
Time: $t = 0, 1, \ldots$

Uncertainty: Infinite set of states S. Information about the state at date t is described by a finite partition F_t of S. F_{t+1} is finer than F_t (nondecreasing information). $F_0 = \{S\}$.

This is an infinite event tree.

$\xi_t \in F_t$ denotes an event at date t; $\xi_t^- \in F_{t-1}$ is the predecessor of ξ_t at date $t - 1$, that is, $\xi_t \subset \xi_t^-$.

Securities are traded at each date - **infinitely-lived securities**. Security j pays dividend $x_j(\xi_t)$ at date-t event ξ_t for every $t \geq 1$.

Price of security j at date t in event ξ_t is $p_j(\xi_t)$. A portfolio in event ξ_t is $h(\xi_t)$; $h = \{h_t\}$ is a portfolio strategy.

Dividends are positive, i.e., $x(\xi_t) \geq 0$ for every ξ_t.
Agents.

Consumption plans: \(c(\xi_t) \) in event \(\xi_t \) at date \(t \); \(c_t \) event-contingent consumption plan at date \(t \); \(c = (c_0, c_1, \ldots,) \).

Agent \(i \)'s utility function \(u^i : C^i \to \mathcal{R} \), where \(C^i \subset \mathcal{R}_{++}^\infty \). \(u^i \) is assumed strictly increasing and continuous in product topology. Examples: discounted time-separable expected utility

\[
 u(c) = \sum_{t=0}^{\infty} \delta^t E[v(c_t)]
\]

for \(v : \mathcal{R}_+ \to \mathcal{R} \) with strictly increasing and continuous \(v \) and \(0 < \delta < 1 \), recursive utility (in class).

Consumption endowment is \(w^i \). **Initial portfolio** is \(\hat{h}^i_0 \in \mathcal{R}_+^J \).

Aggregate initial portfolio \(\bar{h}_0 = \sum_{i=1}^{I} \hat{h}^i_0 \) is the supply of securities.

Portfolio Constraints.

Budget constraints are

\[
 c(\xi_0) + p(\xi_0) h(\xi_0) = w^i(\xi_0) + p(\xi_0) \hat{h}^i_0,
\]

\[
 c(\xi_t) + p(\xi_t) h(\xi_t) = w^i(\xi_t) + [p(\xi_t) + x(\xi_t)] h(\xi_t^-) \quad \forall \xi_t,
\]

for every \(t \geq 1 \).

Additional portfolio constraints must be imposed in order to exclude Ponzi schemes.
• debt constraints

\[[p(\xi_{t+1}) + x(\xi_{t+1})]h(\xi_t) \geq -D(\xi_{t+1}), \quad \forall \xi_{t+1} \subset \xi_t, \quad (29.5) \]

for every \(\xi_t \). Bounds \(D \) are positive.

• borrowing constraints

\[p(\xi_t)h(\xi_t) \geq -B(\xi_t), \quad (29.6) \]

for every \(\xi_t \). Bounds \(B \) are positive

• short sales constraints

\[h_j(\xi_t) \geq -b_j(\xi_t), \quad \forall \ j. \quad (29.6) \]

for every \(\xi_t \), where \(b_j(\xi_t) \) is a positive

There are other possible constraints such as transversality constraint, wealth constraint, solvency constraint, collateral constraint, etc.

We focus on debt constraints (29.5).

Portfolio Choice and First-Order Conditions.

Portfolio choice is

\[\max_{c,h} u(c) \quad (29.8) \]

subject to (29.2 - 29.3) and (29.5).
First-order conditions for a solution \((c, h)\) such that \(c(\xi_t) > 0, \forall \xi_t\) are

\[
p(\xi_t) = \sum_{\xi_{t+1} \subseteq \xi_t} [p(\xi_{t+1}) + x(\xi_{t+1})] \left[\frac{\partial \xi_{t+1} u}{\partial \xi_t} + \frac{\mu(\xi_{t+1})}{\partial \xi_t} \right].
\] (29.11)

where \(\mu(\xi_t) \geq 0\) is the Lagrange multiplier associated with the debt constraint.

Transversality condition for discounted time-separable expected utility (29.1) is

\[
\lim_{t \to \infty} \sum_{\xi_t \in F_t} \delta^t \pi(\xi_t) v'(c(\xi_t))[(p(\xi_t) + x(\xi_t)) h(\xi_t^-) + D(\xi_t)] = 0.
\] (29.13)

Equilibrium under Debt Constraints.

An equilibrium under debt constraints is an allocation \(\{(c^i, h^i)\}\) and a price system \(p\) such that

(i) portfolio strategy \(h^i\) and consumption plan \(c^i\) are a solution to agent \(i\)'s choice problem (29.8)

(ii) markets clear, that is

\[
\sum_i h^i(\xi_t) = \bar{h}_0, \quad \forall \xi_t
\] (29.14)

and

\[
\sum_i c^i(\xi_t) = \bar{w}(\xi_t) + x(\xi_t) \bar{h}_0, \quad \forall \xi_t.
\] (29.15)
14. Arbitrage and Price Bubbles

Let $z(h, p)$ denote the (net) payoff of portfolio strategy h in event ξ_t:

$$z(h, p)(\xi_t) = (p(\xi_t) + x(\xi_t))h(\xi_t^-) - p(\xi_t)h(\xi_t).$$

Arbitrage under debt constraints is a portfolio strategy h such that

$$z(h, p)(\xi_t) \geq 0, \quad \forall \xi_t \forall t \geq 1, \text{ and } p_0 h_0 \leq 0,$$

with either the payoff or the initial price different from zero, and

$$[p(\xi_{t+1}) + x(\xi_{t+1})]h(\xi_t) \geq 0, \quad \forall \xi_{t+1} \subset \xi_t$$

for every ξ_t.

One-period arbitrage in event ξ_t is a portfolio $h(\xi_t)$ that has positive one-period payoff $[p(\xi_{t+1}) + x(\xi_{t+1})]h(\xi_t) \geq 0$ for every $\xi_{t+1} \subset \xi_t$ and a negative price $p(\xi_t)h(\xi_t) \leq 0$ at ξ_t, with either the gross payoff or the price nonzero.

One period arbitrage is an arbitrage under debt constraints. Ponzi scheme is **not** an arbitrage under debt constraints (unless ...).

Theorem 30.2.2: Security prices exclude arbitrage under debt constraints iff they exclude one-period arbitrage in every event.
Event Prices.

Event prices are defined as a sequence \(q \in \mathcal{R}^\infty \) satisfying equations

\[
q(\xi_t) p_j(\xi_t) = \sum_{\xi_{t+1} \subset \xi_t} q(\xi_{t+1})[p_j(\xi_{t+1}) + x_j(\xi_{t+1})]
\]
(30.1)

for every \(j \) and \(\xi_t \), with \(q(\xi_0) = 1 \).

Theorem 30.3.1: Security prices exclude arbitrage under debt constraints iff there exist strictly positive event prices.

Valuation of Dividends and Price Bubbles.

The present value of the dividend stream of security \(j \) in event \(\xi_t \) is

\[
\frac{1}{q(\xi_t)} \sum_{\tau=t+1}^{\infty} \sum_{\xi_{\tau} \subset \xi_t} q(\xi_\tau)x_j(\xi_\tau).
\]
(30.2)

Theorem 30.4.1: Suppose that there exist strictly positive event prices. If security \(j \) is of finite maturity (that is, \(x_{jt} = 0 \) for \(t \geq T \) for some \(T \), and that security is not traded after date \(T \)), then

\[
p_j(\xi_t) = \frac{1}{q(\xi_t)} \sum_{\tau=t+1}^{T} \sum_{\xi_{\tau} \subset \xi_t} q(\xi_\tau)x_j(\xi_\tau).
\]
(30.5)

Price bubble is the difference between the price and the present value of a security. Price bubble at \(\xi_t \) is

\[
\sigma_j(\xi_t) \equiv p_j(\xi_t) - \frac{1}{q(\xi_t)} \sum_{\tau > t} \sum_{\xi_{\tau} \subset \xi_t} q(\xi_\tau)x_j(\xi_\tau)
\]
(30.6)
The following hold:

\[0 \leq \sigma_j(\xi_t) \leq p_j(\xi_t), \quad \forall \xi_t \forall j. \]

If security \(j \) is of finite maturity, then \(\sigma_j(\xi_t) = 0 \) for all \(\xi_t \).

Further,

\[q(\xi_t)\sigma_j(\xi_t) = \sum_{\xi_{t+1} \subset \xi_t} q(\xi_{t+1})\sigma_j(\xi_{t+1}) \quad \forall \xi_t \forall j. \quad (30.8) \]

Price Bubbles in Equilibrium.

The question is whether price bubbles can be nonzero in equilibrium under debt constraints.

Notation \(c_- \) and \(c_+ \) so that \(c \equiv (c_-(\xi_t), c(\xi_t), c_+(\xi_t)) \).

Agents exhibit *uniform impatience* with respect to \(\hat{w} \) if there exists \(\gamma \) satisfying \(0 \leq \gamma < 1 \) such that

\[u^i(c^i_-(\xi_t), c^i(\xi_t) + \hat{w}(\xi_t), \gamma c^i_+(\xi_t)) > u^i(c^i), \quad (30.9) \]

for every \(i \) and every \(\xi_t \) and every \(c^i \) such that \(0 \leq c^i \leq \hat{w} \).

Theorem 30.6.1: Assume that agents’ utility functions exhibit uniform impatience. Suppose that \((p, \{c^i, h^i\}) \) is an equilibrium in security markets under debt constraints and \(q \) is a sequence of strictly positive event prices associated
with \(p \). If present value of the aggregate endowment is finite,

\[
\sum_{t=0}^{\infty} \sum_{\xi_t \in F_t} q(\xi_t) \bar{w}(\xi_t) < \infty,
\]

(30.10)

then the price bubble is zero for every security that is in strictly positive supply.

Example 30.6.2

Time is infinite; so dates are \(t = 0, 1, 2, \ldots \). There is no uncertainty.

There is one security that pays zero dividend at every date.

Two agents \((i = 1, 2)\) with the same utility function

\[
u^i(c) = \sum_{t=0}^{\infty} \beta^t \ln(c_t),
\]

where \(0 < \beta < 1 \).

Debt bounds are \(D_t = p_t \), so that agents can short sell at most one share of the security.

Suppose that endowments are

\[
w_t^1 = B, \quad w_t^2 = A \quad \text{for } t \text{ even},
\]

\[
w_t^1 = A, \quad w_t^2 = B \quad \text{for } t \text{ odd},
\]

where \(\beta A > B > 0 \). Date-0 endowments will be specified later.

Initial security holdings are \(\hat{h}_0^1 = 1 \) and \(\hat{h}_0^2 = 0 \). The total supply is 1.

Let

\[
\eta = \frac{\beta A - B}{(1 + \beta)}.
\]
There is an equilibrium with strictly positive price

\[p_t = \frac{1}{3} \eta, \text{ for all } t \geq 0, \quad (\) \]

and

\[c^1_t = (B + \eta) \text{ for } t \text{ even}, \quad c^1_t = (A - \eta) \text{ for } t \text{ odd} \]
\[c^2_t = (A - \eta) \text{ for } t \text{ even}, \quad c^2_t = (B + \eta) \text{ for } t \text{ odd}, \]

and

\[h^1_t = -1 \text{ for } t \text{ even}, \quad h^1_t = 2 \text{ for } t \text{ odd} \]
\[h^2_t = 2 \text{ for } t \text{ even}, \quad h^2_t = -1 \text{ for } t \text{ odd} \]

This is an equilibrium if \(w^1_0 = B + \frac{1}{3} \eta, \quad w^2_0 = A - \frac{1}{3} \eta. \)

Verifying the equilibrium: (i) markets clear at every date, (ii) budget and short-sales constraints are all satisfied. Further, (iii) first-order condition for agent who is unconstrained is

\[\frac{\beta^t}{c^1_t} p_t = \frac{\beta^{t+1}}{c^1_{t+1}} p_{t+1}, \quad (30.23) \]

It holds. First-order condition for the constrained agent is

\[\frac{\beta^t}{c^1_t} p_t \geq \frac{\beta^{t+1}}{c^1_{t+1}} p_{t+1}, \quad (\) \]

It is satisfied, too. Transversality condition (29.13) holds.
Event prices are \(q_t = 1 \) for every \(t \). Present value of the aggregate endowment is infinite.

Proposition 30.6.3: If \(\inf_{t \geq 0} \inf_{\xi_t \in F_t} \hat{w}(\xi_t) > 0 \) and \(\sup_{t \geq 0} \sup_{\xi_t \in F_t} \hat{w}(\xi_t) < \infty \), then the discounted time-separable expected utility with continuous and strictly increasing von Neumann-Morgenstern utility function exhibits uniform impatience with respect to \(\hat{w} \).

Consider the following **natural debt bounds** given by

\[N^i(\xi_t) = -\frac{1}{q(\xi_t)} \sum_{\tau=t}^{\infty} \sum_{\xi_\tau \subset \xi_t} q(\xi_\tau) w^i(\xi_\tau) \quad \forall \xi_t, \quad (31.7) \]

where \(q \) is a sequence of event prices.

Debt constraints with natural bounds \(N^i(\xi_t) \) prevent agents from holding debt in excess of present value of their future endowments.

Theorem 31.4.2: Let \(p \) and \(\{c^i, h^i\} \) be a security market equilibrium under natural debt constraints. If security markets are complete at \(p \) and price bubbles are zero, then \(\{c^i\} \) and \(Q \) given by

\[Q(c) \equiv \sum_{t=0}^{\infty} \sum_{\xi_t \in F_t} q(\xi_t)c(\xi_t) \quad (31.1) \]

are an Arrow-Debreu equilibrium. Further, consumption allocation \(\{c^i\} \) is Pareto optimal.
Appendix I. Recursive Utility

Consider the setting of consumption in infinite time under uncertainty as in Section 13 (or Chapter 29, LeRoy & Werner, 2nd Ed.) Let u be a utility function.

We say that u induces **continuation utility** at ξ_t if there exists a utility function u_{ξ_t} on consumption plans for event ξ_t and all successor events of ξ_t such that

$$u_{\xi_t}(c_+(\xi_t)) \leq u_{\xi_t}(c'_+(\xi_t)) \iff u(\bar{c}_-(\xi_t), c_+(\xi_t)) \leq u(\bar{c}_-(\xi_t), c'_+(\xi_t))$$

(1)

for every c, c', \bar{c}. Condition (1) requires that preferences be independent of unrealized events and past consumption.

Notation: $c_+(\xi_t)$ denotes the consumption plan for all events that are successors of ξ_t including event-ξ_t; $c_-(\xi_t)$ denotes the consumption plan for all nodes not in the subtree of ξ_t; so that $c = (c_-(\xi_t), c_+(\xi_t))$.

We write $u_{\xi_t}(c)$ instead of $u_{\xi_t}(c_+(\xi_t))$. If the notation ξ_t for events is suppressed, we write $u_t(c)$ for (F_t-measurable) date-t continuation utility.

Suppose that utility function u induces continuation utility u_t for every t. If

$$u_t(c) = W(c_t, \mu_t(u_{t+1}(c)))$$

(2)

for every c and t, for some functions $W : \mathcal{R}^2 \to \mathcal{R}$ and μ_t mapping F_{t+1}-measurable random variables to F_t-measurable r.v.’s, then u is said to be re-
cursive. Function W is the **aggregator** function; μ_t is the **date-t certainty equivalent**. Aggregator function assigns utility to current consumption and certainty equivalent of next-period continuation utility.

Example: Continuation utility for the discounted time-separable expected utility (29.1) is

$$u_t(c) = \sum_{\tau=t}^{\infty} \delta^{\tau-t} E_t[v(c_\tau)]$$

It is actually more convenient to consider a different ordinally-equivalent continuation utility

$$u_t(c) = v^{-1} \left(\sum_{\tau=t}^{\infty} \delta^{\tau-t} E_t[v(c_\tau)] \right)$$ (3)

Expected utility (29.1) with continuation utilities (3) has recursive representation with

$$W(y, z) = v^{-1}(v(y) + \delta v(z)), \quad \text{and} \quad \mu_t(w) = v^{-1}(E_t[v(w)])$$ (4)

For power utility $v(y) = \frac{1}{1-\rho} y^{1-\rho}$ (with relative risk aversion ρ), the aggregator W of (4) is $W(y, z) = (y^{1-\rho} + \delta z^{1-\rho})^{1/(1-\rho)}$ and is the well-known constant elasticity of substitution (CES) function. ◊

Epstein-Zin-Weil recursive utility obtains by taking

$$W(y, z) = (y^\alpha + \delta z^\alpha)^{1/\alpha}$$ (5)

and

$$\mu_t(w) = [E_t(w^{1-\rho})]^{1/(1-\rho)}$$ (6)
where ρ and α are two separate parameters.

Notes: Epstein and Zin (1989) prove that such recursive utility function is well defined. More precisely, there exists u with recursive representation given by (5-6). In Epstein and Zin (1989) the domain of utility functions are intertemporal lotteries. See Marinacci and Montrucchio (2010) for setting as in Section 13 or Chapter 29.
Consumption-Based Security Pricing for Recursive Utility

Suppose that there are J infinitely-lived securities with one-period return on security j at ξ_t denoted by $r_j(\xi_t)$. Suppressing the notation for events we write r_t for the vector of J one-period returns.

Consider the optimal consumption-portfolio problem of an agent with recursive utility specified by (5-6). The agent has non-zero endowment only at the initial date 0. It is more convenient to state the consumption-portfolio problem in terms of consumption c_t, wealth w_t, and fractions of wealth (net of consumption) $a_t \in \Delta^J$ invested in J securities at date t. Short sales are prohibited. Budget constraints are

$$ w_{t+1} = (w_t - c_t)r_{t+1}a_t, $$

with w_0 given as date-0 endowment plus the value of initial portfolio of securities.

Let $V_0(w_0)$ denote the maximized date-0 utility as a (value) function of initial wealth w_0. Similarly, let $V_t(w_t)$ denote the maximized date-t continuation utility as a (value) function of date-t wealth w_t. Recursivity of u implies that

$$ V_t(w_t) = \max_{c_t, a_t} \left(c_t^\alpha + \delta [E_t(V_{t+1}(w_{t+1}))^{1-\rho}]^{\alpha/(1-\rho)} \right)^{1/\alpha} $$

(8)

where w_{t+1} is given by (7) and depends on a_t and c_t.

Because functions W and μ_t of (5-6) are homogeneous of degree 1, it follows that value function V_t is linear in wealth, that is, $V_t(w_t) = A_t w_t$ where $A_t > 0$.

15
is a constant that may depend on date-t. Certainty equivalent of V_{t+1} in (8) can be written as

$$\left[E_t[(A_{t+1}(w_t - c_t)r_{t+1}a_t)^{1-\rho}]\right]^{1/(1-\rho)} = (w_t - c_t)\left[E_t[(A_{t+1}r_{t+1}a_t)^{1-\rho}]\right]^{1/(1-\rho)}$$

(9)

Let $\{c_t^*, a_t^*\}$ be a solution to the consumption-portfolio problem. Assume that $0 < c_t^* \leq w_t$ and $0 < a_t^*$. It follows from (8) and (9) that a_t^* solves

$$\max_{a_t \in \Delta^j} E_t[(A_{t+1}r_{t+1}a_t)^{1-\rho}]$$

(10)

The first-order conditions for (10) are

$$E_t[A_{t+1}^{1-\rho}(r_{t+1}^*)^{-\rho}(r_{j,t+1} - \bar{r}_{t+1})] = 0,$$

(11)

for every risky security j, where \bar{r}_{t+1} denotes one-period risk-free return and $r_{t+1}^* = r_{t+1}a_t^*$ denotes the return on optimal portfolio a_t^*.

The optimal consumption c_t^* solves

$$\max\{c_t^{\alpha} + \delta(w_t - c_t)^{\alpha}(z_t^*)^{\alpha/(1-\rho)}\},$$

where z_t^* denotes the maximum value in (10), that is,

$$z_t^* = E_t[(A_{t+1}r_{t+1}^*)^{1-\rho}].$$

The first-order condition for c_t^* is

$$(c_t^*)^{\alpha-1} = \delta(w_t - c_t^*)^{\alpha-1}(z_t^*)^{\alpha/(1-\rho)}$$

16
or equivalently
\[(z_t^*)^{\alpha/(1-\rho)} = \frac{1}{\delta} \left(\frac{c_t^*}{w_t - c_t^*} \right)^{\alpha-1}. \tag{12}\]

It follows from (8) that
\[(A_tw_t)^\alpha = (c^*_t)^\alpha + \delta(w_t - c_t^*)^\alpha (z_t^*)^{\alpha/(1-\rho)} \tag{13}\]

Substituting (12) in (13) we obtain
\[A_t = \left(\frac{c_t^*}{w_t} \right)^{(\alpha-1)/\alpha} \tag{14}\]

Writing (14) for \(t+1\) instead of \(t\) and making use of budget constraint (7) there results
\[A_{t+1} = \left(\frac{c_{t+1}^*}{c_t^*} \right)^{(\alpha-1)/\alpha} \left(\frac{c_t^*}{w_t - c_t^*} \right)^{(\alpha-1)/\alpha} (r_{t+1}^*)^((1-\alpha)/\alpha) \tag{15}\]

Substituting (15) in the first-order condition (11), dividing both sides by \((\frac{c_t^*}{w_t - c_t^*})^{(\alpha-1)/\alpha}\), and making use of \(\frac{(1-\alpha)(1-\rho)}{\alpha} - \rho = \frac{1-\alpha-\rho}{\alpha}\), we obtain
\[E_t \left[\left(\frac{c_{t+1}^*}{c_t^*} \right)^{(1-\rho)/(1-\alpha)} (r_{t+1}^*)^((1-\alpha-\rho)/\alpha) (r_{j,t+1} - \tilde{r}_{t+1}) \right] = 0. \tag{16}\]

Substituting (15) in the first-order condition (12) and simplifying, there results
\[E_t \left[\left(\frac{c_{t+1}^*}{c_t^*} \right)^{(1-\rho)/(1-\alpha)} (r_{t+1}^*)^((1-\rho)/\alpha) \right] = 1 \tag{17}\]

Equations (16) and (17) are the Consumption-Based Security Pricing for Epstein-Zin-Weil recursive utility. In representative-agent economy with
an outstanding portfolio of securities \(\hat{h}_0 \) and no consumption endowments at any date \(t \geq 1 \), the return \(r_{t+1}^* \) equals the market return \(r_{t+1}^m = \frac{(p_{t+1} + x_{t+1})\hat{h}_0}{p_t\hat{h}_0} \).

Note that for \(\alpha = 1 - \rho \), that is, when the recursive utility reduces to expected (power) utility, equation (16) becomes

\[
E_t \left[\left(\frac{c_{t+1}^*}{c_t^*} \right)^{-\rho} (r_{j,t+1} - \bar{r}_{t+1}) \right] = 0.
\]

This is the standard CBSP equation of Chapter 27 for power utility.