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1 Resetting Property for a General Class of Environ-

ments

In this section, we show that the resetting property holds for a broader class of environments.

Since, with private information, the resetting property at the top comes from no distortion at

the top, we focus on the full information case and provide necessary and sufficient conditions

for resetting to hold in a more general class of environments. Consider the model in section 2

of the paper where utility of an agent of type θ is given by U(c1, y, n, θ)+βnηu(c2),where y is

income in the first period. The specification in section 2 is a special case where U(c1, y, n, θ) =

u(c) + h(1− y
θ
− bn). Moreover, suppose that having children has an additional cost f(n, θ)

in terms of period 1 goods if the parent is of type θ. The planing problem, when types are

public information, is given by

max
∑
i=H,L

πi

[
yi − ci − f(ni, θi) +

1

R
nic2i

]
(1)

subject to ∑
i=H,L

πi [U(c1i, yi, ni, θi) + βnηi u(c2i)] ≥ w

θi ≥ yi; c1i, ni, yi, c2i ≥ 0.

The following lemma can be proved about the solution of the problem (1):

Lemma 1 Suppose that the solution to the above problem is interior. Then

η
u(c2i)

u′(c2i)
− c2i = Rfn(ni, θi) +R

Un(c1i, yi, ni, θi)

Uy(c1i, yi, ni, θi)
. (2)

Proof. The first order conditions for the above problem are given by

λUc = 1

1 + λUy = 0⇒ λ = − 1

Uy

−fn(ni, θi)−
1

R
c2i + λ

[
Un + βηnη−1

i u(c2i)
]

= 0 (3)

− 1

R
ni + λβnηi u

′(c2i) = 0⇒ λβnη−1
i =

1

R

1

u′(c2i)

where λ is the multiplier on promise keeping. By replacing terms in (3), we get the following:
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−fn(ni, θi)−
1

R
c2i −

Un
Uy
− 1

R

u(c2i)

u′(c2i)
= 0

which implies the lemma’s claim.

Note that for section 2’s specification, f ′ = 0 and Un/Uy = bθ, in which (2) becomes

equation (4) in the paper. Given the above characterization for c2i, one can state the following

result:

Remark 2 The resetting property, i.e., c2i being independent of w, holds if and only if the

function

fn(ni, θi) +
Un(c, y, n, θ)

Uy(c, y, n, θ)

is only a function of θ and not of (c, y, n).

The above remark implies that if we add linear goods cost of children to the model in

the paper resetting still holds. Another environment that satisfies the above condition is

when f is linear in n and U = θu(c) + h(1− y− bn). This analysis also shows that resetting

property holds when there is no leisure cost of children and goods cost changes linearly with

n for each type.

2 Non-Homothetic Example

In this section, we will generalize the discussion from the two period example in section 2 of

the paper to non-homthetic preferences. Suppose parents have the following, non-homothetic

preferences:

u(c1) + h(1− l − bn) + βg(n)u(c2)

Assume that g(n)u(c2) is strictly increasing, strictly concave, differentiable and

ng′(n)/g(n)

c2u′(c2)/u(c2)
< D <∞ ∀c2, n,

i.e., the (negative of) elasticity of substitution between C2 and n is uniformly bounded above.

In this case, the analog of equation (4) in the paper is:

n(W0, θH)g′(n(W0, θH))

g(n(W0, θH))
u(c2(W0, θH)) = u′(c2(W0, θH))c2(W0, θH) + bθHRu

′(c2(W0, θH)).
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This can be rewritten as:

n(W0, θH)g′(n(W0, θH))/g(n(W0, θH))

c2(W0, θH)u′(c2(W0, θH))/u(c2(W0, θH))
= 1 +

bθHR

c2(W0, θH)
.

Since the elasticity on the left is assumed bounded, it follows that c2(W0, θH) must be

bounded away from zero for all values of W0. It follows immediately that per capita utility

– u(c2(W0, θH)) – is also bounded below.

In other words, including fertility in the model will give rise to a level of per capita

continuation utility that is bounded below as long as these elasticities are bounded. That

is homothetic utility is not required for c2 to be bounded away from zero. Rather what is

required is that income expansion paths in (C2, n) space should have slope that is bounded

away from zero. The example given below illustrates this point.

Example.Suppose g(n) = nη1 + Anη2 with 0 > η1 > η2. In this case, problem (8) in

section 2 becomes the following

min
c2,n

bθHn+
1

R
nc2

subject to

(nη1 + Anη2)u(c2) = W (W0, θH).

If we equate the marginal rate of transformation between c2 and n to the associated

marginal rate of substitution, we get

η1n
η1−1 + η2An

η2−1

nη1−1 + Anη2−1

u(c2)

u′(c2)
− c2 = bRθH .

Now suppose that W0 and therefore, W (W0,θH) converges to −∞. In this case, one can

argue that n has to converge to zero. If not, by promise keeping c2 has to converge to 0

violating the above equation. Note that

lim
n→0

η1n
η1−1 + η2An

η2−1

nη1−1 + Anη2−1
= η2.

This means that as W0 converges to −∞, the above equation becomes:

η2
u(c2)

u′(c2)
− c2 = bRθH

which implies that c2 is bounded away from 0. Income exapnsion paths for this example

are giveun in Figure 1. Note that at W0 = −∞, c2(W0, θH) is the slope of the income

expansion path at the origin which is positive. Morevoer, C2

n
is bounded away from zero for
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all points on the curve.
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Figure 1: Income expansion path in an example with non-homothetic formulation. The slope
of the income expantion path is per capita consumption. Example for g(n) = nη1 + Anη2 .

3 Full Information Efficient Allocation is not Incentive

Compatible

In this section, we show that the efficient allocations when there is no private information

does not satisfy the incentive compatibility constraints for the maximization problem in

section 3 of the paper. The efficient allocation with full information solves the following

recursive problem:

v(w) = min
∑
θ

π(θ)

[
c(θ)− θl(θ) +

1

R
n(θ)v(w′(θ))

]
(Pfi)

subject to ∑
θ

π(θ)[u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ)] ≥ w.
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This implies the following first order and Envelope conditions:

u′(c(θ)) = u′(c(θ′)) (4)

θu′(c(θ)) = h′(1− l(θ)− bn(θ)) (5)

u′(c(θ))v′(w′(θ)) = βRn(θ)η−1 (6)

ηv′(w′(θ))w′(θ)− v(w′(θ)) = bRθ. (7)

Intuitively, from intra-family risk sharing, equation (4), we know that per capita con-

sumption among siblings is equal. Moreover, efficiency requires that leisure is decreasing

in productivity, equation (5). It is therefore sufficient to show that future utility for a low

productivity agent is higher than a high productivity agent. This is shown below.

One intuition for this comes from the curvature properties of the cost function, v(w). In

the unconstrained efficient allocation, the planner equates per capita marginal cost n(θ)1−ηv′(w′(θ))

across various types. Notice that convexity of the above problem implies that both v′(w)

and ηv′(w)w − v(w) are increasing functions of w. This implies that v′(·) has a curvature

higher than 1−η
η

, i.e., v′(w)
v′(w′)

≥
(
w
w′

) 1−η
η . Therefore, for a given relative fertility n(θ)

n(θ′)
= ∆ > 1,

equating per capita marginal cost implies that relative promised utility w′(θ)
w′(θ′)

is at most ∆η.

This implies that n(θ)ηw′(θ) > n(θ′)ηw′(θ′). Hence, overall promised value, n(θ)ηw′(θ), is

higher for agents with a higher number of children (agents with lower productivity).

Hence, we can state the following lemma:

Lemma 3 The solution to the problem (Pfi), is not incentive compatible, i.e., it violates the

incentive constraint (9) in the paper.

Proof. Consider the solution to (Pfi). From (4) and (6), we have that

n(θ)1−ηv′(w′(θ)) = n(θ′)1−ηv′(w′(θ′)),∀θ, θ′. (8)

Moreover, since ηv′(w)w − v(w) is increasing in w, we know that

wv′′(w)

v′(w)
>

1− η
η
⇒ v′′(w)

v′(w)
>

1− η
η

1

w
.

If we assume that θ > θ′, then w′(θ) > w′(θ′) and we can integrate the above equation to

obtain that

log

(
v′(w′(θ))

v′(w′(θ′))

)
=

∫ w′(θ)

w′(θ′)

v′′(w)

v′(w)
dw >

1− η
η

log

(
w′(θ)

w′(θ′)

)
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and therefore
v′(w′(θ))

v′(w′(θ′))
>

(
w′(θ)

w′(θ′)

) 1−η
η

.

Combining the above with (8), we get the following inequality

(
n(θ′)

n(θ)

)1−η

=
v′(w′(θ))

v′(w′(θ′))
>

(
w′(θ)

w′(θ)

) 1−η
η

⇒ n(θ′)ηw′(θ′) > n(θ)ηw′(θ). (9)

Moreover, since c(θ) does not depend on θ and leisure is decreasing in θ. Therefore 1− l(θ)−
bn(θ) < 1 − l(θ′) − bn(θ′) < 1 − θ′l(θ′)/θ − bn(θ′), when θ > θ′. These properties together

with (9) gives us the following inequality

u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ) ≤

< u(c(θ′)) + h(1− θ′l(θ′)

θ
− bn(θ′)) + βn(θ′)ηw′(θ′),∀θ > θ′

which means that under the efficient allocation, agents with higher productivity would like

to pretend to be low productivity. So the unconstrained efficient allocation is not incentive

compatible.

4 Sufficiency of Downward Incentive Constraints

In this section we show, if the an allocation satisfies certain properties then downward

incentive constraints are sufficient. Hence, in any solution, we can check whether the any

solution of the model satisfies these conditions. These conditions are easy to check and they

hold in our numerical examples that are done with two types. We provide our suffieicnt

conditions in the following lemma:

Lemma 4 Suppose an allocation (c(θ), l(θ), n(θ), w′(θ)) satisfies the following:

1. l(θ)θ is increasing in θ ,

2. 1− l(θ)− bn(θ) ≤ 1− θ′l(θ′)
θ
− bn(θ′), for all θ > θ′

3. Local downward incentive constraints are binding:

u(c(θi)) + h(1− l(θi)− bn(θi)) + βn(θi)
ηw′(θi) =

u(c(θi−1)) + h(1− θi−1l(θi−1)

θi
− bn(θi−1)) + βn(θi−1)ηw′(θi−1).

Then, incentive compatibility holds for any θ, θ′.
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Proof. By part 3 of the assumption, we have

u(c(θi−1)) + βn(θi−1)ηw′(θi−1)− u(c(θi))− βn(θi)
ηw′(θi) =

= h(1− l(θi)− bn(θi))− h(1− θi−1l(θi−1)

θi
− bn(θi−1)).

By part 2 and 3 of the assumption we have

1

θi−1

(θil(θi)− θi−1l(θi−1)) ≥ 1

θi
(θil(θi)− θi−1l(θi−1)) ≥ b(n(θi−1)− n(θi)).

Hence, for any x ∈ [1/θi, 1/θi−1]

x(θil(θi)− θi−1l(θi−1)) ≥ b(n(θi−1)− n(θi))

⇒ 1− xθi−1l(θi−1)− bn(θi−1) ≥ 1− xθil(θi−1)− bn(θi).

Therefore, using part 1 and concavity of h(·),

−h′(1− xθi−1l(θi−1)− bn(θi−1))θi−1l(θi−1) ≥ −h′(1− xθil(θi−1)− bn(θi))θil(θi).

Integrating both sides from 1/θi to 1/θi−1, we get

h(1−l(θi−1)−bn(θi−1))−h(1− θi−1l(θi−1)

θi
−bn(θi−1)) ≥ h(1− θil(θi)

θi−1
−bn(θi))−h(1−l(θi)−bn(θi)).

Therefore,

u(c(θi−1)) + βn(θi−1)ηw′(θi−1)− u(c(θi))− βn(θi)
ηw′(θi) ≥

≥ h(1− θil(θi)

θi−1

− bn(θi))− h(1− l(θi−1)− bn(θi−1)).

Hence, the local upward incentive constraints are satisfied.

Now, we will show that other upward incentive constraints are satisfied . To illustrate

we show the argument for i and i + 2 and a similar inductive argument works for higher

differences. By condition 2, we know that:

1

θi+2

(θi+2l(θi+2)− θi+1l(θi+1)) ≥ b(n(θi+1)− n(θi+2))
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and therefore,

1

θi
(θi+2l(θi+2)− θi+1l(θi+1)) ≥ 1

θi+1

(θi+2l(θi+2)− θi+1l(θi+1)) ≥ b(n(θi+1)− n(θi+2)).

Hence, for any x ∈ [1/θi+1, 1/θi],

1− xθi+1l(θi+1)− bn(θi+1) ≥ 1− xθi+2l(θi+2)− bn(θi+2)

and we have,

h′(1− xθi+1l(θi+1)− bn(θi+1)) ≤ h′(1− xθi+2l(θi+2)− bn(θi+2))

⇒ −h′(1− xθi+1l(θi+1)− bn(θi+1))θi+1l(θi+1) ≥ −h′(1− xθi+2l(θi+2)− bn(θi+2))θi+2l(θi+2).

So,

h(1− θi+1l(θi+1)

θi
− bn(θi+1))− h(1− l(θi+1)− bn(θi+1)) (10)

≥ h(1− θi+2l(θi+2)

θi
− bn(θi+2))− h(1− θi+2l(θi+2)

θi+1
− bn(θi+2)).

Rewriting local IC’s for i, i+ 1 and i+ 1, i+ 2:

u(c(θi)) + βn(θi)
ηw′(θi)− u(c(θi+1))− βn(θi+1)ηw′(θi+1) ≥ (11)

≥ h(1− θi+1l(θi+1)

θi
− bn(θi+1))− h(1− l(θi)− bn(θi))

u(c(θi−1)) + βn(θi+1)ηw′(θi+1)− u(c(θi+2))− βn(θi+2)ηw′(θi+2) ≥ (12)

≥ h(1− θi+2l(θi+2)

θi+1

− bn(θi+2))− h(1− l(θi+1)− bn(θi+1)).

Summing over inequalities (10)-(12), we get:

u(c(θi−1)) + βn(θi)
ηw′(θi)− u(c(θi+2))− βn(θi+2)ηw′(θi+2) ≥

≥ h(1− θi+2l(θi+2)

θi
− bn(θi+2))− h(1− l(θi)− bn(θi))

which is the upward incentive constraint for i, i+ 2. The rest of the upward and downward

incentive constraints can be proved in a similar way.

The conditions provided are very intuitive. The first condition asserts that income has

to be increasing in type. A similar condition arises in most Mirrleesian environments. The

second assumption implies that leisure from lying downward is higher than leisure under

telling the truth. Notice that, in environments without fertility, conditions 1 and 2 are
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equivalent. However, since fertility is endogenous and potentially different for different types

condition 2 is needed. Condition 3 is very common in the literature can sometimes shown to

be binding. This lemma is similar to a result in mechanism design that provides sufficiency

of local incentive constraints, see Matthews and Moore (1987), and Pavan et al. (2009).

5 Spreading of Future Promises

In this section, we show that when βR = 1, then it is optimal for the planner to spread

continuation utility for the highest and lowest values of shock. This is in fact very similar to

lemma 5 in Thomas and Worrall (1990). Therefore, it suggests that the same proof as theirs

would work to show that total continuation utility, N1−η
t wt converges to its lowest bound,

when βR = 1.

Lemma 5 Suppose that βR = 1. Then n(w, θ1)1−ηv′(w′(w, θ1)) ≤ v′(w) ≤ n(w, θI)
1−ηv′(w′(w, θI)),

for all w. Moreover, if µ(I, j)(µ(j, 1)) is positive for some j, v′(w) < n(w, θI)
1−ηv′(w′(w, θI))(v′(w) >

n(w, θ1)1−ηv′(w′(w, θ1))).

Proof. The FOC w.r.t w′(θ1) and w′(θI) are given by:

βn(θ1)η−1

[
λπ(θ1)−

I∑
i=2

µ(i, 1)

]
=

1

R
π(θ1)v′(w′(θ1))

βn(θI)
η−1

[
λπ(θI) +

I−1∑
i=1

µ(I, i)

]
=

1

R
π(θI)v

′(w′(θI))

where µ(i, j) ≥ 0 is the Lagrange multiplier on the incentive constraint i, j with i > j and

λ > 0 is the multiplier associated with the promise-keeping constraint. Since βR = 1, the

above equalities imply that n(θ1)1−ηv′(w′(θ1)) ≤ λ ≤ n(θI)
1−ηv′(w′(θI)) with the inequalities

being strict if and only if one of the multipliers µ(I, i) and µ(i, 1) are positive. By the

Envelope theorem, we know that λ = v′(w). This proves the claim.

6 Existence of Bounded Ergodic Set

Assumption 6 For any given w, if l(w, θi) = 0 for some 1 ≤ i ≤ I, then l(w, θj) = 0 for

all j < i.

Assumption 7 The policy function w′(w, θ) is continuous for all θ.
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Proposition 8 Suppose V (N,W ) is convex and continuously differentiable and assumptions

6 and 7 hold. The, there exist w̄ < 0 and w > −∞ such that for every w ∈ [w, w̄], w′(w, θ)

belongs to [w, w̄] for all θ ∈ Θ.

Suppose there are I types Θ = {θ1, . . . , θI} and θi+1 > θi for all 1 < i ≤ I. We break the

proof into few lemmas.

Consider the following problem

v(w) = min
c(θ),l(θ),n(θ)

∑
θ∈Θ

π(θ)

(
c(θ)− θl(θ) +

1

R
n(θ)v(w′(θ))

)
s.t.

∑
θ∈Θ

π(θ) (u(c(θ)) + h(1− l(θ)− bn(θ)) + βn(θ)ηw′(θ)) ≥ w

u(c(θi)) + h(1− l(θi)− bn(θi)) + βn(θi)
ηw′(θi) ≥

u(c(θj)) + h

(
1− θjl(θj)

θi
− bn(θj)

)
+ βn(θj)

ηw′(θj); ∀i, ∀j < i.

We have shown in Lemma 1 in the paper that convexity and differentiability of V (N,W )

implies that v(w) is differentiable and convex. It also implies that ηwv′(w) − v(w) is an

increasing function of w.

Lemma 9 For any w such that l(w, θI) > 0 we have w′(w, θi) < w′(w, θI) for all i < I.

Proof. Let λ and µ(i, j) be multipliers on promise keeping and incentive constraint of type

θi who wants to pretend to be of type θj. For now suppose l(w, θi) > 0 for all i. First order

conditions are (we suppress the dependence of the allocation on w, it plays no role in the

following arguments):

θIπ(θI) =

(
λπ(θI) +

I−1∑
j=1

µ(I, j)

)
h′(1− l(θI)− bn(θI)) (13)

θiπ(θi) =

(
λπ(θi) +

i−1∑
j=1

µ(i, j)

)
h′(1− l(θi)− bn(θi)) (14)

−
I∑

k=i+1

µ(k, i)
θi
θk
h′
(

1− θil(θi)

θk
− bn(θi)

)

11



π(θI)v
′(w′(θI)) =

(
λπ(θI) +

I−1∑
j=1

µ(I, j)

)
βRn(θI)

η−1 (15)

π(θI)v
′(w′(θi)) =

(
λπ(θi) +

i−1∑
j=1

µ(i, j)−
I∑

k=i+1

µ(k, i)

)
βRn(θi)

η−1 (16)

π(θI)v(w′(θI)) =

(
π(θI)λ+

I−1∑
j=1

µ(I, j)

)(
ηβRn(θI)

η−1w′(θI)−Rbh′(1− l(θI)− bn(θI))
)

π(θi)v(w′(θi)) =

(
λπ(θi) +

i−1∑
j=1

µ(i, j)

)(
ηβRn(θi)

η−1w′(θi)−Rbh′(1− l(θi)− bn(θi))
)

−
I∑

k=i+1

µ(k, i)

(
ηβRn(θi)

η−1w′(θi)−Rbh′
(

1− θil(θi)

θk
− bn(θi)

))
(17)

for 1 ≤ i < I.

Combining these equations we can get the following

ηw′(θI)v
′(w′(θI))− v(w′(θI)) = RbθI (18)

ηw′(θi)v
′(w′(θi))− v(w′(θi)) = Rb

(
λ+

1

π(θi)

i−1∑
j=1

µ(i, j)

)
h′(1− l(θi)− bn(θi))

− Rb

π(θi)

I∑
k=i+1

µ(k, i)h′
(

1− θil(θi)

θk
− bn(θi)

)
. (19)

Since ηwv′(w)− v(w) is increasing in w, to establish the claim of the lemma it is enough

to show that the right hand side of the equation (19) is smaller that RbθI . But notice that

Rb

(
λ+

1

π(θi)

i−1∑
j=1

µ(i, j)

)
h′(1− l(θi)− bn(θi))−

Rb

π(θi)

I∑
k=i+1

µ(k, i)h′
(

1− θil(θi)

θk
− bn(θi)

)
<

Rb

(
λ+

1

π(θi)

i−1∑
j=1

µ(i, j)

)
h′(1− l(θi)− bn(θi))−

Rb

π(θi)

I∑
k=i+1

θi
θk
µ(k, i)h′

(
1− θil(θi)

θk
− bn(θi)

)
= Rbθi < RbθI .

12



The first inequality follows from the fact that θi
θk
< 1 for k > i. The rest follows from (14).

This finishes the proof for the case in which l(w, θi) > 0.

Now consider the case in which the non-negativity constraint on hours is binding for some

types 1 ≤ i < I . Then by assumption 6 for all types θj ,1 ≤ j < i we have l(w, θj) = 0. Then

all types θi, 1 ≤ i < j receive the same allocations and therefore µ(i, j) = 0 for 1 ≤ j < i.

The equations (14) and (19) for type θi change to

θi <

(
λ− 1

π(θi)

I∑
k=i+1

µ(k, i)
θi
θk

)
h′(1− bn(θi))

and

ηw′(θi)v
′(w′(θi))− v(w′(θi)) = Rb

(
λ− 1

π(θi)

I∑
k=i+1

µ(k, i)

)
h′(1− bn(θi))

Suppose w′(θi) > w′(θI), then

RbθI < ηw′(θi)v
′(w′(θi))− v(w′(θi)) = Rb

(
λ− 1

π(θi)

I∑
k=i+1

µ(k, i)

)
h′(1− bn(θi))

and therefore

h′(1− bn(θi)) >
θI

λ− 1
π(θi)

∑I
k=i+1 µ(k, i)

>
θI

λ+ 1
π(θI)

∑I−1
j=1 µ(I, j)

= h′(1− bn(θI)− l(θI)).

Hence

1− bn(θi) < 1− l(θI)− bn(θI).

On the other hand w′(θi) > w′(θI) implies(
λ− 1

π(θi)

I∑
k=i+1

µ(k, i)

)
n(θi)

η−1 =
v′(w′(θi))

βR
>
v′(w′(θI))

βR
=

(
λ+

1

π(θI)

I−1∑
j=1

µ(I, j)

)
n(θI)

η−1

and therefore

n(θI) > n(θi).

These implies that l(θI) has to be negative which is a contradiction. Therefore, we must

have w′(w, θi) < w′(w, θI) for all w such that l(w, θI) > 0. By assumption 6 l(w, θj) = 0 for

13



all j < i, and we know that w′(w, θj) = w′(w, θi) < w′(w, θI) for all j < i (since all types θj

receive the same allocations for 1 < j ≤ i).

Next we will find the promised utility at which the non-negativity for type θI just binds.

At this point, all types work zero hours and therefore receive the same allocation (assump-

tion 6).

Let ĉ , n̂ and wI solve the following equations

θIu
′(ĉ) = h′(1− bn̂)

v′(wI)u
′(ĉ) = βRn̂η−1

ηwIv
′(wI)− v(wI) = RbθI .

Define

ŵ = u(ĉ) + h(1− bn̂) + βn̂ηwI .

Note that w′(ŵ, θI) = w′(ŵ, θi) = wI for all i.

Our goal is to show that for w > ŵ, it is optimal for type θI to work zero hours for all θ.

After we establish that, we can prove the claim of the proposition for two cases on wI > ŵ

and wI < ŵ.

Lemma 10 If w > ŵ, then l(w, θI) = 0.

Proof. Suppose otherwise and consider the following equations

w = u(c) + h(m) + βnηwI

and

θHu
′(c) = h′(m)

v′(wI)u
′(c) = βRnη−1

in which m = 1− l − bn. Also, the first order conditions at ŵ are

θIu
′(ĉ) = h′(m̂)

v′(wI)u
′(ĉ) = βRn̂η−1

14



ŵ = u(ĉ) + h(1− bn̂) + βn̂ηwI

in which m̂ = 1− bn̂. Subtract the first order conditions at w and ŵ to obtain:

w − ŵ = u(c)− u(ĉ) + h(m)− h(m̂) + βwI(n̂
η − nη) (20)

θH(u′(c)− u′(ĉ)) = h′(m)− h′(m̂)

v′(wI)(u
′(c)− u′(ĉ)) = βR(nη−1 − n̂η−1).

Then, by concavity of u(c), h(m) and nη we know that (c− ĉ),(m− m̂) and (n− n̂) must all

have the same signs.

Also, from (20) we have

u′(ĉ)(c− ĉ) + h(m) + h′(m̂)(m− m̂) + βwIηn̂
η−1(n− n̂) > w − ŵ > 0.

This implies that (c− ĉ),(m− m̂) and (n− n̂) must be all positive. If m > m̂ and n > n̂,

then we must have l = 1−m− bn < 1− m̂− bn̂ = 0. This is a contradiction, therefore, the

non-negativity constraint on hours must be binding at ŵ.

Lemma 11 If wI > ŵ, there exist ŵ ≤ w∗ ≤ 0 such that w′(w∗, θ) = w∗.

Proof. Recall that that since l(w, θ) ≥ 0 is binding, by assumption 6 all types work zero

hours and receive the same allocations. Therefore, the incentive constraint is slack. The first

order conditions for type θI are

λh′(1− bn(θI)) > θI

and

v(w′(θI)) +Rbλh′(1− bn(θI)) = ληβRn(θI)
η−1w′(θI).

Therefore

ηw′(θI)v
′(w′(θI))− v(w′(θI)) = Rbλh′(1− bn(θI)) > RbθI .

This implies w′(w, θI) > wI > ŵ. Define the function w′ε(·, θ) : [ŵ,−ε]→ [ŵ,−ε] as

w′ε(·, θ) =

w′(·, θ) if w′ε(·, θ) ≤ −ε

−ε if w′ε(·, θ) > −ε
.
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This function must have a fixed point w∗ε ∈ [ŵ,−ε]. We know that w′(·, θ) = limε→0w
′
ε(·, θ).

Then, either a ŵ < w∗ < 0 exists such that w′(w∗, θ) = w∗ or limw→0w
′(w, θ) = 0. (Note

that because no one works all types receive the same allocations).

So far we have established that if wI > ŵ, then we can choose w = w̄ = w∗ and the

proposition is proved.

Now suppose wI ≤ ŵ. By lemma 9, we have w(w, θ) ≤ wI ≤ ŵ for all w. Let w̄ = ŵ

and notice that proposition 3 together with continuity of w′(w, θi) (assumption 7) implies

that there exist a w̃ small enough so that w′(w̃, θi) > −∞. By assumption 7, w′(w, θi) is

continuous in w and hence has a minimum w in [w̃, w̄]. This concludes the proof of the

proposition.

7 A Uniqueness Result

In this example, we assume that resetting property at the top holds for every w < w0.

For this case, using a direct constructive proof, we show that the model implies a long-run

distribution for per capita consumption and characterize its properties. What is convenient

about this example is that we can show that if resetting holds at all w and Assumption 8

holds with w = w0, then there is a unique stationary distribution within a certain class.

We know that w0 = w′(w, θH) is independent of w for all w ≤ w0. Hence, we can define

the following set of promised values:

W = {wn|wn+1 = w′(wn, θL),∀n ≥ 0}

By Corollary 7 in the paper, there is a lower bound w such that w ≤ w ≤ w0, for all w ∈ W .

Assumption 12 Assume that wj 6= wi if j 6= i.

Consider a distribution over W , Ψ = (ψ0, ψ1, · · · ) with
∑∞

i=0 ψi = 1. For Ψ to be a

stationary distribution, there must exist a γ such that the following conditions hold:

γψ0 = πH

∞∑
i=0

n(wi, θH)ψi (21)

γψj = πLn(wj−1, θL)ψj−1, j ≥ 1 (22)

Iterating on equation (22) implies the following:

ψm =

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)ψ0
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Replacing in (21) implies the following equation:

γ = πH

(
n(w0, θH) +

∞∑
m=1

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)
(23)

Given that in the original problem, we must have n(w, θ) ≤ 1/b. This means that the right

hand side of the above equation is lower than
∑∞

m=0(πL/(bγ))m. Therefore, if we let γ →∞,

the right hand side converges to a finite number, πHn(w0, θH). Notice that the left hand side

is strictly increasing and the right hand side is strictly decreasing in γ. Moreover, at γ = 0

RHS is higher than LHS and at γ =∞, RHS is lower than LHS. Because of this, if we knew

that RHS was continuous, this would be sufficient to say that there is a γ satisfying equation

(23) and that it is unique. To handle this last technical detail, we proceed as follows – Define

γK as follows:

γK = πH

(
n(w0, θH) +

K∑
m=1

(
πL
γK

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)
.

By definition, γK < γK+1. We know that n(w, θ) < 1
b
, therefore

γK < πH

(
1

b
+

K∑
m=1

(
πL
γK

)m(
1

b

)m+1
)
.

Suppose that πL
bγK

< 1 or πL
b
< γK . Then, the above inequality implies that

bγK < πH
1

1− πL
bγK

⇒ γK <
πH + πL

b
=

1

b
.

This shows that γK is a bounded increasing sequence. Hence, there exists γ∗ such that

γK → γ∗ with γ∗ > γK . It needs to be shown that at γ∗, RHS of (23) exists. Suppose not

and that the sum is infinity. Define FK(γ) to be the RHS of (23) up to K-th term. FK(γ)

is a continuous and decreasing function. Therefore, γK = FK(γK) > FK(γ∗). Moreover,

FK(γ∗) → F (γ∗) and hence F (γ∗) ≤ γ∗. This means that RHS of (23) cannot be infinity

and (23) is satisfied at γ∗.

Now by Corollary 13, we know that

∃ A > 0 ; n(w, θH) ≥ An(w, θL) ∀w ∈ [w,w]. (24)

17



Therefore, using (23), we will have

γ = πH

(
n(w0, θH) +

∞∑
m=1

(
πL
γ

)m
n(wm−1, θL)n(wm−2, θL) · · ·n(w0, θL)n(wm, θH)

)

≥ πHA
∞∑
m=0

(
πL
γ

)m
n(wm, θL)n(wm−1, θL) · · ·n(w0, θL).

Hence
∞∑
m=0

(
πL
γ

)m+1

n(wm, θL)n(wm−1, θL) · · ·n(w0, θL) ≤ πL
AπH

.

Now define, ψ0 as

ψ0 =
1

1 +
∑∞

m=0

(
πL
γ

)m+1

n(wm, θL)n(wm−1, θL) · · ·n(w0, θL)

By the above inequality, we know that ψ0 exists and it is greater than zero. Moreover, we

can automatically define ψi’s using (22). Hence, the definition of γ, being the solution to

(23) together with the definition of ψ0, makes sure that Ψ satisfies (21)-(22) and hence, it is a

stationary distribution. As it appears in the proof, in some sense, bounded relative fertility1

together with the resetting property at the top are the key elements of having a long-run

stationary distribution. First, every time any one receives a high shock, her promised value

is reset. Secondly, relatively, there are enough children being born by high types so that we

get stationarity. Moreover, the above proof shows that when the set of w’s is restricted to

W , the stationary distribution is unique.2

8 Proofs

In this section we provide various proofs omitted in the paper.

8.1 Proof of Lemma 2

We show that when V is continuously differentiable and strictly convex, v(w) is continuously

differentiable, and strictly convex and ηv′(w)w − v(w) is strictly increasing. By definition,

we have

V (N,W ) = Nv(N−ηW )

1A high type’s number of kids relative to the low type’s
2A similar argument shows that there is a unique stationary distribution on W even if Assumption 12

does not hold. In this case, it follows that W is necessarily finite and the same logic applies.
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Therefore, if V is continuously differentiable, v has the same property. Moreover, strict

convexity and differentiability of V imply that VN(VW ) is strictly increasing in N(W ). Notice

that

VW (W,N) = N1−ηv′(N−ηW )

VN(W,N) = v(N−ηW )−N−ηWv(N−ηW )

Hence, VW being strictly increasing in W implies that v′(w) is strictly increasing and

hence v(·) is strictly convex. Moreover, VN being strictly increasing in N implies that

v(w)− ηwv′(w) is strictly decreasing in w.

8.2 Proof of Corollary 7

By Proposition 6, we know that

lim
w→−∞

w′(w, θi) = wi

This implies that there exists a wε such that

∀w ≤ wε, |w′(w, θi)− wi| < ε

By assumption 6, wi < w̄. Now define,

w = min

{
wε, w1 − ε, w2 − ε, · · · , wn − ε, inf

w∈[wε,w],i
w′(w, θi)

}
Notice that since w′ is a continuous function that is always in R and the infimum is taken over

a compact set, w is well-defined. Pick ε > 0 small enough so that infw∈[wε,w],iw
′(w, θi) < wj−ε

for all j. Then by definition of wε we must have

w′(w, θi) ∈ [w, w̄], ∀w ∈ [w, w̄]

�

Since utility is unbounded below and η is negative, n(w, θi) must be positive. Hence we

can have the following corollary:

Corollary 13 For all w ∈ [w, w̄], we must have n(w, θi) ≥ n and n(w,θn)
n(w,θi)

≥ A, for all

i ∈ {1, · · · , n} and for some n, A > 0.
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8.3 Proof of Remark 10

Since l(w, θn) > 0 for all w ∈ [w,w0], resetting property at the top holds. Therefore, by

definition

γ(Ψ) ·Ψ ({w0}) = πn

∫
S

n(w, θn)dΨ(w)

γ(Ψ) =

∫
S

n∑
i=1

πin(w, θi)dΨ(w)

≤ πn

∫
S

n(w, θn)dΨ(w)

+(1− πn)A−1

∫
S

n(w, θn)dΨ(w)

= (πn + (1− πn)A−1)

∫
S

n(w, θn)dΨ(w)

Therefore,

Ψ ({w0}) ≥
πnA

1− πn + πnA

�

9 A Numerical Example

In this section, we provide a numerical solution for the model provided in section 3 of the

paper. In light of this example, we are able to provide some more intuitive properties of the

model that we have not proved in the paper.

We assume that individuals have CRRA preferences over consumption and leisure

u(c) =
c1−σ

1− σ
, and h(m) = φ

m1−σ

1− γ
in which m = 1− l− bn is leisure, l is hours worked and n is number of kids for each parent.

For this example we assume the following values for parameters: β = 0.3, R = 4, σ = 1.5,

φ = 0.5, b = 0.41 and η = −2. We assume two levels of productivity shocks {θL, θH} = {2, 6}.
Shocks are i.i.d across generations and dynasties and the probability of the high shock is

πH = 0.1.

Figure 2, presents the optimal policy functions in the recursive problem given above

specification. It can be seen that whenever hours worked are positive, the per capita contin-

uation value of parents with high productivity shock is constant, i.e., the Resetting Property.

Moreover, as it is established in proposition 6 in the paper, the per capita continuation value
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for a parent with a low productivity shock converges to a finite number as parent’s promised

utility tends to −∞.

One observation that cannot be shown analytically is that fertility for less productive

agents is lower than that of more productive agents. When there is no private information,

full risk sharing and cost minimization deliver this result. Full risk sharing implies that per

capita marginal utility from having children must be equated across types. This implies that

consumption per child is negatively correlated with the number of children. On the other

hand, kids are more expensive for more productive types (in terms of their time). Therefore,

it is cost effective to deliver utility from having children to more productive types by giving

more per capita consumption to each of their children and have them have fewer children.

With private information, however, full risk sharing is violated and the argument above does

not work. However, it is observed in our numerical example that more productive types have

a lower fertility rate. Our calculations, also show that the spread in fertility is lower under

private information compared to full information.
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Figure 2: Optimal consumption, hours, fertility and promised utility allocations for the
numerical example

It is important to note here that incentives are provided both by the level of per capita

promised utility to the children and the number of children. In other words the future
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utility that is promised to a parent is n(w, θ)ηw′(w, θ). This promised utility is always

monotone increasing in the current utility promised to the parent. This property is similar

to benchmark dynamic Mirrleesian models with no fertility choice. Figure 3 illustrates this.
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Figure 3: Future promised utility to the parents.

We can use the construction procedure in section 7 to calculate the stationary distribution

of per capita promised utilities and the growth rate of population, γΨ∗ . The stationary

distribution is shown in Figure 4. For this economy, the growth rate of population is γΨ∗ =

1.0355. As it is mentioned in remark 10 in the paper, a positive fraction of agents are always

at the resetting value w0 = −3.0826.
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Figure 4: Stationary distribution
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10 Linear Utility of Leisure

In this section we focus on the case with linear utility from leisure. This allows to prove many

of the unproved assumptions in the main body of the paper for the general case. To do so,

we consider the problem (P1) in the paper with the additional assumption that h(m) = ψm:

V (N,W ) = min
Ci,Li,Ni,W ′i

I∑
i=1

π(θi)

[
Ci − θiLi +

1

R
V (Ni,W

′
i )

]
(P5)

s.t
I∑
i=1

π(θi)

[
Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bNi

N

))
+ βW ′

i

]
≥ W

Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i ≥

Nη

(
u

(
Cj
N

)
+ ψ

(
1− θjLj

θiN
− b

N ′j
N

))
+ βW ′

j

∀i, j.

Notice that the set of reports is not restricted to lower reports since we can prove that general

incentive compatibility is equivalent to local downward constraints being binding and output

being increasing, a similar approach to Thomas and Worrall (1990). Notice that adding the

IC constraint where j pretends to be i and the reverse implies that:

θiLi
θjN

+
θjLj
θiN

≥ Li
N

+
Lj
N
.

Therefore, if θi > θj, then θiLi ≥ θjLj which means output is increasing.

Moreover, if we assume that local downward IC constraints are binding and output is increas-

ing, it can be easily shown that the local upward constraints are satisfied. Thus, summing

over local incentive constraints gives the general ones. We also assume that output being

increasing is not binding so we can neglect it. Therefore the functional equation becomes

23



the following:

V (N,W ) = min
Ci,Li,N ′i ,W

′
i

I∑
i=1

π(θi)

[
Ci − θiLi +

1

R
V (N ′i ,W

′
i )

]

s.t
I∑
i=1

π(θi)

[
Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i

]
≥ W

Nη

(
u

(
Ci
N

)
+ ψ

(
1− Li

N
− bN

′
i

N

))
+ βW ′

i ≥

Nη

(
u

(
Ci−1

N

)
+ ψ

(
1− θi−1Li−1

θiN
− b

N ′i−1

N

))
+ βW ′

i−1.

Let −λN1−η be the lagrange multiplier on promise-keeping constraint and −µiN1−η be the

multiplier for i-th IC constraint. Then the first order condition for hours worked is the

following:

πIθI = (λπI + µI)ψ

πiθi = (λπi + µi −
θiµi+1

θi+1

)ψ, i = 2, · · · , n (25)

π1θ1 = (λπ1 −
θ1µ2

θ2

)ψ. (26)

We can define µ1 = µI+1 = 0 and (25) holds for i = 1, ..., I. If we divide the i-th equation

by θi and sum over all i’s, the µi’s will cancel and we have

λ =
1

ψ
∑

i
πi
θi

=
1

ψE1
θ

(27)

Therefore,

µi =
1

ψ
θi
∑
j≥i

πj −
θi
∑

j≥i
πj
θj

ψ
∑

j
πj
θj

= θi

∑
j
πj
θj

∑
j≥i πj −

∑
j≥i

πj
θj

ψ
∑

j
πj
θj

.

Since θi’s increasing, all the µi’s are positive.

The first order conditions with respect to consumption are:

πi = (λπi + µi − µi+1)u′
(
Ci
N

)
.

Obviously, we need consumption to be increasing and marginal utility to be positive. This

gives us a condition on distribution of θi. Moreover, we can see that consumption is inde-

pendent of the state variable (N,W ).
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The first order conditions with respect to N ′i ,W
′
i are:

πi
1

R
VN(N ′i ,W

′
i ) = −b(λπi + µi − µi+1)ψ (28)

πi
1

R
VW (N ′i ,W

′
i ) = N1−η(λπi + µi − µi+1)β. (29)

Now for every i, define after-tax-productivity as follows:

θ̃i = ψ
λπi + µi − µi+1

πi
.

Notice that we have u′(Ci/N)θ̃i = ψ and θ̃i does not depend on the state variables. From

before, we know that there exists a function v(·) such that V (N,W ) = Nv(N−ηW ). There-

fore,

VN(N,W ) = v(w)− ηwv′(w), VW (N,W ) = N1−ηv′(w)

where w = N−ηW . Hence, from (29) we have that:

ηw′iv
′(w′i)− v(w′i) = bRθ̃i

N ′1−ηi v′(wi) = βRN1−ηθ̃i.

The above, implies that ni = N ′i/N,w
′
i are also independent of the state. Moreover, from

the Envelope condition we have that:

VW (N,W ) = λN1−η =
N1−η

ψ
∑

i
πi
θi

= N1−ηv′(w).

Therefore, v(·) is a linear function and we have:

v(w) = A+
w

ψ
∑

i
πi
θi

⇒ V (N,W ) = AN +
WN1−η

ψ
∑

i
πi
θi

.

Notice that for the problem to be concave, we need Nηh(M
N

) to be concave and therefore,

to have Nη−1M be weakly concave, we must have η = 1. In this case V (N,W ) is linear in

(N,W ) and therefore weakly convex.
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