CHAPTER III

MULTICOLLINEARITY AND REDUCED-RANK ESTIMATION

3.1 Introduction

Multicollinearity has been a topic of concern in econometrics ever since the publi-
cation of Frisch’s monograph (1934). Two approaches have already been discussed
in the previous chapter (sections 2.7 and 2.8). In this chapter attention will re-
volve around the singular-value decomposition of a matrix; in the case of an n x k
observation matrix X, its singular values are the positive square roots of the eigen-
values of X’X. If some of these are very small (and because of rounding error, a
computer cannot easily distinguish between “small” and zero), classical methods
of computing least-squares estimates (e.g., the Gauss-Seidel procedure) tend to be
highly inaccurate. The method of computing the singular-value decomposition and
replacing small singular values by zeros produces much more reliable results. In-
terestingly enough, statistical theory reaches a similar conclusion: replacing small
singular values by zeros (which amounts to approximating X by an n X k matrix
Xy of reduced rank, [) leads to estimators with lower mean-square error. This
theory is the subject of the present chapter.

3.2 Singular-value decomposition of a matrix

The concept of a singular-value decomposition of a matrix was introduced (in-
dependently) by Eckart & Young (1939, pp. 118-121) and Mirsky (1960).

DEFINITION 3.2.2. Let X be any n x k matrix. If a triple (s, p, q) exists, where
s is a nonnegative scalar, p is a k x 1 vector, and q is an n x 1 vector, such that
Xp=sq and ¢X =sp,
then s is called a singular value of X, and p and q are respectively called right and
left singular vectors of X.

DEFINITION 3.2.2. Ann x k matrix D = [d;;| is called a (rectangular) diagonal
matriz if d;j = 0 for i # j.

THEOREM 3.2.1. Let X be any nx k matrix of rank r, and define m = min(n, k).
Then there exists an n X n orthogonal matrix @, a k X k orthogonal matrix P, and
an n X k diagonal matrix D, with diagonal elements s1 2 s 2 ... 2 8y, = 0 (the
singular values of X ), such that

(3.2.1) X =QDP/,

where the columns of () and P are respectively the corresponding unit-length left
and right singular vectors of X. These singular values are unique.
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PROOF. Since the k x k matrix X’'X is symmetric, there exists an orthogonal
k x k matrix P such that

(3.2.2) P'X'XP = A = diag{\;}

where the \;’s are the k& (nonnegative) eigenvalues of X’'X, and the & x 1 columns
p* of P (the eigenvectors of X’X) may be ordered so that Ay = Xy = ... = \,,, = 0.
We define s; = ++/); fori=1,2,...,m.

Since r =rank X, s, >0 and s,11 =...= 8, = 0. Define

(3.2.3) ¢t =Xp'/s; fori=1,2,...,r

Then for ¢,j =1,2,...,r, we have from (3.2.3) and (3.2.2)

. . iIXIX 7
¢-¢ = PP 03
Si8j
(where 4;; is the Kronecker delta). For i = r + 1,...,n, choose ¢* so that the
columns of
(3'2'4) Q: [ql’qQ"" ’qr’qr+1"" ’qn]

form an orthonormal set; then Q'Q = QQ’ = I,. From (3.2.2) we have clearly
(3.2.5) Xpl=0=s;¢" fori=r+1,...,m.

Thus, from (3.2.3) and (3.2.5) we have

1/

p
p2/
X =XPP = X[p',p? ...,p"
p}c/
k . . m . . .
= ZXp’p“ = Zq’sip“ (since Xp* =0 for m <i < k)
i1 i1
(3.2.6)
s1 0 ... 0 pl’
0 So ... 0 p2/
=" . . .
0 0 ... s;md Lp™.

Denoting the square diagonal matrix in (3.2.6) as S = diag{s;}, (3.2.6) is equivalent
to (3.2.1), where D' = [S,0] forn 2 k=m and D = [5,0] for m =n = k.

Since, by (3.2.2), the singular values s; of X coincide with the nonnegative square
roots of the eigenvalues \; of X'X, for ¢ = 1,2,...,m (the remaining eigenvalues
in the case n < k being all zero), and these eigenvalues are unique, therefore, the
singular values are unique. [

Note that if n > k (hence m = k) and we partition @) as

(3.2.7) Q=1[QuQ]=1ld" " ...a™d" ", ..., "],
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we may write (3.2.6) or (3.2.1) in the form

(3.2.8) X =Q,SP.

Likewise, if n < k (hence m = n) and we partition P as

(3.2.9) P=[P;P)=[p'p% .. .p"p™ 0],
we may write (3.2.6) or (3.2.1) in the form

(3.2.10) X =QSP,.

Since one normally has n > k, the form (3.2.8) will frequently be used in applica-
tions.

We may use Theorem 3.2.1 as a way to define the Moore-Penrose generalized
inverse of a matrix (Definition 2.3.1). First, we define the Moore-Penrose general-
ized inverse of a rectangular diagonal matrix, as follows. If D is an n x k diagonal
matrix with diagonal elements d;; = s;, then defining

(3.2.11) ﬂ:{lhiﬁ&#m
- ¢ 0 if s; =0,

the generalized inverse D' is the k x n diagonal matrix in which each diagonal
element in the transpose of D is replaced by its generalized inverse as defined
by (3.2.11). Thus, denoting ST = diag{s}, if n > k we have D’ = [5’,0] and
D't = [S,0]. The Moore-Penrose generalized inverse of X is then given by

(3.2.12) Xt =PDIQ'.

It is easily verified that XT and DT satisfy the four properties of Definition 2.3.1.
From (3.2.12) it is clear that once the singular-value decomposition of a matrix
X has been computed, computation of its Moore-Penrose generalized inverse X7
is trivial. Computation of the singular-value decomposition, however, is far from
trivial (see Golub & Kahan 1965, Golub & Reinsch 1970, Noble 1976, and Golub
& Van Loan 1983).

Since one will often want to compute an oblique generalized inverse of X, satis-
fying property (iii’) of Definition 2.3.3, one may proceed as follows. Define

(3.2.13) X =V~'Y2X, hence X = V%X,
and
(3.2.14) Xt =xty-1/2

We verify that
XXX =VI2X|XtV- V2 vi2X = vI2XXTX =VI2X =X
(where the symbols | are inserted to facilitate checking the substitutions) and
Xxtv =v12x|xty-12v = v12x XTy1/2

which is symmetric since V/? and XXt are symmetric.
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3.3 The condition number of a matrix

The condition number of a matrix is a numerical measure of the degree to which
it is ill-conditioned, i.e., “close” to having deficient rank. To develop this concept
we first introduce some definitions (cf. Golub & Van Loan 1983, pp. 12-14):

DEeFINITION 3.3.1. The Hoélder p-norm of an n x 1 vector x is defined by
n 1/p
(33.1) fel= (Y lo?)  forpz1,
i=1
In the special case p = 2 this reduces to the Euclidean norm
(3.3.2) lz|l2 = ||| = Va'z.
Definition 3.3.1 is generalized to a matrix by

DEFINITION 3.3.2. The Holder p-norm of an n X k matrix X is defined by

Xb
(333) 11 = sup 1V,
v£0 |6y
where b is of order k x 1. In the special case p = 2 this may be written
v X'Xb\ "
3.4 X2 = —_ .
(334 1l = sup (52
Note that if £ = 1 and X = z, then b is scalar and (3.3.3) reduces to (3.3.1):
bl 1b] [l

= = [|z||p.
v20 [bllp w20 (D] P

Likewise, (3.3.4) reduces to (3.3.2).

The following is a special case of the Courant-Fischer min-max theorem (cf.
Courant 1922, Fischer 1905; Bellman 1960, pp. 110-115):

LEMMA 3.3.1. Let M be a k x k symmetric nonnegative-definite matrix with
eigenvalues given by A = diag{\;} arranged in descending order \y 2 Ay = ... 2 A,
where PPMP = A, P'P = 1. Then

b’ Mb . UMb
(335) )\1 = ml?,X W and )\k; = mbln W

PROOF. Defining ¢ = P’b we have

VMb  ¢P'MPc  dAc S5 Ne?
¥b  ¢P'Pc e SF 2

i=1"1

Since
k k k k
Z)\ic? < Alzc? and ZA,C? 2 )\chf
i—1 i—1 i—1 i—1
it follows that
k 2
(3.3.6) A < % <Ay

i=1 G
Since the equalities in (3.3.6) are attained by choice of ¢ = (0,...,0,1) and ¢ =
(1,0,...,0) respectively, the result follows. [
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LEMMA 3.3.2. Let X be an n X k matrix of rank m, whose positive singular
values are s1 = 83 = ... 2 8, > 0. Then

[ X[]2 = s1.

PROOF. Defining M = X’'X and \; = s?, where X = QDP’, this follows directly
from Lemma 3.3.1. [

LEMMA 3.3.3. Let X be an n X k matrix of rank m, whose positive singular
values are 81 2 85 2 ... 2 8;, > 0. Then

1X T2 = 1/sm.

PRrROOF. From the singular-value decomposition X = QDP’ of X we have that
of X = PD'Q’, hence the singular values of XT are 1/s; < 1/s3 < ... < 1/sp,.
The result then follows from Lemma 3.3.1. [

DEeFINITION 3.3.3. The condition number of an n X k matrix X of rank m is,
in terms of the Hélder matrix 2-norm,

R(X) = || X]l2 | XFl2.

From this definition and Lemmas 3.3.2 and 3.3.3 it follows immediately that
k(X) = s81/8m, i.e., the condition number of X is the ratio between its largest and
its smallest positive singular value. Cf., e.g., Noble (1976, pp. 279, 295), Golub &
Van Loan (1983, p. 140).

3.4 The Eckart-Young theorem

Eckart and Young (1936) furnished an algorithm for obtaining a best approxi-
mation of an n X k matrix X by an n x k matrix of rank less than that of X. In
order to furnish a precise meaning to “best approximation” it is necessary to define
a concept of distance between two n x k matrices.

DEFINITION 3.4.1. The Frobenius norm of an n X k matrix X Is defined as

X[ = [[X]] = V(X" X).

It is equal to the square root of the sum of squares of all the elements of X. If X!
and X? are two n x k matrices, we define the Frobenius distance between X' and
X? as the Frobenius norm of their difference, i.e., | X1 — X?|.

DEFINITION 3.4.2. Let X be any n X k matrix, and let () and P respectively
be n x n and k x k orthogonal matrices. Then a norm || X|| of X Is said to be
orthogonally invariant if it has the property ||Q'XP| = || X]||.

The following is a simple extension of Lemma 1.1.1.
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LEMMA 3.4.1. The Frobenius norm is orthogonally invariant.
ProOOF. From Lemma 1.1.1,
|Q'XP| = /a(P'X'QYXP)
\/m
tr(X’XPP)
tr( X' X)
=[X]. O

It is readily seen that the Holder matrix 2-norm is also orthogonally invariant.

DEeFINITION 3.4.3. We denote by X the set of all real n x k matrices, and by
X the subset of X consisting of n X k matrices of rank < [.

In trying to approximate an n X k matrix of rank > [ by one of rank [, a basic
problem is that the set of n x k matrices of rank exactly [ is not closed. Such a set
is defined by the condition that all minors (subdeterminants) of X of order greater
than [ vanish, and at least one minor of order I be nonvanishing. One wishes to
find in this set a matrix that is closest to X in the Frobenius norm; but since this
set is obviously not closed, the existence of such a matrix is not at all obvious. The
procedure that is followed, therefore, is to deal with the set X} of all n x k£ matrices
X of rank < [; this is a closed set, and can be compactified, hence a matrix in
this set exists that is closest to X (see Lemma 3.4.2 below); but on the face of
it, it might have rank < [ (see Figure 3.4.1). It has to be shown that it has rank
exactly [; this is done in Theorem 3.4.1. The Eckart-Young theorem then provides
the algorithm by which this matrix is determined, namely the replacement of all
but the [ largest singular values of X by zeros.

FIGURE 3.4.1

As a preliminary to the Eckart-Young theorem (Theorem 3.4.2 below), we will
need Lemmas 3.4.2 and 3.4.3 and Theorem 3.4.1.
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LEMMA 3.4.2. Let X be a given n X k matrix of rank > [, where | < m =
min(n, k). Then within the class X of n x k matrices X of rank < [, there exists a

matrix X closest to X in the Frobenius norm, i.e., such that

(3.4.1) |X — X| = min || X — X||.
Xex;

PROOF. The set X; of n x k matrices X of rank < [ is defined by the condition
that all minors of order [+ 1 of such matrices are equal to zero. Since these minors
are polynomials in the elements of the matrices X , these equations define a closed
set in the nk-dimensional space of matrices X. Let B be the ball of radius || X|| in
this space, centered at X. Then BNA] is compact, and is nonempty since it contains
at least the zero matrix 0. Therefore the continuous function f(X) = || X — X

has a minimum, X , on BN X, which is clearly the minimum on A&j. (See Figure
34.2.) O

FIGURE 3.4.2

The following lemma and theorem have kindly been supplied by Joel Roberts of
the School of Mathematics, University of Minnesota.

LEMMA 3.4.3 (ROBERTS). Let E;; be the n x k matrix with 1 in the i, jth
position, and 0s elsewhere, and let A be any n X k matrix. Then there exists a real
number A # 0 such that the nk matrices

(3.4.2) AE;;—A (i=1,2,...,n; j=1,2,... k)

form a basis in nk-dimensional space.

PrOOF. If the set of matrices (3.4.2) is linearly dependent, then the nk x nk
matrix whose columns are the successive columns of (3.4.2) is a matrix of the form
A — M, where M has all its nk columns equal to the column vector of columns of
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A, and X is an eigenvalue of M. But the eigenvalues of M are 0 with a multiplicity
of nk — 1, and just one other real number (namely, the sum of the elements of A).
For any real number other than this one or 0, the set (3.4.2) is therefore linearly
independent. [l

THEOREM 3.4.1 (ROBERTS). Let X be an n X k matrix of rank > I, and let
X € X be a matrix of rank < | which is closest to X (in the Frobenius norm)
among all matrices in the set X, of n x k matrices of rank < I. Then rank X = .

PROOF. Suppose by way of contradiction that rank(X) < [, and let A\ be such
as to satisfy Lemma 3.4.3. Since rank(AE;;) = 1 for A # 0, we have, since multipli-
cation of a matrix by a non-zero scalar does not affect its rank,

(3.4.3) rank[(1 — 6)X + tAE;;] < rank(X) + rank(\E;;) <1

for any real number ¢, since the rank of the sum of two matrices is less than or equal
to the sum of the ranks (because the column space of the sum of two matrices is
contained in the sum of the column spaces of the two matrices, as is easily verified),
and (3.4.3) holds for t = 0 and ¢ = 1. Thus, of all points on the line (1—#)X +t\E;;,
the closest to X will be X , since X has been assumed to be a closest point to X of all
X with X € &;. Thus, the matrix X — X is perpendicular to the matrix X - AE;;,
since the shortest distance from a point to a line is along the perpendicular. But
then X — X is perpendicular to all of nk-dimensional space, since X —ALE;; is a basis
for this space, by Lemma 3.4.3. Thus, X — X = 0,ie, X = X. This contradiction

establishes that rank(X) = [. (See Figure 3.4.3.) O

FIGURE 3.4.3

The Eckart-Young theorem states that any n x & matrix X of rank p < m =
min(n, k) can be best approximated in terms of the Frobenius norm by an n x k
matrix of rank [ < p, and that when the singular values of X are arranged in
descending order, this approximating matrix can be obtained by striking out the
singular values siy1, s142,...,5p of X. The theorem goes back to Eckart & Young



68 III. MULTICOLLINEARITY AND REDUCED-RANK ESTIMATION

(1936, 1939), who tacitly assumed the first part to be true, and for the second
part provided only a heuristic proof. This was followed by a more complete proof
by Householder & Young (1938) and a much more detailed but still somewhat in-
complete proof by Stewart (1973, pp. 322-3) (cf. Chipman 1997). A number of
incorrect proofs have also appeared.! It was subsequently pointed out by Stewart
& Sun (1990, pp. 208-210) that the theorem had already been proved (for integral
operators and the Hilbert-Schmidt norm) by Schmidt (1907), and subsequently by
Mirsky (1960) for unitarily invariant norms. Thus they refer to it as the “Schmidt-
Mirsky theorem”. Mirsky’s proof (1960, Theorem 3) relied on the apparatus of
symmetric gauge functions introduced by von Neumann (1937). For further discus-
sion see Meyer (1993).
The following proof is based on the method followed in Stewart (1973).

THEOREM 3.4.2 (ECKART-YOUNG, SCHMIDT, MIRSKY). Let X be a givennxk

matrix of rank p > |, where p~§ m = n}in(n, k). Then a matrix X that minimizes
|X — X|| over the set X; = {X | rank(X) <1} is given by

(3.4.4) X =QDyP,
where
(3.4.5) X =QDP'

is a singular-value decomposition of X, and the n x k matrix D is obtained from

D by replacing all but a set of its | largest diagonal elements by 0s. Further, X is
a minimizer if and only if it is obtained In this way.

PRrROOF. By Lemma 3.4.2 such a matrix X exists, and by Theorem 3.4.1 it has
rank /. X
Let a singular-value decomposition of X be denoted

(3.4.6) X =QDP',

where D is an n x k diagonal matrix of the form

~ S 0
(3.4.7) D= [0 0} ,
where in turn S is an [ x [ diagonal matrix diag(s1, s2,...,8) withs; =282 2 ... 2

51 > 0. The main task of the proof is to show that D = D), where the latter is
obtained from D in the manner described in the statement of the theorem.
Define

(3.4.8) D=Q'XxP

and partition it conformably with b, as

= Dy Dy
3.4.9 D= |21 Ziz)
( ) [D21 DQQ}

1Cf. Golub & Kahan (1965, p. 220); Rao (1965, p. 56; 1973, p. 70); Ben-Israel & Greville
(1974, pp. 246-9; 1980, pp. 246-9). These are discussed in Chipman (1997).
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D11 being of order | x I and Das of order (n —1) x (k—1). D has rank p. Owing to
the orthogonal invariance of the Frobenius norm, it follows from (3.4.6) and (3.4.8)
that (3.4.1) is equivalent to

(3.4.10) |D-D|= min |D-D|.
rank(D)<l1

We now show in Steps 1-3 below that the matrix D of (3.4.9) must be of the
form

(3.4.11) D= [‘g DOQJ .

In Step 4 we will show that D is orthogonally equivalent to a diagonal matrix, D.
Step 1. First we show that Dis = 0. Suppose not. Then the matrix

~ [S D1
=[5

has the same rank as S, which is [, and

— ~ DH—S 0 Dll_S D12 N »
D-D|=||" O < P 2121 D - D]
0-21= 73,7 5| <1780 B2]]-10-20

Now define X = Qﬁlf” ; this matrix also has rank [. Then by the orthogonal
invariance of the Frobenius norm we have

(3.4.12) IX =Xl =ID - D|| < |D~D| = |IX - X]|.

Therefore X, which has rank [, is closer to X than X. But this contradicts the
hypothesis that X is a closest matrix to X among all n x k matrices X of rank L.
Therefore D1y = 0.

Step 2. That Dy; = 0 is proved in similar fashion.

Step 3a. Now we show that rank(D;;) = I. Suppose not; then since rank(D) =
p > 1, and D15 and Ds; have been shown to be zero, we can find a partition

Doy — Dis11 Dazio
Do 21 Doz oo
of the (n — 1) x (n — k) matrix Dsy (if necessary by temporarily interchanging its

rows and columns) such that Dz 17 is of order (p — ) x (p — 1) and rank p — I, so
that the n x k matrix

 [Dn 0 0
D= 0 D22,11 0
0 0 0
has rank [. Accordingly,
o [0 0 0
[D-D|=|]0 0 Das 12
|0 D221 Dagpoo
(D-S 0 0 o
< 0 Dy211 Dazaz | || =D — DI
|0 Do 21 Doz oo
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As before, we define X = QDP’; this matrix also has rank /. Then with this new X,
(3.4.12) holds as before and we arrive at a contradiction. Therefore rank(D11) = [.
Step 3b. Next we show that D7 = S. Suppose not. Then define

S DH 0
D—[O O]

As just shown, this matrix has rank [, and

Di—S 0 _
D-D|=  |ll=D-D
0-21=|[5 [ <[[*'5* 5] -1o-20

leading to a contradiction, as before. Therefore D =8S.
From Steps 1-3 it follows that D must be of the form (3.4.11).
Step 4. Now let

(3.4.13) Do = Q22RP5,

be a singular-value decomposition of the (n—1) x (k —1) matrix Das, where Q22 and
Py are, respectively, (n —1) x (n—1) and (k—1) x (k — 1) orthogonal matrices, and
Ris an (n —1) x (k — ) diagonal matrix of singular values of Das. Define further
the partitions P = [Py, P5] and Q = [Q1, Q2] of P and Q into their first [ and last
k —1 and n — [ columns, respectively. Finally, define the rectangular n x k diagonal
matrix

(3.4.14) D= [‘g g}

and the k x k and n X n matrices

(3.4.15) P =[P, P, [fj ng’ @= [Ql’QQ][o Q(;J

which are readily verified to be orthogonal. Then we verify from (3.4.15), (3.4.14),
(3.4.13), (3.4.10), and (3.4.8) that

(3.4.16) QDP' = QDP = X;

thus, QD P’ is a singular-value decomposition of X, in accordance with (3.4.5); and
from the orthogonal invariance of the Frobenius norm, D is orthogonally equivalent
to D (and to X):

(3.4.17) D]l = ||1D|| = || X|l-

On the other hand, it is clear from (3.4.15), (3.4.7), and (3.4.6) that

(3.4.18) QDP' =QDP =X,

so that QDP' is a singular-value decomposition of X. It remains to show that
D = Dy, establishing (3.4.4).
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From (3.4.16), (3.4.14), and (3.4.13) we have
(3.4.19) IX11* = IS1* + [|RI* = [IS]1* + [ Da2?,

so that X has the diagonal elements of S as [ of its singular values, and the sum
of squares of its remaining m — [ singular values is equal to || Daz||?. From (3.4.16),
(3.4.18), (3.4.14), (3.4.7), and (3.4.13) we have

(3.4.20) |X — X||=||D— D| = ||Dazl| = |R|.

Since by hypothesis, (3.4.20) is a minimum (satisfying (3.4.1)), this can only be the
case if, in (3.4.19), the diagonal elements of S are the [ largest singular values of
X, and those of R are the m — [ smallest (with possible ties). It follows that, if
the singular values of X are ordered as s1 2 $5 2 ... 28 28411 2 ... 2 8m, S
must contain s, sa,...,S, and R must contain s;41,...,8m,. (If s = slH,X is
not unique.) Applying this requirement to (3.4.7) and (3.4.14) we have D= D¢,
and the main part of the theorem is proved.

We finally come to the last statement of the theorem. Let X = QDP’ be
any other singular-value decomposition of X, and let D(T) be obtained from D by
replacing all but a set of its 7 largest singular values by 0s. Define X = QD(T) P
Then by the orthogonal invariance of the Frobenius norm we have

IX = X|| =ID — Di»ll = |1D = D | = | X = X||. O

The following elementary proof of Theorem 3.4.2 is based on that of Neudecker
in Chipman (1997, pp. 80-81) and Magnus & Neudecker (1999, pp. 359-361). First,
a simple lemma will be used.

LEMMA 3.4.4. Let A, B be n X n matrices, where B is symmetric. Then
tr(AB) = tr(A’B).

PRrROOF. From the symmetry of B and Lemma 1.1.1,

tr(AB) = tr(AB) =tr(B'A’) = tr(BA") = tr(A'B). O

ALTERNATIVE PROOF OF THEOREM 3.4.2 (NEUDECKER).2 Let X € & be
closest to the given n x k matrix X in the Frobenius norm. (The existence of X is
assured by Lemma 3.4.2.) Its rows may be expressed without loss of generality as
linear combinations of [ 1 x k£ orthonormal vectors, i.e.,

X =AB', B'B=],

where A isn x [ and B is k x [. By Theorem 3.4.1, X has rank l; therefore A must
have rank [. We wish to find A and B that solve the problem

Minimize tr[(X — AB") (X — AB’)] subject to B'B=1,

)

2This proof, like the previous one, assumes the truth of Lemma 3.4.2 and Theorem 3.4.1.
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or equivalently,

Ma:ﬁirgize =2tr(BA'X) —tr(A’A) subject to B'B=1.

Setting up the Lagrangean expression
o =2tr(BA'X) —tr(4A’A) — t1[L(B'B - I)],

we note that since B’B is symmetric, from Lemma 3.4.4 we may without loss of
generality assume the Lagrangean multiplier matrix L to be symmetric (or replaced
by %(L + L’)). Using this symmetry we obtain for variations in A and B

dp
= 2tr(B'X")dA + 2 tr(A'X)dB — 2 tr(A)dA — tr(LB')dB — tr(L'B')dB
=2tr(B'X' — AYdA+2tr(A’X — LB')dB.

Setting dyp = 0 for arbitrary dA and dB yields, with the given constraint,

(i) XB=A
(i) A'X =LB
(iii) B'B=1I.

From these three equations we obtain

iV A = = = .
A'A=A'XB = LB'B L
® (i) (ii)

Since rank(A) = [, L = A’A is positive-definite. From equations (i) and (ii) and
the symmetry of L we obtain

(v) X'XB = X'A' = BL' = BL.

@ (i)

From (ii) and (iv) it follows that
 =2tr(BA'X) —tr(A’A) = 2 tr(BLB') — tr(L) = tr(L),

which is to be a maximum.
Note from (i) that
X = AB'= XBF/,

whch states (since BB’ is idempotent and symmetric) that X is a perpendicular
projection of the rows of X onto an /-dimenional subspace.
Let T be an orthogonal matrix such that

L =TAT

where A is diagonal, and define
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Then o
AA=TAAT=T'LT = A

and o
BB=TBBT=TT-=1.

Equations (i) to (iii) above then become

i) XB=A
(i) AX=TLB =T'LTB' = AB'
(iii’) B'B=1.

From these equations it follows that
X'XB=BA and B'B=1

Thus, A, whose trace is to be maximized (being equal to the trace of L), is a diagonal
matrix of [ eigenvalues of X’X, and B is the matrix whose | columns constitute
an associated orthonormal set of [ eigenvectors of X’ X. tr(A) is maximized when
these [ eigenvalues are a set of [ largest eigenvalues of X’ X.

Now let X have the singular-value decomposition (3.4.4); its singular values s;
(the diagonal elements of D) are the positive square roots of the eigenvalues \; of
A (from X'X = PD'DP'), so since X has been assumed to be the closest to X, its
singular values must be the [ largest singular values of D. [

3.5 Reduced-rank estimation

It was proposed by Marquardt (1970)—with respect to the regression model
(3.5.1) y=XB+e E{e}=0; Var{e}=02Q,

in the special case 2 = I—that when the obervation matrix X is ill-conditioned (as
defined by its condition number—see Definition 1.3.3), one can obtain an estimator
of [ in this regression model which has lower scalar mean-square error than that
of the least-squares estimator, by finding the best approximation to X by a matrix
Xy of rank | < k and then replacing the least-squares estimator 3 = X fy by the

estimator B(z) =X (Tz)y' The theory behind this procedure—and a generalization—
will be developed in this section.

LEMMA 3.5.1. Let the n X k matrix X, of rank k < n, have singular-value
decomposition X = @1SP’ (as in (3.2.8)), where the singular values of X are
arranged in descending order s1 2 s5 2 ... 2 s > 0, and let its best approximation
by an n x k matrix of rank [, in terms of the Frobenius norm of Definition 3.4.1,
be given by Xy = QlS(l)P’, where S(;) is obtained from S by replacing s; by zero
fori=1+1,...,k. Then

(3.5.2) Xuy=XP P = X[I - PP},

where P = [Py, Py] is a partition of the k x k orthogonal matrix P into its first |
and last r = k — [ columns. Further, the Moore-Penrose generalized inverse of Xy
is given by

(3.5.3) Xy = PiPIX! = [I - PP X",



74 III. MULTICOLLINEARITY AND REDUCED-RANK ESTIMATION

PROOF. We denote the partitioned matrices

_ S 0 _ |50
(3.5.4) S = [ 0 52:| and S(l) = [ 0 0:| 5

where S7 and S; are diagonal matrices of orders [ x [ and r X r respectively. Then

fo=a (7 o] [] = %]

while

, 8 01[P 5o o [S 01[P]_ . [SiP
XPIPI_Q1|:O 52:||:P2I PIPI_QI O 52 O _Ql O 9

and these are the same, establishing (3.5.2). Likewise,

sitoo _
xjy=rsihyai=lr pl %y lai=lnsit o

while

sttoo0
PP/ X' = P P[P, Pg][ 0 5_1}62'1
2

—1
—in 0|5 g |ai=imst o,

and these are the same, establishing (3.5.3). O

In order to pursue Marquardt’s result in the general case Var{e} = ¢%€), and in
terms of the matrix concept of mean-square error, it is clear that we will want to
employ an estimator that is an oblique generalized inverse of a reduced-rank matrix
with respect to ). This may be accomplished by premultiplying the variables y, X,
and ¢ in (3.5.1) by Q72 where Q'/? is a symmetric positive-definite square root
of 2, and defining

(3.5.6) g=0712%, X=X, ¢=Q %
We see that
Var{é} = o?I.
Defining
(3.5.7) X =(x'Qtx)"lx'a L,

we verify that

(3.5.8) Xt =xtQ 2
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This transformation of variables amounts to replacing the Frobenius norm || X|| of
Definition 3.4.1 by the Q-norm defined by

(3.5.9) 1X]la = Ver(X'Q-1X).

In terms of this norm the “best approximation” of the matrix X = Q/2X by an
n X k matrix of rank [ is then

(3.5.10) Xy = Q23X = QY2 XP Pl = XPP] = X(I - B,P}),
where
(3.5.11) X =@,8P

is a singular-value decomposition of X and P = [P}, Py] is a partition of the or-
thogonal matrix P into its first [ and last » = k — [ columns. Then, defining
(3512) X} =X}V = PRXIOV = BEIXT = (1 - ByPYXY,
we verify that X [il] is the oblique generalized inverse of X; with respect to U = I

and V = Q.
The following generalizes Marquardt’s theorem (1970, pp. 591-612):

THEOREM 3.5.1. Let Xy be the best approximation of X by a matrix of rank
I <k in terms of the Q-norm (3.5.9), and let X}, be defined by (3.5.12). Then:
(a) a necessary and sufficient condition for the reduced-rank estimator

(3.5.13) By = Xpy=(I—PP)Xty

to have matrix mean-square error no greater than that of the generalized least-
squares (Gauss-Markov) estimator

(3.5.14) B=Xty
is that
(3.5.15) o 2PyBB Py < S5

(b) A sufficient condition for (3.5.15) to hold is that

BRSPS

(3.5.16) A= s

(c) If r =k — 1 > 1, condition (3.5.16) is sufficient for the inequality (3.5.15) to
be strict, and if r = 1 then conditions (3.5.15) and (3.5.16) are equivalent, hence
both necessary and sufficient.

PROOF. (a) From the singular-value decomposition of X we readily compute the
mean-square error of the generalized least-squares estimator,

(3.5.17) Risk{3} = 0>?PS™2P' = ¢*(P,S72P| + P,S; % Py).
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To compute that of the reduced-rank estimator we observe that

Buy =B = Xjye — (I - PP))B

= PIPI’Xig - ngéﬁ
Consequently, from the singular-value decomposition (3.5.11) we have
Risk{ﬁ[l] = 02P1P1’ (X’X)_lplpll + ngglﬁﬁlpgpé

. . . . : _2 5 . . . . . .

(3518) = 0'2P1P11[P1,P2] Sl ~(32 Pl P1P11+ ngéﬁﬁlpgpé
0 5 P
= 0'2]515’1_2]51’ + ngéﬁﬁlpgpé

The difference between the two mean-square errors (3.5.17) and (3.5.18) is therefore
(3.5.19) Risk{3} — Risk{fy } = 02P2[$5 2 — 0 2P, 33 P,] P;.

This is nonnegative-definite if and only if (3.5.15) holds.

(b) The sufficient condition (3.5.16) is obtained by making use of the generalized
matrix Cauchy-Schwarz inequality AVA’ = AX(X'V71X)71X'A’ (Lemma 2.4.1)
with I, substituted for “A”, 5’2_ 2 for “V”, and P2’ B for “X”, yielding the first
inequality in

(3.5.20)  S;? = PiB(B PS2PyB) 13 Py = Ao TE PR3 Py = 0 2 P36 Ps.

The equality in (3.5.20) follows from the definition of A in (3.5.16), and the second
inequality in (3.5.20) follows from A~! > 1. The entire inequality in (3.5.20) is
simply (3.5.15).

(c) Since the matrix S; 2 on the right side of the inequality (3.5.15) has rank r,
whereas the matrix 83 on the left has rank 1, it is impossible for equality to hold
in (3.5.15) unless 7 = 1. Thus, the inequality is necessarily strict if r > 1. If r = 1,
since Py is k x r and Sy is r x 7, both sides of (3.5.15) are scalars, hence (3.5.15)
reduces to (3.5.16), which is then necessary and sufficient. O

REMARK 3.5.1. It will be shown in the next chapter (Theorem 4.2.3 and for-
mula (4.2.30)) that the reduced-rank estimator (3.5.13) is the minimum-variance
conditionally unbiased estimator of 3 subject to the homogeneous linear restriction
P33 = 0.

The duality referred to in Remark 3.5.1 was apparently first noticed in an un-
published paper by Johnson & Wallace (1969).

COROLLARY 3.5.1. A sufficient condition for Risk{ﬁ[l]} < Risk{f} is

B PPy <

1
o2 §2

+1

(3.5.21)
A sufficient condition for (3.5.21) is in turn

(3.5.22) Po <
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where the §? are the eigenvalues of X’Q0~1X, in descending order.

PROOF. Applying the matrix Cauchy-Schwarz inequality (Lemma 2.4.1) for A =
V =1, we have I 3= X(X'X)~1X’, hence replacing “X” by Pj}3 we obtain

(3.5.23) L = B3 PPB) T 8Py, or (8PP = PiBE Py,
Assuming (3.5.21) to hold it follows that
Sy% = 541 = 02 (B PaPyB)I = 0 P85 P,

e., (3.5.15) holds. Since I — P,Py = PiP| » 0, 6’P2P2’6 < B8, hence (3.5.21)
follows from (3.5.22). O

Thus, if one is able to impose an a priori upper bound on 3'3/02, and is one
has data on the singular values $; of X = Q~1/2X, one may select the appropriate
dimensionality [ by choosing the largest singular value that satisfies (3.5.22)—or
still more accurately, (3.5.21).

We may note that condition (3.5.21) is stronger than, since it implies, (3.5.16);
for S35 < $7,11, from the definition of 52, hence (3.5.21) implies
B PS5 Py < 5'P22Péﬁ <1,

o2 i o

A\ =
While the still stronger condition (3.5.22) has the advantage of not requiring com-
putation of P,, condition (3.5.16) has the advantage—as will become clear in the
next chapter—that it can be tested from the data (provided of course ¢ is normally
distributed), since A is the noncentrality parameter of the noncentral F-distribution
used for testing the null hypothesis A = 1 (P2’6 = 0) against the alternative hy-
pothesis A > 1 (P33 # 0); see Remark 3.5.1 above and Theorem 4.3.1 below.

Let us now consider Marquardt’s criterion. Marquardt used a scalar criterion
of mean-square error, equal to the trace of the matrix measure used here. If an

estimator 5[1] has lower matrix-mean-square error than 3, this means that each
component of 5[1] has lower mean-square error than the corresponding component
of B With the scalar definition, this need not be the case; some components could
have lower, others higher, mean-square error; only an average of them has lower
mean-square error. It is to be expected, then, that the matrix definition requires
more stringent conditions. Taking the trace of both sides of (3.5.15) we obtain

' P, P! k
(3.5.24) M <> 5
g imip1 %
This is clearly a much weaker condition than (3.5.21); Marquardt (1970, p. 601)
actually specified the somewhat more stringent condition

B8 5~ 1

(3.5.25) 5 ‘Z =
i=l+1

which implies (3.5.24). Clearly, (3.5.21) and (3.5.22) imply (3.5.24) and (3.5.25)
respectively. However, Marquardt’s condition has a curious interpretation: if the
inequality is satisfied for some [ < k, then it is satisfied for any I’ < [; in particular,
if it is satisfied for [ = k — 1, then it is also satisfied for [ = 1. Thus it provides no
guide for choosing the appropriate rank, I. On the other hand, (3.5.22), or better
still (3.5.21), provides just such a guide.



78 III. MULTICOLLINEARITY AND REDUCED-RANK ESTIMATION

3.6 Exercises

1. An investigator wishes to estimate the parameters 51 and (> in the model

Y = x1P1 + T+ &, Ele} =0, E{eiep} = dwo?

, 1 fort=1¢,
where t,t'=1,2,...,n and d§y = ,
0 fort#t,
where the column vectors @/ = (15, %a;,...,2n;) have been normalized to have

length 1 for j = 1, 2. This investigator notices that the correlation r = Y | T4

between the two independent variables is rather close to 1, and therefore decides
to estimate the two parameters by finding the best approximation of X = [x!, 2]

by an n x 2 matrix X(;) of rank 1 (the distance between two matrices X and X*
being defined by the Frobenius norm ||Z| of their difference Z = X — X™*), and
then estimating the 2 x 1 vector 3 by 3(1) =X (Tl)y (the “Marquardt estimator”),
where 1 denotes the Moore-Penrose generalized inverse.
(a) Show that the best approximation of X by a matrix of rank 1 is the n x 2
matrix each of whose columns is the average of the two.
(b) Obtain the formula for the Marquardt estimator.
(¢) Show that the Marquardt estimator estimates each parameter §; by the
simple average of the least-squares estimators Bl and 32.
(d) Find the expressions for the (scalar) mean-square errors

E{(Bu)—B)(Bu)y—B)} and E{(B-B)(3-05)}

of 5(1) and 3 respectively.
(e) Show that 5(1) has lower mean-square error than § if and only if

(51—52)2< 1

202 1—7

2. What is the condition number of the matrix X of the previous question?
3.7 References

BELLMAN, RICHARD. Introduction to Matriz Analysis. New York: McGraw-Hill
Book Company, Inc., 1960. xx, 328 pp.

BEN ISRAEL, ADI, and GREVILLE, THOMAS N. E. Generalized Inverses: Theory
and Applications. New York: John Wiley & Sons, Inc., 1974. xi, [3], 395 pp.
Reprint edition with corrections, Huntington, New York: Robert E. Krieger
Publishing Company, 1980.

CHIPMAN, JOHN S. “On Least Squares with Insufficient Observations.” Journal
of the American Statistical Association, 59 (December 1964), 1078-1111. Corri-
gendum: 60 (December 1965), 1249.

CHIPMAN, JOHN S. “Estimation and Aggregation in Econometrics: An Application
of the Theory of Generalized Inverses.” In Nashed (1976), 549-7609.



3.7 REFERENCES 79

CHIPMAN, JOHN S. “‘Proofs’ and Proofs of the Eckart-Young Theorem,” with an
Appendix by Heinz Neudecker. In Jerome A. Goldstein, Neil E. Gretsky, and J.
J. Uhl, Jr. (eds.), Stochastic Processes and Functional Analysis. In Celebration
of M. M. Rao’s 65th Birthday (New York: Marcel Dekker, Inc., 1997), 71-83.

CHIPMAN, JOHN S. “Linear Restrictions, Rank Reduction, and Biased Estimation
in Linear Regression.” Linear Analysis and Its Applications, 289 (1999), 55—-74.

CoOURANT, R. “Zur Theorie der kleinen Schwingungen.” Zeitschrift fiir angewandte
Mathematik und Mechanik, 2 (1922), 278-285.

Eckarr, CARL, and YOUNG, GALE. “The Approximation of One Matrix by
Another of Lower Rank.” Psychometrika, 1 (September 1936), 211-218.

EckarT, CARL, and YOUNG, GALE. “A Principal Axis Transformation for Non-
Hermitian Matrices.” Bulletin of the American Mathematical Society, 45 (Feb-
ruary 1939), 118-121.

FISCHER, ERNsT. “Uber quadratische Formen mit reelen Koeffizienten.” Monat-
sheft fiir Mathematik und Physik, 16 (1905), 234—249.

FriscH, RAGNAR. Statistical Confluence Analysis by Means of Complete Regres-
sion Systems. Oslo: Universitetets @Ykonomisk Institutt, Publikasjon nr. 5, 1934.
192 pp.

GoLUuB, GENE H., and KAHAN, W. “Calculating the Singular Values and Pseudo-
Inverse of a Matrix.” SIAM Journal of Numerical Analysis [B], 2 (1965), 205—
224.

GoLuB, GENE H., AND REINSCH, C. “Singular Value Decomposition and Least
Squares Solutions.” Numerische Mathematik, 14 (1970), 403-420. Reprinted in
Wilkinson & Reinsch (1971), 134-151.

GoLuB, GENE H., and STYAN, GEORGE P. H. “Numerical Computations for
Univariate Linear Models.” Journal of Statistical Computation and Simulation,
2 (1973), 253-274.

GoLuB, GENE H., and VAN LOAN, CHARLES F. Matriz Computations. Baltimore:
The Johns Hopkins University Press, 1983. xvi, [2], 476, [1] pp.

GUNST, RICHARD F., and MASON, ROBERT L. “Generalized Mean Squared Error
Properties of Regression Estimators.” Commaunications in Statistics, A5 (1976),
1501-1508.

GUNsT, RICHARD F., and MASON, ROBERT L. “Biased Estimation in Regression:
An Evaluation using Mean Squared Error.” Journal of the American Statistical
Association, 72 (September 1977), 616-628.

GUNST, RICHARD F., WEBSTER, JOHN T., and MASON, ROBERT L. “A Compar-
ison of Least Squares and Latent Root Regression Estimators.” Technometrics,
18 (1976), 75-83.

HAwWKINS, DouGLAS M. “On the Investigation of Alternative Regressions by Prin-
cipal Component Analysis.” Applied Statistics, 22 (1973), 275-286.

HOUSEHOLDER, A. S., and YOUNG, GALE. “Matrix Approximations and Latent



80 III. MULTICOLLINEARITY AND REDUCED-RANK ESTIMATION

Roots.” American Mathematical Monthly, 45 (March 1938), 165-171.

JoHNsON, THoMAS, and WALLACE, T. D. “Principal Components and Multi-
collinearity.” Workshop Discussion Paper, Department of Economics, North
Carolina State University, Raleigh, NC, June 1969.

LorT, WIiLLIAM F. “The Optimal Set of Principal Component Restrictions on a
Least-Squares Regression.” Communications in Statistics, 2 (1973), 449-463.

Macnus, JAN R., and NEUDECKER, HEINZ. Mairiz Differential Calculus with

Applications in Statistics and Econometrics. Chichester and New York: John
Wiley & Sons, 1991, 1994. Revised edition, c¢. 1999. xviii, 395, [8] pp.

MANSFIELD, EDWARD R., WEBSTER, JOHN T., and GUNST, RICHARD F. “An
Analytic Variable Selection Technique for Principal Component Regression.”
Applied Statistics, 26 (1977), 34—40.

MARQUARDT, DoNaALD W. “Generalized Inverses, Ridge Regression, Biased
Linear Estimation, and Nonlinear Estimation.” Technometrics, 12 (August
1970), 591-612.

MaAsoN, ROBERT L., GUNST, RICHARD F'., and WEBSTER, JOHN T. “Regression
Analysis and Problems of Multicollinearity.” Communications in Statistics, 4
(1975), 277-292.

Massy, WILLIAM F. “Principal Components Regression in Exploratory Statistical
Research.” Journal of the American Statistical Association, 60 (March 1965),
234-256.

MEYER, RENATE. Mairiz-Approzimation in der multivariaten Statistik. Aachen:
Verlag der Augustinus Buchhandlung, 1993. [6], 131, [2] pp.

Mirsky, L. “Symmetric Gauge Functions and Unitarily Invariant Norms.”
Quarterly Journal of Mathematics, Oxford Second Series, 11 (March 1960), 50—
59.

NASHED, M. ZUHAIR (ed.). Generalized Inverses and Applications. New York:
Academic Press, 1976. xiv, 1054 pp.

NEUMANN, J[OHN] VON. “Some Matrix-Inequalities and Metrization of Matric-
Space.” Tomsk University Review, 1 (1937), 286-300.

NoOBLE, B. “Methods for Computing the Moore-Penrose Generalized Inverse, and
Related Matters.” In Nashed (1976), 245-301.

PENROSE, R. “A Generalized Inverse for Matrices.” Proceedings of the Cambridge
Philosophical Society, 51 (1955), 406-413.

RAo, C. RADHAKRISHNA. Linear Statistical Inference and Its Applications. New
York: John Wiley & Sons, 1965. xviii, [2], 522 pp. 2nd edition, 1973. xx, [2],
625 pp.

RAo, C. RADHAKRISHNA. “Separation Theorems for Singular Values of Matri-
ces and Their Applications in Multivariate Analysis.” Journal of Multivariate
Analysis, 9 (1979), 362-377.

RAo, C. RADHAKRISHNA. “Matrix Approximations and Reduction of Dimen-



3.7 REFERENCES 81

sionality in Multivariate Statistical Analysis.” In Paruchuri R. Krishnaiah, ed.,
Multivariate Analysis — V. Proceedings of the Fifth International Symposium on
Multivariate Analysis (Amsterdam: North-Holland Publishing Company, 1980),
3-22.

SCcHMIDT, ERHARD. “Zur Theorie der linearen und nichtlinearen Integralgleichun-
gen. I. Teil: Entwicklung willkiirlicher Funktionen nach Systemen vorgeschrie-
bener.” Mathematische Annalen, 63 (1907), 433-476.

SILVEY, S. D. “Multicollinearity and Imprecise Estimation.” Journal of the Royal
Statistical Society [B], 31 (1969), 539-552.

SONDERMANN, DIETER. “Best Approximate Solutions to Matrix Equations under
Rank Restrictions.” Report No. 23/80, Institute for Advanced Studies, The
Hebrew University of Jerusalem, Mount Scopus, Israel, August 1980.

STEWART, G. W. Introduction to Matrizx Computations. New York: Academic
Press, 1973. xi, [3], 441 pp.

STEWART, G. W., and SUN, JI-GUANG. Matriz Perturbation Theory. San Diego:
Academic Press, Inc., 1990. xvi, 365 pp.

WEBSTER, JOHN T., GUNST, RICHARD F., and MAsSON, ROBERT L. “Latent
Root Regression Analysis.” Technomeirics, 16 (1974), 513-522.

WILKINSON, J. H., and REINscH, C. H. (eds.). Linear Algebra. New York:
Springer-Verlag, 1971. VIII, [2], 439, [3] pp.



