdown into the count and size quotient is also reported. (Recall 
 = 

 ×
 .)

It is clear from inspection of the data that the size margin plays an important role in

contributing to how an industry expands at a location. Consider the wood furniture industry

in the Highpoint area where the sales quotient is 27.7. (Note the table lists the area as

10It is worth noting that these three industries are also outliers in in the small plant sales share.
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Greensboro/Highpoint). The breakdown is 277 = 42× 66. Thus, average plant size in the
area is 6.6 times the national average. A high contribution from the size margin holds for

virtually all the 23 individual industry locations listed in Table 8. Over these 23 cases, the

size quotient on average is 5.4 compared to an average count quotient of 4.3.

The last two columns contain fitted values of the size quotient for the constrained model

with only a standardized segment (the BEJK model) and the full model that includes the

speciality segment.11 From the theoretical discussion in Section 2, we know that when

transportation costs are not zero (and making further assumptions about the distribution of

demand), the BEJKmodel implies that average plant size is bigger in locations that specialize

in an industry. With only two exceptions, this qualitative pattern holds for the fitted BEJK

model. However, the BEJK model fails quantitatively as the predicted size differences are

small. The count margin is doing the main work of driving variations in 
 , just like in

the numerical examples of the BEJK model in Table 1. When we turn to the full model and

allow for the speciality segment, the predicted size quotients are much larger and close to

what they are in the data (though still smaller). The average size quotient in the full model

equals 4.0 compared to an average of only 1.5 in the constrained model. These differences

between the full and the constrained model are driven entirely by compositional differences

across locations between standardized and speciality goods in the full model. In fact, if we

just look only at the standardized segment in the full model, the size distribution is identical

to what is it in the constrained model.

Next consider the broader set of industries (the 165 remaining diffuse demand industries).

We see in Table 8 at the same pattern holds with these industries as holds with the 7

reclassification industries. The mean size quotient is 5.3, so the size margin plays a big role

in how locations specialize in an industry. The mean fitted value of the BEJK of 1.3 is way

off. The corresponding mean in the full model is 3.3. Still too small, but much of the way

there. The industry location level observations in Table 8 suggest some skewness in the

distribution of the sales quotients so it is of interest go also look at the median. The same

pattern holds.

6.2 Impact of the China Surge

Imports from China have surged in a number of manufacturing industries in recent years.

This subsection examines how the geographic distribution of production in the United States

11In the constrained model, plant counts are proportational to (
Γ).
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has shifted in response and compares the results to the prediction of the constrained model

that does not allow for specialized goods (the BEJK model). If the change in imports into

the United States could be attributed to regional shocks within the United States, e.g. one

part of the country got a negative productivity shock, the rest of the country did not, it

would not be sensible to attribute shifts across locations as an “impact of the China surge.”

We don’t believe there is much to worry about on this score. The surge in imports has more

to do with what is happening in China than regional shocks taking place here.

We classify an industry as having a China import surge if the industry experienced a 25

percentage point increase in overall imports as a share of shipments over the period 1997 to

2007 and if China’s share of total imports in the industry as of 2007 exceeds 40 percent.12

Of the 172 industries for which we have model estimates, there are 17 China surge industries.

These are listed in Table 9. The overall import share of these 17 industries on average rose

from .34 in 1997 to .70 in 2007. The share of imports from China increased from .26 to .61

over this same period. On average across these industries, employment declined 66 percent

over the period. In the infant apparel industry, employment declined an astonishing 97

percent.

It is useful to have a comparison group of industries that (1) unlike the China surge

industries have not been impacted by imports but (2) are similar to the China surge industries

in being tradeable within the United States. We use food (NAICS=311) and beverage

(NAICS=312) industries for this purpose. As shown in the bottom row of Table 9, imports

in these industries are relatively small. On average, employment increased by 5 percent for

these industries.

We take our first-stage model estimates of the pure BEJK model of the standardized

sector for each of these industries and simulate the impact of large import shock on the

distribution of domestic production in 2007. As discussed in the theory section, the trans-

portation cost from China is assumed to be the same in all domestic locations. Also, the

general equilibrium impact of the wage change is not taken into account. We look at the

relative impact on the distribution of production rather than the absolute impact. So our

answer is not very sensitive to the absolute size of the shock that is imposed. For each

industry , we set the 2007 China competitiveness index (the parameter summarizing both

12Imports as a share of shipments has in the denominator imports of the product plus all shipments of the

product originating from domestic manufacturing plants.
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productive efficiency and distance adjustments, see (11)) to

2007 =
1

2

P177

=1

¡P177

=1 






¢
177

.

The term in parenthesis is the denominator of (2), the sum of competitiveness across origi-

nations. We set 1997 = 0. On account of this change in China’s delivered productivity,

China’s share goes from zero to about a third of the market. We take into account that the

distribution of demand differs somewhat across time periods, by using population estimates

for 1997 and 2007 when calculating the quotients for each year.

For the sake of illustration, it is useful to start the discussion with what happened to the

wood furniture industry in Highpoint. Recall from above that in 1997, the sales location

quotient equaled 
1997 = 277. Using the estimates of the BEJK model from stage 1, the

China surge described above results in a predicted vale of ̂
2007 = 310 at the location.

Highpoint’s relative share increases by about 10 percent analogous to what happens in part

(ii) of Proposition 2. Locations with large plants with high average productivity increase

share after the shock. What actually happened is that the sales quotient in Highpoint fell

to 
1997 = 128. While national employment fell by 51 percent, employment in the area

declined from 20,000 to 5,600, a decline of 72 percent.

For each industry, define the primary location to be the location with the highest 1997

location sales quotient, of those locations with at least 5 percent of 1997 sales. Table 10

presents an analysis of the 1997 primary locations for each of China surge industries. Note

first that analogous to the pattern of Table 8, virtually all of these locations have very high

average plant size relative to the national average, as indicated in the 
1997 column. Second,

in every case but one, the sales quotient falls at the primary location from 1997 to 2007.

Third, in every case but two, the BEJK predicted value ̂
2007 increases at the primary

location from the impact of the China surge. On average across the 17 industries, mean

sales quotient in the data falls from 26.9 to 12.2 while the BEJK predicted value actually

rises to 29.9. In terms of the median, in the data it falls from 19.6 to 5.3 while the BEJK

predicted value rises to 23.4.

It is natural to expect regression to the mean to play some role here. A location that

is number one in the 1997 rankings can only go down. To gain some perspective on the

importance of regression to the mean, we look at the primary locations in the food and

beverage comparison industries. These are similar to the China surge industries in that
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average plant size is quite high at the primary locations. Also, average the sales quotient

is quite high (37.4 in the food/bev industries, 26.9 in the China surge industries). If there

were a China surge for these industries, the BEJK predict sales quotients would increase at

the primary locations. Mean sales quotient falls for this group of industry locations, from

37.4 to 31.6. But the decline is relatively small, only 15 percent, compared with the average

59 percent decline for the China surge industries. We get the same conclusion if we look at

the median instead of the mean.

We next look at what is happening in big cities. We combine the twenty largest economic

areas by population into one group and calculate the various quotients for the group as a

whole. Table 11 is the analog of Table 10, with the big city aggregate serving as the location

of interest instead of the primary location. The big city plants tend to be 22 percent smaller

than the national average. As of 1997, sales were slightly underrepresented in big cities,


1997 = 97. The BEKJ model predicts a slight decrease going into 2007. The very clear

pattern in Table 11 is that the sales quotient actually increased in the big city aggregate

over this time period, rising to 
2007 = 108. This is not a case of regression to the mean;

as of 2007 when at 
1997 = 97, it is close to the mean to begin with. (The population

weighted mean across locations of 
1997 equals one by construction.) The industries in

the food/beverage comparison group are similar to the China surge industries as of 2007.

However, there is virtually no change on average in the food/beverage comparison group

over the time period.

We summarize the results as follows. In the industries impacted by a China surge,

primary locations like Highpoint have substantially declined relative to the rest of the country

while big city locations have gained. In the our estimated BEJK model for these industries

with only standardized goods, the predictions go the other way. It is clear that the model of

this paper that includes a speciality good segment is consistent with the qualitative pattern.

Primary locations are the home of standardized good production and this has declined with

the advent of China. Big cities are a place for speciality goods production.
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Table 1 
Breakdown of salesQ2  into countQ2  and sizeQ2  for Various Parameters 

(In all cases salesQ2 = 4) 
 

Transportation 
Structure 

a 

Equal Size Locations 
(x1 = x2) 

Location 2 larger 
(3x1 = x2) 

Location 1 larger 
(x1 = 3x2) 

 γ2/ γ1 countQ2
 sizeQ2

 γ2/ γ1 countQ2
 sizeQ2

 γ2/ γ1 countQ2
 sizeQ2

 

1.000 4.00 4.00 1.00 12.00 4.00 1.00 1.33 4.00 1.00 
0.990 4.00 3.98 1.01 11.94 3.95 1.01 1.34 4.01 1.00 
0.950 4.00 3.88 1.03 11.71 3.74 1.07 1.37 4.07 0.98 
0.900 4.01 3.77 1.06 11.43 3.49 1.15 1.41 4.14 0.97 
0.800 4.06 3.55 1.13 10.91 3.02 1.32 1.50 4.29 0.93 
0.600 4.32 3.16 1.27 10.18 2.24 1.19 1.76 4.60 0.87 
0.500 4.62 2.98 1.34 10.07 1.92 2.09 1.97 4.75 0.84 
0.200 8.28 2.59 1.54 13.87 1.24 3.23 4.00 5.14 0.78 
0.100 15.41 2.52 1.58 23.88 1.12 3.56 7.63 5.22 0.77 
0.010 150.05 2.50 1.60 225.22 1.08 3.69 75.01 5.25 0.76 
0.001 1501.20 2.50 1.60 2257.89 1.09 3.68 750.11 5.25 0.76 

 



Table 2 
Descriptive Statistics for the 1997 Reclassification Industries 

By SIC/Retail and SIC/Man status 
NAICS Industry Classification Classification 

Based on SIC  
Number 
of Plants 

Mean 
Plant 

Employ. 

Export 
Share 

Mean 
Location 
Quotient

Confectionery from purchased 
chocolate SIC/Retail 440 8 .00 1.01
 SIC/Man 421 70 .03 4.87

 
Nonchocolate confectionery  SIC/Retail 349 4 .00 1.01
 SIC/Man 276 88 .03 4.61
 
Curtain & drapery mills SIC/Retail 1,085 4 .00 1.54
 SIC/Man 999 21 .03 3.22
 
Other apparel accessories & 
other apparel  SIC/Retail 724 3 .00 1.71
 SIC/Man 966 25 .03 2.67
 
Wood kitchen cabinet & 
counter top  SIC/Retail 2,055 5 .00 1.25
 SIC/Man 5,908 15 .01 2.14
 
Upholstered household 
furniture  SIC/Retail 576 5 .00 1.52
 SIC/Man 1,130 77 .03 7.20
 
Nonupholstered wood 
household furniture  SIC/Retail 815 6 .00 1.17
 SIC/Man 3,035 41 .03 4.42

 



Table 3 
Mean Specialty Share across Sample Plants 

By SIC/Retail and SIC/Man status and Within SIC/Man by Employment Size 
For Five NAICS Industries Where Specialty Variable can be Defined 

 
Industry Grouping Classification  Number 

of 
Sample 
Plants 

Mean 
Speciality 

Share 

All (Five NAICS Industries) SIC/Retail 160 .82 
 SIC/Man 3,169 .40 
 Within SIC/Man by Emp. Size   
  1-19 1,655 .57 
  20-99 973 .27 
  100 and above 539 .07 
 
Confectionery  
(Two NAICS ) SIC/Retail 58 

 
 
.82 

 SIC/Man 225 .01 
 Within SIC/Man by Emp. Size   
  1-19 27 .00 
  20-99 96 .02 
  100 and above 102 .00 
 
Wood kitchen cabinet & 
counter top (One NAICS)  SIC/Retail 48 

 
 
.87 

 SIC/Man 1,854 .64 
 Within SIC/Man by Emp. Size   
  1-19 1331 .70 
  20-99 426 .56 
  100 and above 97 .28 
 
Household furniture  
(Two NAICS) SIC/Retail 54 

 
 
.78 

 SIC/Man 1,090 .05 
 Within SIC/Man by Emp. Size   
  1-19 297 .08 
  20-99 451 .05 
  100 and above 340 .03 



 
Table 4 

Mean Location Quotient by Plant Size for Three Groups of Industrys 
 

Industry 
Grouping 

Plant Size 
Category 

Number of 
Establishments 

Mean  
Location 
Quotient 

 

 Raw 

NAICS 
Fixed 
Effect 

Reclassification 
Industry Sample All 18,585 4.32 4.32 
(7 Industries)     

 1-19 15,687 1.36 2.46 
 20-99 2,073 2.62 3.03 
 100-499 690 4.18 3.97 
 500+ 135 6.13 5.83 
 
 
    

Other Diffuse 
Demand 
Industries All 130,986 4.86 4.86 
(165 Industries)     

 1-19 91,608 1.73 3.72 
 20-99 28,291 2.37 4.01 
 100-499 9,533 3.75 4.60 
 500+ 1,554 6.68 5.41 
 
 
    

Remaining 
Manufacturing 
Industries All 211,945 5.13 5.13 
(301 Industries)     

 1-19 134,044 1.86 3.67 
 20-99 54,705 2.79 4.14 
 100-499 20,101 4.38 4.91 
 500+ 3,095 6.92 5.82 



Table 5 
Model Estimates from Stage 1 

 

 
Parameter Estimates
(s.e. in parenthesis)

Implied value of a(dist) by 
dist 

 η1 η2 
100 

miles
500 

miles 
1000 
miles

Number of 
CFS 

Shipments 
Used for 
Estimate

Baseline 1997 NAICS Estimates 
using 100dist  
Selected Industries by percentile of 
implied value of a(100)    

Ready-mix concrete  (Minimum) 
.0523 

(.0004) 
0* 

 .01 .00 .00 37,875
 
Creamery butter  
(25th percentile) 

.0030 
(.0003) 

-8.1E-07 
(1.1E-07) .74 .27 .11 586

 
Wood television, cabinets 
(50th percentile) 

.0019 
(.0003) 

-6.4E-07 
(1.6E-07) .83 .45 .28 546

 
Surgical appliance & supplies  
(75th percentile) 

.0008 
(.0001) 

-1.8E-07 
(0.2E-07) .92 .69 .52 11,670

 
Other hosiery & sock mills 
(Maximum) 0** 0** 1.00** 1.00** 1.00** 2,967
      
Baseline Estimates 
(Mean over 172 Industries) 

.0030 
(.0002) 

-5.0E-07 
(.0.7E-07) .80 .48 .33 3,968

      
Alternative Estimates  
(Means across industries)      
1992 SIC (175 Industries)  
 with 100dist   
 

.0030 
(.0001) 

-5.9E-07 
(0.4E-07) 

.79 .44 .30 8,500

1997 NAICS (172 Industries) 
  with 0dist   
 

  .71 .30 .16 3,968

1997 NAICS (172 Industries)  
 with 200dist  

  .85 .57 .42 3,968

*The constraint η2=0 is imposed for this industry.   
**This estimate is at the constraint that a(dist)≤1 
 



Table 6 
The Model’s Goodness of Fit of the Distance Distribution of Shipments 

Conditioned upon Shipments being at least 100 miles 
 

Statistic Reported Category 1 
100≤distance<500

Category 2 
500≤distance<1000

Category 3 
1000≤distance 

Mean h
cs  across industries 

(data) 
.44 .30 .25 

Mean h
cŝ  across industries 

(model) 
.38 .33 .30 

     
Regression of h

cs  (data)  
on h

cŝ  (model) 

   

Intercept .05 
(.02) 
 

-.03 
(.02) 

-.03 
(.01) 

Slope 1.04 
(.04) 
 

.99 
(.07) 

.96 
(.03) 

R2 .81 .55 .83 
Number of Observations 167 167 167 

 



 
Table 7 

Second Stage Estimates of the Plant Count Parameters and Related Model and Data Statistics 
 

 
Regression Results 
(s.e. in parentheses) 

Data 
Small Plants 

(Employment<20)

 

Constant
λ 

Slope 
(spec) 
νb 

Slope 
(stan) 
νs 

R2 

Model 
Implied 

Specialty 
plant 
share 

Share 
of plant 
counts 

Share 
of sales 

Reclassification Industries  
Confectionery from  
purchased chocolate 
 

.4 
(.2) 

614.0 
(52.5) 

104.5 
(17.4) 

.69 .79 .77 .04 

Nonchocolate confectionery  
 
 

.1 
(.1) 

481.5 
(31.5) 

63.4 
(17.4) 

.79 .79 .77 .03 

Curtain & drapery mills 
 
 

-.9 
(.3) 

2162.0 
(59.8) 

19.2 
(6.9) 

.92 .96 .91 .24 

Other apparel accessories  
& other apparel mfg 
 

-2.3 
(.5) 

1480.8 
(136.7) 

145.8 
(15.5) 

.86 .67 .84 .17 

Wood kitchen cabinet  
& counter top mfg 
 

1.0 
(1.2) 

6059.4 
(238.0) 

130.8 
(15.1) 

.88 .79 .89 .28 

Upholstered household  
furniture mfg 
 

-1.3 
(.5) 

905.0 
(92.4) 

240.5 
(7.4) 

.89 .46 .69 .05 

Nonupholstered wood household  
furniture mfg 
 

-1.1 
(.7) 

3195.4 
(139.8) 

228.1 
(19.5) 

.86 .78 .81 .08 

        
Means of 7 Reclassification 
Industries 
 

-.6 
(.5) 

2128.3 
(107.2) 

133.2 
(12.8) 

.84 .75 .81 .13 

Means of 165 Remaining 
Diffuse Demand Industries 

-.3 
(.2) 

634.7 
(41.6) 

75.2 
(5.9) 

.71 .65 .57 .08 

 



Table 8 Sales, Count and Size Quotients in Data, Size Quotients for Both Models 
In High Concentration Industry Locations 

Data 
Industry   
(of 7 reclassification 
 industries) Location 

Mean 
sales 
share QSales QCount QSize 

BEKJ 
Only 

Model
QSiz 

Full 
Model
QSize 

 
Confectionery from  Harrisburg- PA .07 9.2 1.4 6.4 1.2 3.8
 purchased chocolat Nashville, TN .06 6.6 .8 7.9 1.2 3.4
 Chicago .15 4.1 1.2 3.6 1.2 2.8
 Philadelphia .08 3.3 2.1 1.6 1.1 2.4
 San Francisco, CA 

 
.08 2.3 1.5 1.6 .6 1.4

Nonchocolate  Grand Rapids- MI .07 11.2 1.2 9.2 1.4 4.5
 confectionery mfg Chicago, IL .24 6.8 1.5 4.6 1.4 3.8
 Atlanta- GA 

 
.07 3.5 .8 4.5 1.2 2.5

Curtain & drapery  San Antonio, TX .07 1.3 .6 16.8 .7 6.8
 mills Raleigh-Durham NC .09 1.1 1.1 8.9 1.6 8.4
 Charlotte- NC .06 7.6 1.7 4.5 1.8 6.7
 Boston- MA 

 
.07 2.5 1.4 1.8 1.1 2.3

Other apparel  New York- NY .28 3.5 2.6 1.4 1.9 2.8
 Los Angeles-, CA 

 
.16 2.5 2.1 1.2 1.0 1.7

Wood kitchen cabinet  Harrisburg- PA .05 7.4 1.7 4.4 4.8 6.6
 & counter top mfg Dallas-Fort Worth, TX 

 
.05 2.4 1.0 2.4 1.2 2.0

Upholstered household  Tupelo, MS .21 107.4 43.4 2.5 1.6 2.8
 furniture mfg Charlotte- NC .19 23.2 11.3 2.1 1.8 3.1
 Knoxville- TN .09 22.2 2.6 8.6 1.7 3.0
 Greensboro,HighPoint,  

 
.12 19.2 11.0 1.8 1.8 3.1

Nonupholstered wood  Greensboro,HighPoint, .17 27.7 4.2 6.6 2.0 7.2
 household furniture Charlotte- NC .13 15.5 2.9 5.4 1.9 6.1
 Toledo-Fremont, OH .05 13.5 .8 17.5 1.5 5.0
     
Summary Statistics      
7 Reclassification  
 Industries 

N= 23 Industry Locations 
 Mean .11 14.0 4.3 5.4 1.5 4.0

  Median .08 7.6 1.5 4.5 1.4 3.1
165 Remaining  
 Diffuse Demand 

N= 566 Industry Locations 
 Mean .11 18.3 5.9 5.3 1.3 3.3

 Industries  Median .09 9.3 2.9 2.6 1.2 2.5
 



Table 9 
List of China Surge Industries and Some Descriptive Statistics 

 
 Import Share of Shipments China Share of Imports 

Industry 1997 2007 1997 2007 

Employment 
Growth 
1997-2007 

Curtain & drapery mills .08 .56 .38 .65 -.47 
Other household textile prod mill .22 .68 .25 .49 -.51 
Women's & girls' cut & sew dress  .29 .67 .21 .55 -.71 
Women's & girls' cut & sew suit,  .48 .92 .19 .49 -.91 
Infants' cut & sew apparel mfg .60 .99 .08 .62 -.97 
Hat, cap, & millinery mfg .44 .80 .26 .67 -.74 
Glove & mitten mfg .58 .88 .50 .63 -.78 
Men's & boys' neckwear mfg .25 .56 .02 .59 -.67 
Other apparel accessories  .39 .80 .35 .64 -.75 
Blankbook, looseleaf binder, .18 .47 .43 .52 -.51 
Power-driven handtool mfg .28 .56 .18 .46 -.56 
Electronic computer mfg .12 .49 .00 .56 -.68 
Electric housewares & fan mfg .52 .78 .48 .76 -.54 
Wood household furniture mfg .29 .62 .18 .46 -.51 
Metal household furniture mfg .29 .55 .37 .85 -.48 
Silverware & plated ware mfg .44 .91 .31 .73 -.82 
Costume jewelry & novelty mfg .31 .68 .31 .67 -.63 
      
Mean of China Surge Industries 
 (N=17) .34 .70 .26 .61 -.66 
Mean of Food/Bev Comparison 
Group Industries 
 (N=35) .08 .11 .02 .07 .05 

 



Table 10: Analysis of 1997 Primary Industry Location  
Data and Fitted Values in BEJK Model after China Surge 

 
Data 

Industry 

sizeQ1997  salesQ1997  salesQ2007  
BEJK 

Predicted 
Value After 
China Surge

salesQ2007
ˆ  

Curtain & drapery mills 16.8 10.3 5.3 7.9
Other household textile prod mill 3.6 19.2 9.2 20.6
Women's & girls' cut & sew dress  1.0 4.7 4.1 4.8
Women's & girls' cut & sew suit,  3.8 4.7 0.9 4.9
Infants' cut & sew apparel mfg 3.8 68.2 0.0 76.9
Hat, cap, & millinery mfg 39.4 71.3 11.5 79.8
Glove & mitten mfg 1.7 32.9 67.9 36.9
Men's & boys' neckwear mfg 3.5 17.7 0.2 21.6
Other apparel accessories  1.4 3.5 2.6 3.8
Blankbook, looseleaf binder, 2.5 6.8 5.3 5.4
Power-driven handtool mfg 6.5 54.4 47.1 59.6
Electronic computer mfg 17.0 43.0 0.5 47.7
Electric housewares & fan mfg 4.0 23.6 23.5 25.8
Wood household furniture mfg 6.6 27.7 12.8 31.0
Metal household furniture mfg 4.5 7.6 1.0 7.9
Silverware & plated ware mfg 17.3 42.4 0.6 50.0
Costume jewelry & novelty mfg 1.6 19.6 14.4 23.4
     
Summary Statistics      
 China Surge Industries (N=17)     
  Mean 7.9 26.9 12.2 29.9 
  Median 3.8 19.6 5.3 23.4 
     
 Food/Bev Comparison Group (N=32)     
  Mean 6.2 37.4 31.6 38.4 
  Median 3.3 21.3 14.2 21.6 
 
Notes: 1997 primary industry location is location with highest salesQ1997  of those locations with at 
least 5 percent of industry sales.   



Table 11: Analysis of Ten Largest Economic Areas by Population 
Data and Fitted Values in BEJK Model after China Surge 

 
Data 

Industry 

sizeQ1997  salesQ1997  salesQ2007  
BEJK 

Predicted 
Value After 

China 
Surge 

salesQ2007
ˆ  

Curtain & drapery mills 0.79 0.85 1.06 0.81 
Other household textile prod mill 0.55 0.63 0.73 0.56 
Women's & girls' cut & sew dress  0.97 1.66 1.72 1.67 
Women's & girls' cut & sew suit,  0.80 1.28 1.59 1.28 
Infants' cut & sew apparel mfg 0.76 0.65 0.88 0.66 
Hat, cap, & millinery mfg 0.67 0.87 1.04 0.86 
Glove & mitten mfg 1.04 0.45 0.48 0.41 
Men's & boys' neckwear mfg 0.91 1.51 1.72 1.51 
Other apparel accessories  1.02 1.39 1.31 1.40 
Blankbook, looseleaf binder, 0.93 1.24 1.19 1.24 
Power-driven handtool mfg 0.54 0.58 0.60 0.58 
Electronic computer mfg 0.60 0.79 0.75 0.81 
Electric housewares & fan mfg 0.43 0.42 0.71 0.40 
Wood household furniture mfg 0.45 0.44 0.57 0.35 
Metal household furniture mfg 0.91 1.03 1.09 1.01 
Silverware & plated ware mfg 0.78 0.97 1.38 0.97 
Costume jewelry & novelty mfg 1.12 1.73 1.57 1.78 
     
Summary Statistics      
 China Surge Industries (N=17)     
  Mean .78 .97 1.08 .96 
  Median .79 .87 1.06 .86 
     
 Food/Bev Comparison Group (N=35)     
  Mean .94 .91 .90 .92 
  Median .93 .89 .90 .92 
 
Notes: The ten largest economic areas by population are grouped into one aggregate big city 
area.  The statistics reported above are calculated for the big city area being treated as a single 
location. 

 
 



Figure 1 
A Model Statistic and a Related Data Statistic 

7 Reclassification Industries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2 
A Model Statistic and a Related Data Statistic 

165 Remaining Diffuse Demand Industries 
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