I. Δ-Monotonicity of Vector-Valued Functions.

I.1 Δ-Monotonicity of F and Positive Semi-Definite DF.

Let D be an open convex subset of \mathbb{R}^n, and let $F: D \to \mathbb{R}^n$.

Proposition I.1: Suppose that F is differentiable. Then the following two conditions are equivalent:

(i) $[F(x') - F(x)][x' - x] \geq 0$ for every $x, x' \in D$,

(ii) the matrix $DF(x)$ is positive semi-definite for every $x \in D$.

Proof: Consider arbitrary $x, x' \in D$, and denote $x' - x$ by z. Further, define

$$x(\lambda) = \lambda x' + (1 - \lambda)x, \quad \text{for } \lambda \in [0, 1]$$

It holds, $x(0) = x$, $x(1) = x'$, and $x(\lambda) = x + \lambda z$. Next, define function $g: [0, 1] \to \mathbb{R}$ by

$$g(\lambda) = z[F(x(\lambda)) - F(x)].$$

Note that $g(0) = 0$, $g(1) = [x' - x][F(x') - F(x)]$, and $g'(\lambda) = zDF(x(\lambda))z$.

Suppose that (i) holds. Since $g(\lambda) = \frac{1}{\lambda}[x(\lambda) - x][F(x(\lambda)) - F(x)]$ for $\lambda > 0$, it follows that $g(\lambda) \geq 0$. Therefore, g has a minimum at $\lambda = 0$. This implies $g'(0) \geq 0$, which is $zDF(x)z \geq 0$. Since z was arbitrary, we obtain (ii).

Conversely, suppose that (ii) holds. Then $g'(\lambda) \geq 0$ for every $\lambda \in [0, 1]$. So function g is non-decreasing and hence $g(1) \geq g(0) = 0$. This implies (i).

QED
Condition (i) of Proposition I.1 will be called **\Delta-monotonicity** for it can be imprecisely written as $\Delta F \Delta x \geq 0$. This is different from the usual condition of F being nondecreasing. Function $F : D \to \mathbb{R}^n$ is **nondecreasing** on $D \subset \mathbb{R}^n$ if

$$x \leq x' \implies F(x) \leq F(x') \quad (1)$$

for every $x, x' \in D$. Both inequalities in (1) are vectorial inequalities in \mathbb{R}^n.

\Delta-monotonicity (i) and property (1) are unrelated (except for when $n = 1$). Neither (i) implies (1), nor the opposite.

If function F is differentiable on D, then a necessary and sufficient condition for being nondecreasing in the sense of (1) is that

$$DF(x) \geq 0 \quad \text{for every } x, \quad (2)$$

i.e., that the matrix $DF(x)$ is positive. That is,

$$\frac{\partial F_i}{\partial x_j}(x) \geq 0 \quad \forall i, j, \quad \text{for every } x.$$

Note that both \Delta-monotonicity and nondecreasing imply that $\frac{\partial F_i}{\partial x_j}(x) \geq 0$, but that is about as much as they have in common.
I.2 Convexity of f and Δ-Monotonicity of Df.

Let D be an open convex subset of \mathbb{R}^n, and let $f : D \to \mathbb{R}$ be a real-valued function. Suppose that f is differentiable and let $Df(x)$ be the derivative of f. Df is a function from D to \mathbb{R}^n.

Proposition I.2: Suppose that $f : D \to \mathbb{R}$ is continuously differentiable. Then f is convex if and only if Df is Δ-monotone.

Proof: First, assume that f is convex. It follows that

$$Df(x)[y - x] \leq f(y) - f(x),$$

for every $x, y \in D$, see MWG, Theorem M.C.1. This implies

$$[Df(x) - Df(y)][x - y] \geq 0,$$

for every x, y. Hence, Df is Δ-monotone.

For the converse, let x, y be arbitrary and consider $x(\lambda) = \lambda y + (1 - \lambda)x$, for $\lambda \in [0, 1]$. It holds, $x(0) = x$, $x(1) = y$, and $x(\lambda) = x + \lambda[y - x]$. Define function $g : [0, 1] \to \mathbb{R}$ by

$$g(\lambda) = f(x(\lambda)).$$

Function g is differentiable with $g'(\lambda) = Df(x(\lambda))[y - x]$. We shall show that g' is nondecreasing, that is $g'(\lambda') \geq g'(\lambda)$ for $\lambda' > \lambda$. Indeed,

$$g'(\lambda') - g'(\lambda) = [Df(x(\lambda')) - Df(x(\lambda))[x(\lambda') - x(\lambda)] \frac{1}{(\lambda' - \lambda)} \geq 0.$$
where we used Δ-monotonicity of Df. Since g' is a nondecreasing function of single variable λ, it follows that g is convex on $[0, 1]$. This imples that

$$f(x(\lambda)) \leq \lambda f(x) + (1 - \lambda) f(y),$$

for every $\lambda \in [0, 1]$. Thus f is convex.
II. Theorem of the Maximum

There are two sets $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^m$. Further, there is a correspondence φ mapping S into the sets of subsets of T and a function $f : S \times T \to \mathbb{R}$. That is, $\varphi(x)$ is a subset of T for every $x \in S$, and $f(x, t)$ is a real number for every $x \in S$ and $t \in T$.

We are interested in the constrained maximization problem with f as the objective function and φ as the constraint. That is, given $x \in S$,

$$\max_t f(x, t)$$

subject to $t \in \varphi(x)$.

We denote by $V(x)$ the value function of (3) and by $\mu(x)$ the set solutions. Formally,

$$V(x) = \max_{t \in \varphi(x)} f(x, t) \quad \text{and} \quad \mu(x) = \{t \in \varphi(x) : f(x, t) = V(x)\}. \quad (4)$$

Interpretation: Think about an economic agent whose environment is described by a vector $x \in S$. The agent’s set of actions is T, but when the environment is x, she is restricted to choose her action only from the subset $\varphi(x)$. Her utility of action t is $f(x, t)$, when the environment is x. Her objective is to choose an action in $\varphi(x)$ to maximize her utility.
We shall assume that the set T is **compact**.

Correspondence φ is said to be **continuous** if it is lower hemi-continuous and upper hemi-continuous. These are defined as follows:

- **(LHC)** φ is **lower hemi-continuous** at x if for every sequence $\{x_n\}$ in S converging to x and every $t \in \varphi(x)$, there exists a sequence $\{t_n\}$ in T such that $t_n \in \varphi(x_n)$ and $\{t_n\}$ converges to t.

- **(UHC)** φ is **upper hemi-continuous** at x if for every sequence $\{x_n\}$ in S converging to x and every sequence $\{t_n\}$ in T converging to t, with $t_n \in \varphi(x_n)$, it holds that $t \in \varphi(x)$.

Our definition of UHC is the closed graph property. MasColell, Whinston and Green give definitions of LHC and UHC in Appendix M.H, pg. 949-951. Their definition of upper hemi-continuity is different, but if the range of φ (i.e., the set T) is compact as assumed, then their definition is equivalent to the above one. Note that upper hemi-continuous correspondence φ must have compact values $\varphi(x)$.

Theorem II.1: Suppose that the set T is compact. If correspondence φ is continuous on S and function f is continuous on $S \times T$, then

- (i) V is continuous on S, and
- (ii) μ is an upper hemi-continuous correspondence on S.
Proof: (i) Let \(\{x_n\} \) be a sequence of vectors in \(S \) converging to \(x \). We have to show that \(\lim_n V(x_n) = V(x) \). Since \(\varphi(x_n) \) is a compact set for every \(n \), there exist \(t_n \in \varphi(x_n) \) such that \(V(x_n) = f(x_n, t_n) \). Since the set \(T \) is compact, sequence \(\{t_n\} \) must have a convergent subsequence with a limit \(\bar{t} \in T \). We switch to that subsequence of \(\{t_n\} \), but we retain the same notation; i.e., we keep \(\{t_n\} \) and assume that it converges to \(\bar{t} \). Upper hemi-continuity of \(\varphi \) implies that \(\bar{t} \in \varphi(x) \). By continuity of \(f \), we have \(\lim_n f(x_n, t_n) = f(x, \bar{t}) \).

Since \(f(x, \bar{t}) \leq V(x) \), it follows that

\[
\lim_n V(x_n) \leq V(x).
\]

To prove the opposite inequality, we note that \(V(x) = f(x, t) \) for some \(t \in \varphi(x) \) since \(\varphi(x) \) is a compact set. Lower hemi-continuity of \(\varphi \) at \(x \) implies that there is sequence \(\{\tilde{t}_n\} \) converging to \(t \) such that \(\tilde{t}_n \in \varphi(x_n) \) for every \(n \). We have \(f(x_n, \tilde{t}_n) \leq V(x_n) \). Using continuity of \(f \), we obtain \(\lim_n f(x_n, \tilde{t}_n) = f(x, t) \).

Consequently

\[
\lim_n V(x_n) \geq V(x).
\]

This concludes the proof of (i)

(ii) Consider two sequences: \(\{x_n\} \) in \(S \) converging to \(x \), and \(\{t_n\} \) in \(T \) converging to \(t \) such that \(t_n \in \mu(x_n) \). We have to show that \(t \in \mu(x) \).

We first observe that upper hemi-continuity of \(\varphi \) implies that \(t \in \varphi(x) \). Next, consider arbitrary \(\bar{t} \in \varphi(x) \). Lower hemi-continuity of \(\varphi \) at \(x \) implies
that there is a sequence \(\{t_n\} \) converging to \(t \) such that \(t_n \in \varphi(x_n) \) for every \(n \). Clearly then \(f(x_n, t_n) \geq f(x_n, \tilde{t}_n) \). Passing to the limit with \(n \) and using continuity of \(f \), we obtain \(f(x, t) \geq f(x, \tilde{t}) \). Since \(\tilde{t} \) was arbitrary in \(\varphi(x) \), this implies that \(t \in \mu(x) \). This concludes the proof of (ii).

Remarks:

- The assumption that set \(T \) is compact can be dropped. Then the MWG definition of upper hemi-continuity has to be used. Note that that definition requires that correspondence \(\varphi \) be compact-valued.

- One application of the Theorem of the Maximum II.1 is in producer theory. We set \(S \) as the set of price vectors, \(T \) as the production set, i.e., \(T = Y \), function \(f \) as \(f(p, y) = py \), and correspondence \(\varphi \) as \(\varphi(p) = Y \). Assuming that \(Y \) is compact, Theorem II.1 implies continuity of the profit function and upper hemi-continuity of the supply correspondence (Proposition 6.3 (iii)).
III. Kuhn-Tucker Theorems

III.1 Constrained Maximization: Necessary Conditions.

Function $F : \mathbb{R}_+^n \to \mathbb{R}$ is the objective function; functions $g^j : \mathbb{R}_+^n \to \mathbb{R}$, for $j = 1, \ldots, k$, are constraint functions. Assume that F and g^j are differentiable, with partial derivatives $\frac{\partial F}{\partial x_i}$ and $\frac{\partial g^j}{\partial x_i}$ denoted by $\partial_i F$ and $\partial_i g^j$, respectively.

The constrained maximization problem (with nonnegativity constraints) is

$$\max_x F(x) \quad (1)$$

subject to $g^1(x) \geq 0,$

.....,

$g^k(x) \geq 0,$

$x_1 \geq 0, \ldots, x_n \geq 0.$

We write the Lagrangian as

$$\mathcal{L}(\lambda^1, \ldots, \lambda^k, x) = F(x) + \sum_{j=1}^{k} \lambda_j g^j(x),$$

where $\lambda_j \geq 0$, for $j = 1, \ldots, k$, are the Lagrange multipliers. We use λ to denote the k-vector of multipliers.
Kuhn-Tucker conditions for \(x^* \geq 0 \) and \(\lambda^* \geq 0 \) are:

for all \(i = 1, \ldots, n \) and \(j = 1, \ldots, k \),

\[
\partial_i F(x^*) + \sum_{j=1}^{k} \lambda^*_j \partial_i g^j(x^*) \leq 0, \quad \text{and if } x^*_i > 0, \text{ then } " = 0", \tag{2a}
\]
\[
g^j(x^*) \geq 0, \quad \text{and if } \lambda^*_j > 0, \text{ then } " = 0". \tag{2b}
\]

Where do these conditions come from? Think about maximizing Lagrangian \(L(\lambda, x) \) with respect to \(x \) and minimizing it with respect to \(\lambda \), unconstrained, except for \(x \geq 0 \) and \(\lambda \geq 0 \). This is the saddle-point. K-T conditions (2) are FOCs for such max-min (or saddle-point) problem.

Theorem (Kuhn-Tucker): If \(x^* \geq 0 \) is a solution to the constrained maximization problem, and the Constraint Qualification Condition holds, then \(x^* \) and some \(\lambda^* \geq 0 \) satisfy K-T conditions (2).

Constraint Qualification Condition:

(i) Kuhn-Tucker original – don’t touch it.

(ii) \(g^j \) concave for all \(j \), and Slater’s condition, that is, there is some \(x^0 \geq 0 \) with \(g^j(x^0) > 0 \) for all \(j \).

(iii) rank condition (see Takayama 1.D.4, or Varian, ch 27),

(iv) \(g^j \) linear for all \(j \), (Arrow-Hurwicz-Uzawa, see Takayama 1.D.4)
III.2 Sufficiency of Kuhn-Tucker Conditions.

The most standard theorem is:

Theorem S1: Suppose that F and g^1, \ldots, g^k are all concave functions. If $x^* \geq 0$ and $\lambda^* \geq 0$ satisfy K-T conditions (2), then x^* is a solution to the constrained maximization problem.

A better theorem is due to Arrow and Enthoven (1961).

Theorem S2: Suppose that F and g^1, \ldots, g^k are all quasi-concave functions and some “mild” condition holds. If $x^* \geq 0$ and $\lambda^* \geq 0$ satisfy K-T conditions (2), then x^* is a solution to the constrained maximization problem.

The extra (“mild”) condition is not needed if F is concave (and g^1, \ldots, g^k are quasi-concave). See Takayama 1.E for three versions of the condition.

Quasi-concavity (and therefore also concavity) of functions g^j implies that the constraint set, i.e. the set of $x \geq 0$ satisfying $g^1(x) \geq 0, \ldots, g^k(x) \geq 0$, is convex.
III.3 Constrained Minimization

The constrained minimization problem (with nonnegativity constraints) is

$$\min_x F(x)$$ \quad (3)$$

subject to $g^i(x) \leq 0$, \ldots, $g^k(x) \leq 0$,

$$x_1 \geq 0, \ldots, x_n \geq 0.$$

The Lagrangian is

$$\mathcal{L}(\lambda, x) = F(x) + \sum_{j=1}^{k} \lambda_g^j g^j(x).$$

Kuhn-Tucker conditions for $x^* \geq 0$ and $\lambda^* \geq 0$ are,

for all $i = 1, \ldots, n$ and $j = 1, \ldots, k$,

$$\partial_i F(x^*) + \sum_{j=1}^{k} \lambda^*_g \partial_i g^j(x^*) \geq 0, \quad \text{and if } x^*_i > 0, \text{ then } " = 0", \quad (4a)$$

$$g^j(x^*) \leq 0, \quad \text{and if } \lambda^*_j > 0, \text{ then } " = 0". \quad (4b)$$

The corresponding saddle-point problem is to *minimize* Lagrangian $\mathcal{L}(\lambda, x)$ with respect to x and *maximize* it with respect to λ for $x \geq 0$ and $\lambda \geq 0$.

The Kuhn-Tucker Theorem holds with no change for the constrained minimization problem. However, in constraint qualification conditions concavity of functions g^j, if present, has to be replaced by their convexity. This guarantees convexity of the constraint set described here by inequalities $g^j(x) \leq 0$.

12
Theorems S1 and S2 continue to hold with concavity (quasi-concavity) of functions F and g^j replaced by their convexity (quasi-convexity, respectively).

III.4 Remarks:

- **Applications** of K-T theorems in microeconomics:

 (i) Consumer theory: utility maximization subject to budget constraint, and expenditure minimization.

 (ii) Welfare economics: Characterization of Pareto optimal allocations as solutions to maximization of a welfare function subject to resource constraints, or maximization of one agent’s utility subject to constraints on other agents’ utilities and resource constraints.

 (iii) Producer theory: cost minimization.

- There are versions of K-T theorems for maximization and minimization with mixed constraints, i.e., when some constraints are of the equality form, $g^j(x) = 0$. See Sundaram [2], Section 6.4.

- K-T theorems hold for local maxima (minima) as well.

III.5 Example: Consider the following constrained maximization problem:

$$\begin{align*}
\text{maximize} & \quad \ln(x_1 + 1) + \ln(x_2 + 1) \\
\text{subject to} & \quad p_1 x_1 + p_2 x_2 \leq m \\
& \quad x_1 \geq 0, \quad x_2 \geq 0,
\end{align*}$$

where $p_1 > 0$, $p_2 > 0$ and $m > 0$.

In order to derive the solution (as a function of parameters p_1, p_2 and m) we write the Kuhn-Tucker first-order conditions (2) as

$$(1) \quad \frac{1}{x_1^* + 1} - \lambda^* p_1 \leq 0, \quad \text{and if} \quad x_1^* > 0, \quad \text{then} \quad "= 0".$$

$$(2) \quad \frac{1}{x_2^* + 1} - \lambda^* p_2 \leq 0, \quad \text{and if} \quad x_2^* > 0, \quad \text{then} \quad "= 0".$$

$$(3) \quad p_1 x_1^* + p_2 x_2^* \leq m, \quad \text{and if} \lambda^* > 0, \quad \text{then} \quad "= 0".$$

with $x^* \geq 0$ and $\lambda^* \geq 0$.

Note that (3) holds with equality since it follows from (1) that $\lambda^* > 0$.

We solve inequalities (1-3) by considering cases:

Case 1. \(x_1^* > 0, \ x_2^* > 0\).

Then (1) and (2) hold with equalities. Solving (1), (2) and (3) we find

$$x_1^* = \frac{m + p_2 - p_1}{2p_1}, \quad \text{and} \quad x_2^* = \frac{m + p_1 - p_2}{2p_2}, \quad \text{and} \quad \lambda^* = \frac{2}{m + p_1 + p_2}.$$

For \(x_1^*\) and \(x_2^*\) to be strictly positive, it has to be that \(m + p_2 > p_1\) and \(m + p_1 > p_2\). Thus Case 1 applies with \(x_1^*\) and \(x_2^*\) as listed above if \(m + p_2 > p_1\) and \(m + p_1 > p_2\).
Case 2. $x_1^* > 0, x_2^* = 0$.

(3) implies that $x_1^* = \frac{m}{p_1}$. Since (1) holds with equality, we solve it for $\lambda^* = \frac{1}{m + p_1}$. Next we need to verify inequality (2). It states

$$1 - \frac{p_2}{m + p_1} \leq 0,$$

and it holds if $p_2 \geq m + p_1$. Thus Case 2 applies (with $x_1^* = \frac{m}{p_1}, x_2^* = 0$) if $p_2 \geq m + p_1$.

Case 3. $x_1^* = 0, x_2^* > 0$.

This case is very similar to Case 2. From (3) and (2) we obtain $x_1^* = \frac{m}{p_2}$, $\lambda^* = \frac{1}{m + p_2}$. Verifying inequality (1), we obtain $p_1 \geq m + p_2$. Thus Case 3 applies (with $x_1^* = 0, x_2^* = \frac{m}{p_2}$) if $p_1 \geq m + p_2$.

The case $x_1^* = x_2^* = 0$ cannot hold since it violates equation (3). This concludes our solution to the K-T conditions.

Since utility function is concave and the constraint function is concave (in fact, it is linear) K - T conditions are sufficient (Theorem S1). Hence, the solution to K-T conditions is a constrained maximizer. Further, since the Slater’s condition holds, every constrained maximizer has to satisfy K - T conditions.
Mathematical Appendix IV

IV.1 Proof of Theorem 15.3: We first prove the following

Lemma 15.4: If u is concave and supermodular, then

$$u(\lambda[x \lor y] + (1 - \lambda)y) - u(y) \geq u(x) - u(\lambda[x \land y] + (1 - \lambda)x),$$ \hspace{1cm} (47)

for every $x, y \in \mathbb{R}^L_+$ and $0 \leq \lambda \leq 1$.

Proof of Lemma 15.4 The following two inequalities follow from concavity of u

$$u(\lambda[x \lor y] + (1 - \lambda)y) \geq \lambda u(x \lor y) + (1 - \lambda)u(y),$$ \hspace{1cm} (48)

$$u(\lambda[x \land y] + (1 - \lambda)x) \geq \lambda u(x \land y) + (1 - \lambda)u(x)$$ \hspace{1cm} (49)

Also, because of supermodularity (34),

$$u(x \lor y) + u(x \land y) \geq u(x) + u(y).$$ \hspace{1cm} (50)

If we multiply (50) by λ and sum the resulting inequality side-by-side with (48) and (49), we obtain (47).

We return to the proof of Theorem 15.3. Of course, we only need to consider $w' > w$. Let $y = x^*(p, w)$ and $x = x^*(p, w')$. Since u is l.n.s., we have $py = w$ and $px = w'$. Clearly, $p[x \land y] \leq w$. Since $px > w$, there exists $0 \leq \lambda < 1$ such that $p(\lambda[x \land y] + (1 - \lambda)x) = w$. Denote $\lambda[x \land y] + (1 - \lambda)y$ by \tilde{z}_λ and $\lambda[x \lor y] + (1 - \lambda)x$ by \bar{z}^λ. Since $\tilde{z}_\lambda + \bar{z}^\lambda = x + y$ (this follows from (32)), we have $p\bar{z}^\lambda = w'$.

1
Since y is the unique utility maximizer at w and $p_{z\lambda} = w$, we have $u(y) \geq u(\bar{z}_\lambda)$. Lemma 15.4 implies that $u(\bar{z}^\lambda) \geq u(x)$. Since x is the unique utility maximizer at w' and $p_{\bar{z}\lambda} = w'$, it must be $\bar{z}^\lambda = x$. Then also $\bar{z}_\lambda = y$. It can be shown (see Figure 1) that $\bar{z}^\lambda = x$ if and only if $x = x \lor y$. Similarly, $\bar{z}_\lambda = y$ if and only if $y = x \land y$. But if $x = x \lor y$ and $y = x \land y$, then $y \leq x$. This concludes the proof.