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Abstract

Is there a trade-off between fluctuations and growth? The empirical evi-
dence is mixed, with some studies finding a positive relationship, while others
find a negative one. Our objectives are to understand how fundamental uncer-
tainty affects the long run growth rate and to identify important factors deter-
mining this relationship in a convex endogenous growth model. Qualitatively,
we show that the relationship between volatility in fundamentals (or policies)
and mean growth can be either positive or negative. The curvature of the util-
ity function is a key parameter that determines the sign of the relationship.
Quantitatively, an increase in uncertainty always increases the growth rate in
our calibrated models. Though the changes we find are nontrivial, they are not
large enough by themselves to account for the large differences in growth rates
observed in the data. We also find that differences in the curvature of pref-
erences have very substantial effects on the estimated variability of stationary
objects like the consumption-output ratio and hours worked. For this reason,
we expect that the models considered in this paper will provide the basis of
sharp estimates of the curvature parameter.

∗We thank Fernando Alvarez, Gadi Barlevy, Craig Burnside, Larry Christiano, Martin Eichen-
baum, Ellen McGrattan, and an anonymous referee for their help, and the National Science Foun-
dation for financial support.
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1 Introduction

In his celebrated 1987 book, “Models of Business Cycles,” Robert Lucas presented
some simple calculations to argue that the trade-off between fluctuations and growth
is such that a representative agent’s willingness to pay for a more stable environment,
in terms of growth rates, is almost zero. Lucas’ conclusion has been challenged by
studying models that relax some of the details in his basic environment.1 However,
none of these analyses question a fundamental implicit assumption: that the factors
that affect fluctuations do not affect long run growth.2

Is there any evidence that the volatility of shocks — both policy and productivity
shocks — has an impact on long run growth? Since it is difficult at best to directly
measure volatility in fundamentals, most analyses study the relationship between
some measure of variability of the growth rate of output and mean, or average, growth.
In an early study, Kormendi and Meguire (1985) find that variability is positively
related to mean growth in a cross section of countries. More recently, Ramey and
Ramey (1995) find that higher volatility decreases growth, also in a cross section of
countries. Empirical work that relates policy variability (mostly inflation variability)
and growth also seems to point to a negative relationship (see Judson and Orphanides,
1996). Simple regressions of mean growth rates on measures of volatility of growth
rates in cross section from the Penn World Table suggest a U-shape relationship, with
an “upward sloping” segment only at very high levels of volatility.3

Our objective in this paper is to evaluate the proposition that differential levels
of volatility in fundamentals can account for the observed cross-sectional differences
in growth rates. To this end we study a class of models in the neoclassical tradition,
in which fundamental uncertainty can affect the long run growth rate.4 Our analysis
includes both theoretical and numerical results. Qualitatively, if shocks are i.i.d. and
depreciation is full, we show that the relationship between mean growth and volatility
in fundamentals and policies can be either positive or negative. The key factor is the
curvature of the utility function. If utility is more concave than the log case, an

1These range from the specification of preferences to the details of the market structure. For the
former see Manuelli and Sargent (1988), and for the latter, Imrohoroglu (1989) and Atkeson and
Phelan (1994).

2The current standard in the real business cycle literature, is to view long run growth as exogenous
and, hence, independent of the fundamental shocks. For an explicit discussion see Cooley and
Prescott (1995). The recent paper by Barlevy (2004) studies the relationship between growth and
cyclical fluctuations in an endogenous growth model and obtains an estimate of the welfare costs of
business cycles that is larger than that of Lucas.

3More recent work seems to suggest that even the results in Ramey and Ramey are not robust.
They seem to depend on both the sample period as well as the collection of countries included. See
Chatterjee and Shukayev (2004).

4Although we emphasize a “technology shock” interpretation of the type used in the real business
cycle literature in our model (see Cooley, 1995, for a good survey of this literature), the shocks that
we model can also be interpreted as random fiscal policies; for an equivalence result, see Jones and
Manuelli (1999).
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increase in shock volatility increases the savings rate and the average growth rate. If
it is less concave than the log, the opposite occurs. This is in keeping with findings
in earlier papers (see Phelps, 1962; Levhari and Srinivasan, 1969; Rothschild and
Stiglitz, 1971; Leland, 1974; and de Hek, 1999). However, our result is substantively
more general in that it allows for a non-trivial role for labor supply, so that interest
rates are, even on average, endogenous.
Quantitatively, in contrast to the theoretical results above, the relationship be-

tween shock volatility and growth is positive in all of our calibrated examples. This
is true even for preference specifications with less curvature than log utility, due to
our inclusion of partial depreciation and autocorrelated shocks. For variations in the
degree of volatility in fundamentals calibrated to match the range of growth rate
volatility seen in the data, we obtain changes in mean growth rates on the order of
0.3% per year. Although this is a nontrivial change, it could not by itself account for
a significant fraction of the differences in growth rates between countries. In partic-
ular, since increased uncertainty increases mean growth, we find that these types of
models are not capable of reproducing the growth performances seen at the low end
of the distribution as a sole result of high volatility in fundamentals.
To better understand the interplay between model specification, volatility, and

growth, we conduct two types of sensitivity analysis. We vary preference parameters
(the degree of risk aversion) and consider alternative decompositions of shock volatil-
ity between innovation variance and autocorrelation. We show that the relationship
between the degree of risk aversion and mean growth is inverse U-shaped. Moreover,
we find that differences in the curvature of preferences have very substantial effects
on the estimated variability of stationary objects like the consumption-output ratio
and hours worked. For this reason, we expect that the class of models considered
in this paper will provide the basis of sharp estimates of the curvature parameter.
This is in contrast with the results in exogenous growth models in which curvature
has only a small effect. We also show that the class of models that we study can
generate positively autocorrelated growth rates of output but, for this to be the case,
it is necessary that the driving shocks be positively autocorrelated themselves.
Even though our work follows the recent analyses of stochastic endogenous growth

models in which the “source” of shocks is either technology (see, for example, King
and Rebelo, 1988; King, Plosser and Rebelo, 1988; Obstfeld, 1994; and de Hek,
1999), policies (Eaton, 1981; Bean, 1990; Aizenman and Marion, 1993; Gomme, 1993;
Hopenhayn and Muniagurria, 1996; and Dotsey and Sarte, 1997), or a combination of
the two (Kocherlakota and Yi, 1997), it has a different emphasis. We are interested in
understanding how volatility in fundamentals affects growth and whether, for reason-
able specifications, fundamental uncertainty might explain cross-country differences
in mean growth.
Section 2 presents the basic theoretical results and discusses a key property of our

endogenous growth models that makes them computationally tractable. Section 3
contains numerical results for our baseline calibration and quantitative comparative
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statics results with respect to changing the degree of shock volatility. Section 4
contains sensitivity analysis while section 5 offers some concluding comments.

2 Stochastic Models of Endogenous Growth

In this section we lay out the basic planning problems that we study and discuss how
they are solved. The equilibria of the class of models that we study can be computed
as the solution to the following planner’s problem:

maxEt{
X
t

βtc1−σt v(ct)/(1− σ)}, (1)

subject to,

ct + xzt + xht + xkt ≤ F (kt, zt, st),

zt ≤ M(nzt, ht, xzt)

kt+1 ≤ (1− δk)kt + xkt,

ht+1 ≤ (1− δh)ht +G(nht, ht, xht)

ct + nht + nzt ≤ 1,

with h0 and k0 given. Here {st} is a stochastic process which we assume is Markov
with transition probability function P (s,A); ct is consumption; zt is “effective labor,”
nzt is hours spent working in the market, nht is hours spent augmenting human
capital, and ct is leisure; xzt, xkt and xht are investment in effective labor, physical
and human capital, respectively; kt and ht are the stock of physical and human
capital, respectively. The depreciation rates on physical and human capital are given
by δk and δh, respectively. The usual non-negativity constraints on consumption,
investment, and hours worked apply.
Thus, this is a fairly standard endogenous growth model in which effective labor

is made up of a combination of hours and human capital supplied to the market. It
is a natural generalization of the technology shock driven RBC model modified for
the growth rate to be endogenously determined. For specific choices of functional
forms, many models in this literature are special cases. For example, ifM = nzh and
G = G0nhh, the model corresponds to Lucas (1988) in the absence of externalities. If
M = nzh and G = xh, this corresponds to the two capital goods version discussed in
Jones, Manuelli and Rossi (1993). Finally, note that the standard one-sector growth
model with exogenous technological change is also a special case with G = 0 and
M = nz (and the st process no longer stationary). Given convexity of technologies
and preferences, if markets are complete (as we assume) the equilibrium allocation
can be found by solving a planner’s problem of this form.5

5Note that although we are formally interpreting the shocks as technology shocks, they can in
certain cases (period-by-period, state-by-state budget balance, etc.) be interpreted as shocks to
income tax rates. See Jones and Manuelli (1999).
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The actual solution of the model does cause some technical problems. The natural
choice of the state is the vector (kt, ht, st). The difficulty is that both kt and ht are
diverging to infinity (at least for versions that exhibit growth on average). Despite
this, the value and policy functions have relatively simple characterizations under
some additional assumptions about the form of the utility and production functions.
The key property that we will exploit is that for general versions of the models of the
type described in (1) to have a balanced growth path, both preferences and technology
must be restricted in a specific way (see King, Plosser and Rebelo, 1988; and Alvarez
and Stokey, 1995).
It can be shown that the essential property is that the technology set be linearly

homogeneous in reproducible factors. This is summarized as follows:

Condition 1 (Linear Homogeneity)
a) F is concave and homogeneous of degree one in (k, z),
b) M is concave and homogeneous of degree one in (h, xz),
c) G is concave and homogeneous of degree one in (h, xh).

These restrictions effectively imply that the choice set in this version of (1) is
linearly homogeneous in the initial stocks. Further, since preferences are homothetic,
holding fixed the non-reproducible choice variables (hours worked in our application)
it follows that knowledge of the current shock and the current human to physical
capital ratio (the two relevant pseudo-state variables) is sufficient to determine the
optimal choices of hours worked and next period’s human to physical capital ratio.
More formally, let {et} be the entire state/date contingent plan for the repro-

ducible factors. The plan {et, nt} is feasible from initial state e0 = (h0, k0), for a
given s0, if and only if {λet, nt} is feasible from the initial state λe0 = (λk0, λh0)
(λ > 0). Moreover, utility (i.e., the entire expected discounted sum) realized from
{λet, nt} is λ1−σ times the utility of {et, nt}. Formally, consider the maximization
problem:

max
e,n

U (e, n) , (2)

subject to,
(e, n) ∈ Γ(h0, k0, s0),

where as noted, (e, n) is interpreted as the entire path of the endogenous variables
and vector of labor supplies, and U (·) is the resulting expected discounted sum of
utilities. Let V (h0, k0, s0) denote the maximized value in this problem (assuming that
it exists) and let (e∗(h0, k0, s0), n∗(h0, k0, s0)) denote the optimal plan. We obtain the
following result.

Proposition 2 Assume that the utility function in (2) is homogeneous of degree
(1− σ) in e (holding n fixed) and that the feasible set, Γ, is linearly homogeneous in
(h, k) (holding n and s fixed) and that a solution exists for all (h, k, s). Then, the
value function, V (·), for the problem (2) satisfies V (λk, λh, s) = λ1−σV (k, h, s), for
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all λ > 0. Moreover, the optimal plans are homogeneous of degree one in e and zero
in n: (e∗(λk, λh, s), n∗(λk, λh, s)) = (λe∗(k, h, s), n∗(k, h, s)).

Proof. See Appendix A.

From the point of view of numerical approximation, this result implies that it
is possible to estimate the optimal decision rules for c/k and xj/k, j = h, k, z, as
functions of the bounded variable h/k, and then calculate:

k0 =
h
1− δk +

xk
k

i
k,

h0 =
·
1− δh +G

µ
xh
k
,
h

k
, nh

¶¸
h,

to determine h0/k0. Thus, in this case the Euler equations corresponding to (2) are
solved by functions that depend on the stationary variables, h/k and s only.
Proposition 2 applies to any planning problem that has the required linearity and

homogeneity properties. These include, for example, models with multiple sectors
or preferences that depend on the state (e.g., human capital determining effective
leisure). A separate, but related question is under what conditions equilibrium allo-
cations can be represented as solutions to planner’s problems of the type described
in (1). This class includes convex endogenous growth models with no external ef-
fects and the same class of models with proportional income taxes (see Jones and
Manuelli, 1990), among others. The proposition does not apply to planner’s prob-
lems in which the technology displays increasing or decreasing returns to scale in
reproducible factors (see Romer, 1986, for the former; and Brock and Mirman, 1972,
and the real business cycle applications for the latter), or ones that have distortions
with no planning representations (e.g., a model with different tax rates on capital
and labor income).
Not surprisingly, analytic characterizations of the solutions to stochastic endoge-

nous growth models such as the one outlined above are hard to come by. However,
for certain specifications, our model reduces to models often used to study optimal
savings with uncertain interest rates. In particular, if the shocks are i.i.d., depreci-
ation is full, labor is inelastically supplied (or unproductive) and there is only one
capital stock (either h or k) the model reduces to those studied by Phelps (1962),
Levhari and Srinivasan (1969), Rothschild and Stiglitz (1971) and is similar to that
analyzed in Leland (1974). In those papers, it is shown that increasing the volatility
of the interest rate shocks can either increase or decrease savings rates, giving rise
to the same effect on the associated growth rate of wealth. The key factor in those
results is the curvature of the utility function. If utility is more concave than the log
case, an increase in shock volatility increases the savings rate and the average rate of
growth of wealth. If it is less concave than the log, the opposite occurs.6

6Leland studies a finite horizon model and allows for partial depreciation and autocorrelated
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Our model is more complex than those in that literature since it is a general equi-
librium model with elastic labor supply, partial depreciation, and serially correlated
shocks. However, in certain cases a generalization of that result does hold.7

Proposition 3 Assume there is full depreciation of both k and h and that the shocks
are i.i.d.. Mean preserving spreads on the distribution of the shocks increase labor
supply, savings rates and average growth rates if σ > 1, and decrease them if σ < 1.
There is no change if σ = 1.

Proof. See Appendix A for a more formal statement and proof of this result.

Thus, in principle, increased uncertainty could either increase or decrease average
growth rates. As we will see in the calculations below, this will no longer hold if
depreciation is only partial and shocks are positively autocorrelated.

3 The Quantitative Effects of Uncertainty

In this section we use numerical methods to analyze the quantitative effects of vari-
ability in fundamentals upon the distribution of growth rates.

3.1 Model Specification and Calibration

We study a special case of the model of Section 2. In particular, we consider the
following specification:

nh = xz = 0, nz = n,

v(c) = cψ(1−σ),
F (k, z, s) = sAkαz1−α,

G(h, xh) = xh,

M(n, h) = nh,

st = exp[ζt −
σ2ε

2(1− ρ2)
],

ζt+1 = ρζt + εt+1,

with ε’s i.i.d., normal with mean zero and variance σ2ε. The specification is relatively
standard. Our assumption that only xht enters in the production of new human
capital amounts to an aggregation assumption — namely that the technology used

shocks. He shows that mean preserving spreads to shocks increase (decrease) consumption’s share
in output when preferences show more (less) curvature than log utility. This is only directly related
to mean output growth rates under the additional assumption that the shocks are i.i.d., however.

7Eaton (1981) was the first to apply these ideas to growth models. A two technology version is
in Obstfeld (1994).
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to produce human capital is identical to that in the final goods sector.8 Finally,
we assume that δk = δh. This assumption simplifies the solution since it implies a
constant physical-to-human capital ratio (for details see Appendix A).9

To calibrate the model, we choose our base case to match observations for the
postwar US economy, and adjust the parameters of the shock process to determine
the relationship between volatility and mean growth. In particular, we assume that
capital’s share, α, is given by 0.36, and hold β fixed at 0.95, so that the length of
a period is taken to be one year. We set the common depreciation rate of human
and physical capital to δ = 0.075. This was chosen as an intermediate value, greater
than those estimated for the depreciation of human capital (usually in the 1% to 4%
range), but smaller than that of physical capital. A detailed discussion is provided
in Jones, Manuelli and Siu (2005), JMS hereafter. For this equal depreciation case,
it is straightforward to construct a time series for the unobserved shocks using the
approach and data of JMS (annual US observations for 1959-2000). Doing so, we pin
down the base case parameter values governing the shock process to be ρ = 0.95 and
σε = 0.011. Labor supply in the non-stochastic steady state is set at nss = 0.17 (see
Jones, Manuelli and Rossi, 1993).10 The value for the non-stochastic growth rate is
set to γss = 2%; this is very close to the mean growth rate of 1.8% for the US data of
JMS. It also corresponds well with the cross-country mean value of 2.0% taken from
the Penn World Table, version 6.1, PWT hereafter (see Summers and Heston, 1991).
In analyzing this data, we follow the standard practice of excluding countries with
populations of under 1 million (in 1980), and also omit countries with fewer than 15
observations. This leaves 104 countries in our sample.
These last two restrictions (nss = 0.17 and γss = 2%) still leave one degree of

freedom in the selection of preference and technology parameters, σ, ψ, and A. To
solve this indeterminacy, we choose σ (the coefficient of risk aversion) to match the
standard deviation of output growth found in the US data, σ(γy) = 1.92%. As we
document below, there is a strong monotonic relationship between the coefficient of
risk aversion and the volatility of output growth, so proceeding in this manner allows
us to pin down σ = 1.07, ψ = 8.505 and A = 0.897.
This value of σ(γy) = 1.92% in the US data is low by international standards. So

naturally, one of the primary focuses of the experiments we consider is to increase σε
so that the resulting growth rate volatility is more in line with that found in cross-
country data. Thus, we ask: Does changing the parameters of the stochastic process

8Of course, human capital investment is produced using labor and both physical and human
capital through the production function F (·).

9This assumption obviously carries quantitative effects as well. For example, it implies that
the fraction of xh in output is quite large. Moving to more realistic versions of the model with
δh < δk fixes this, while having no effects on the properties studied in this paper. For example, the
magnitude of the changes in average growth coming from increased uncertainty is not affected by
this simplification. See Jones, Manuelli and Siu (2005).
10In earlier versions of the paper, we also studied calibrations with nss = 0.3. This had only minor

effects, and hence, the results are not included here.
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in such a way as to increase σ(γy) to levels representative of countries in the PWT
have a substantial impact on mean output growth, E(γy)?
Though our choice of base case parameters is motivated by the desire to match

observations, the principal aim of the paper is to understand how differences in the
variability of fundamentals affects the distribution of growth rates more generally.
Thus, we study alternative parameter values to better understand this relationship.
In our specification, there are two key parameters that influence the volatility of the
shock process: σε and ρ. Below, we study the effects on mean output growth of
changes in both of these sources of uncertainty. In addition, our theoretical results
indicate that some parameters — notably, σ — are important determinants of the
transmission mechanism of exogenous shocks; hence, we explore the effects of varying
this preference parameter as well. Finally, since we want to explore the possibility
that these effects are non-linear, we study the effects of alternative calibrated non-
stochastic growth rates.
In summary, we consider the following experiments:

1. we vary the standard deviation of the innovation, σε, holding ρ and all other
parameters fixed to match the interquartile (i.e., 25% to 75%) range of σ(γy)
found in the PWT data.

2. we vary the persistence of the shock, ρ, from 0.8 to 0.99, holding σε and all
other parameters fixed.

3. we vary the coefficient of risk aversion, σ, from 0.95 to 3.0.

4. we vary the calibrated growth rate, γss, from 0% to 4% per year.

Note that experiments 3 and 4 require simultaneous adjustments of ψ and A to
maintain the same first moments as the base case calibration.
To solve the model, we compute the optimal decision rules after we discretize

the state space. We then draw a realization of {st} of size 20,000, and compute the
moments using this realization. In those cases in which the stochastic process {st} is
not changed, we used the same realization to facilitate comparisons.

3.2 Shock Volatility and Growth Rates

For the linear, stochastic, Markov process {st}, the standard deviation of the shocks
is given by σs = σε/(1 − ρ2)1/2. Thus, σs depends on both the standard deviation
of the innovation, σε, and the autocorrelation coefficient, ρ. In this section we study
the effects of these two components of shock volatility. We find that changes in σε
(holding ρ constant) have a substantial impact on mean growth, while changes in ρ
(holding σε constant) do not.
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Case σ ρ σε σs E(γy) σ(γy) ρ(γy)

1 (base) 1.07 0.95 0.011 0.035 2.024 1.195 0.143
2 1.07 0.95 0.020 0.064 2.072 3.485 0.143
3 1.07 0.95 0.026 0.083 2.117 4.537 0.142
4 1.07 0.95 0.030 0.096 2.154 5.241 0.142
5 1.07 0.95 0.038 0.122 2.242 6.656 0.141
6 1.07 0.95 0.040 0.128 2.267 7.011 0.140
7 1.07 0.95 0.043 0.138 2.308 7.546 0.140

PWT mean - - - - 2.01 5.33 0.138
PWT median - - - - 2.11 4.51 0.143
PWT quartile 1 - - - - 0.93 3.35 -0.012
PWT quartile 3 - - - - 3.04 6.73 0.290

Table 1: The effect of σε on growth rates. Note: The column labeled E
¡
γy
¢
gives

the average growth rate, σ(γy) the standard deviation of the growth rate, and ρ(γy)
the autocorrelation of the growth rate. The rows correspond to model simulations
with parameter values listed in columns 2 through 5, as well as the Penn World Table
(PWT) data.

3.2.1 Innovation Volatility and its Effects on the Distribution of Growth
Rates

Our first set of experiments study changes in σε holding ρ fixed at ρ = 0.95. In the
context of the theory developed in Section 2, an increase in σε corresponds to an
increase in risk. We vary σε so that the range for the standard deviation of output
growth produced in the model covers the corresponding interquartile range in the
cross-country data. In our PWT data sample, the interquartile range is 3.35% to
6.73% (see the last two rows of Table 1). Hence, this corresponds approximately
with Cases 2 through 5 in Table 1 below. We report the values of the average
growth rate, E(γy), the standard deviation of the growth rate, σ(γy), and the first
order autocorrelation coefficient of the growth rate, ρ(γy), in the simulated data.
As a reference point, it follows that if we shut down uncertainty (i.e., if σε = 0),
E(γy) = γss, the non-stochastic balanced growth rate of 2% per year. Hence, any
difference between the simulated values of E(γy) and 2% is due to variability in the
shocks.
We also present comparable statistics from the PWT measure of GDP per capita.

Thus, the PWT mean of 2.01 signifies that the cross-country average of annual real
output per worker growth is 2.01%, while the middle 50% of countries had average
growth rates between 0.93% and 3.04%.
As can be seen in the table, increasing the innovation volatility causes mean

growth rates to rise. At the low end (Case 2), E(γy) = 2.072, and increases to
E(γy) = 2.308 in Case 7, an increase in mean growth of about one fourth of one
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percent per year. Although this is substantial, this range in values for E(γy) covers
only about 9% of the range in values seen in our PWT data sample. Recall that our
sample is restricted by excluding countries with population under than 1 million. If
we include these, increasing our sample to 126 countries, the interquartile range for
σ(γy) is 3.65 to 7.51. To match this range for output growth volatility, σε must vary
between 0.021 and 0.043. This corresponds to Cases 2 through 7. The interquartile
range for mean growth rates in the enlarged sample is 1.03 to 3.06. Hence, the model
generates about 11% of the range found in the data.
Moreover, there is difficulty for this experiment in matching the low average

growth performances found in the PWT. Note that all values of E(γy) exceed 2%
in the table. Thus, even though preferences are very close to log utility, changes in
the distribution of the shock process tend to increase average growth rates. This
is because, with less than full depreciation and positively autocorrelated shocks, in-
creases in volatility increase average growth even when σ ≤ 1. This will become clear
in Section 4.
Summarizing:

• There is a monotonically increasing relationship between mean growth rates
and σε.

• The impact is not linear, with larger effects for high levels of uncertainty. At
the high end, when the standard deviation of the innovation, σε ≈ 0.04, the
average growth rate is about 2.3%, an increase of 0.3% over the non-stochastic
benchmark of 2% per year.

• Changes in σs due to changes in σε have almost linear effects on the standard
deviation of the growth rate, and very small effects on the autocorrelation of
growth rates. Further evidence of this is displayed in Table 5 in the appendix.

• There is significant autocorrelation in growth rates, ρ(γy) ≈ 0.14, independent
of the size of σε. This is in contrast to the typical RBC model where ρ(γy) ≈ 0,
independent of the parameterization.11

3.2.2 Shock Autocorrelation and its Effects

For our next set of experiments, we hold σε constant, and change σs by varying the
correlation coefficient, ρ. The major findings are presented in Table 2.
Note that increasing ρ (holding σε constant) has a monotonically increasing ef-

fect on the average growth rate. However, this effect is quantitatively very small.
Hence, increases in the shock volatility, σs, that are due to increases in ρ have smaller

11See, for example, Cogley and Nason (1995). For further analysis of this difference between
endogenous and exogenous growth models, see JMS. In particular, we find that by dropping the
simplifying assumption that δh = δk, we obtain values of ρ

¡
γy
¢
closer to that of the US data. See

also the following subsection and Section 4.
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Case σ ρ σε σs E(γy) σ(γy) ρ(γy)

1 1.07 0.70 0.011 0.015 2.019 1.956 -0.124
2 1.07 0.80 0.011 0.018 2.019 1.906 -0.058
3 1.07 0.90 0.011 0.025 2.020 1.879 0.037

4 (base) 1.07 0.95 0.011 0.035 2.024 1.915 0.143
5 1.07 0.99 0.011 0.078 2.066 2.439 0.519

PWT mean - - - - 2.01 5.33 0.138
PWT median - - - - 2.11 4.51 0.143
PWT quartile 1 - - - - 0.93 3.35 -0.012
PWT quartile 3 - - - - 3.04 6.73 0.290

Table 2: The effect of ρ on growth rates. Note: The column labeled E
¡
γy
¢
gives

the average growth rate, σ(γy) the standard deviation of the growth rate, and ρ(γy)
the autocorrelation of the growth rate. The rows correspond to model simulations
with parameter values listed in columns 2 through 5, as well as the Penn World Table
(PWT) data.

impacts on E(γy) than those that are due to increases in σε. Increases in ρ have a
U-shaped effect on the standard deviation of growth rates, but again, this effect is
quantitatively small. In contrast, there is a strong positive relationship between ρ the
serial correlation of the growth rate, ρ(γy). Moreover, at high levels of ρ, this effect is
quite substantial. Indeed, to generate positively autocorrelated output growth rates,
ρ must be sufficiently large.

4 Sensitivity Analysis and Other Properties of the
Model

In this section, we present sensitivity analyses of the results in the previous section.
We also briefly discuss some of the cyclical properties of the class of models studied.

4.1 Sensitivity Analysis

Here we study the sensitivity of our basic results to two key assumptions: the degree
of risk aversion in preferences and the level of the calibrated non-stochastic growth
rate. We find that the impacts of volatility on mean growth are highly sensitive to
the degree of risk aversion but not at all to the calibrated mean growth rate.
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Case σ ρ σε σs E(γy) σ(γy) ρ(γy)

1 0.90 0.95 0.011 0.035 2.073 2.822 0.180
2 1.00 0.95 0.011 0.035 2.033 2.146 0.155

3 (base) 1.07 0.95 0.011 0.035 2.024 1.915 0.143
4 1.50 0.95 0.011 0.035 2.017 1.423 0.106
5 2.00 0.95 0.011 0.035 2.019 1.272 0.088
6 2.50 0.95 0.011 0.035 2.023 1.206 0.078
7 3.00 0.95 0.011 0.035 2.027 1.170 0.071
8 0.90 0.95 0.026 0.083 2.376 6.705 0.182
9 1.00 0.95 0.026 0.083 2.159 5.087 0.154
10 1.50 0.95 0.026 0.083 2.079 3.369 0.106
11 2.00 0.95 0.026 0.083 2.095 3.010 0.088
12 2.50 0.95 0.026 0.083 2.117 2.854 0.078
13 3.00 0.95 0.026 0.083 2.139 2.769 0.072

PWT mean - - - - 2.01 5.33 0.138
PWT median - - - - 2.11 4.51 0.143
PWT quartile 1 - - - - 0.93 3.35 -0.012
PWT quartile 3 - - - - 3.04 6.73 0.290

Table 3: The effect of σ on growth rates. Note: The column labeled E
¡
γy
¢
gives the

average growth rate, σ(γy) the standard deviation of the growth rate, and ρ(γy) the
autocorrelation of the growth rate. The rows correspond to model simulations with
parameter values listed in columns 2 through 5, as well as the values taken from the
Penn World Table (PWT) dataset.

4.1.1 Uncertainty, Risk Aversion and Growth Rates

Table 3 presents results for several specifications in which we hold γss, ρ and σε fixed
at their base case values, and adjust σ from 0.90 to 3.0.12 Again, because the non-
stochastic version of all cases is calibrated to grow at 2%, any difference between the
simulated values of E(γy) and 2% is due to fundamental uncertainty. In particular,
since σs = σε/(1 − ρ2)1/2, we are increasing the standard deviation of the shocks
from 0% in the non-stochastic case to 3.5% in the simulations when σε = 0.011, and
to 8.3% when σε = 0.026. Note that when σε = 0.026 and σ is close to unity, the
standard deviation of output growth in the simulations is approximately the mean
value of σ(γy) in the PWT data (see also Case 3 of Table 1). As such, it provides a
useful benchmark in addition to the baseline US calibration of σε = 0.011.
Our major findings are as follows:

12Note that if σ < 1, concavity of the utility function puts restrictions on what ψ can be. For
each σ, we adjust A and ψ to keep the growth rate for the non-stochastic version of the model fixed
at 2% and labor supply equal to 0.17. Thus, we could equally well index the cases by either A or ψ.
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• The effect of a given amount of uncertainty upon the average growth rate varies
with the curvature parameter σ; moreover, it is not a monotone function of
curvature. Figure 1 shows that the largest impact of uncertainty occurs for
values below log utility. For σ > 1.5, increases in risk aversion increase E(γy).
This is true for both low and high values of σε (σε = 0.011 and σε = 0.026).
Overall, the relationship between σ and E(γy) is U-shaped. The range of values
of E

¡
γy
¢
is increasing in σε.

• Our base case corresponds to Case 3. For this case, the impact of increased
uncertainty upon mean growth is small, and approximately equal to 0.025%
per year. The largest impact of uncertainty occurs for preferences that are less
concave than the log (σ < 1), as in case 1. But even in this case, the change in
mean growth is only 0.07% per year. Thus, for σε = 0.011 and ρ = 0.95, there
is virtually no impact on mean growth of uncertainty, for reasonable values of
σ. The effect is larger for σε = 0.026. Here, even in the log case, the increase
in the mean growth rate (relative to certainty) is about 0.15% per year.

• Again, the average simulated growth rate exceeds the calibrated value of 2%
for each value of σ. This is in contrast to the analytical result of Proposition 2,
when shocks are i.i.d. (ρ = 0) and depreciation is full (δ = 1).

• As expected, increases in the curvature of utility, σ, result in decreases in the
standard deviation of growth rates, σ(γy). This relationship is both monotone
and quantitatively large. Thus, for coefficients of relative risk aversion exceeding
1.5, we find that increases in risk aversion increase mean growth and decrease
its variability.

• The smaller the curvature of the utility function the higher the autocorrela-
tion coefficient. More curvature makes investment respond less to the current
shock, and this in turn implies that the growth rate is more negatively serially
correlated, although the values are not significantly different from zero. At the
other extreme, if the source of differences across economies is the curvature pa-
rameter, our model predicts a positive relationship between mean growth and
the autocorrelation of growth rates if σ is less than 1.5. This is consistent with
Fatas’ (1999) finding.

*********Figure 1 goes about here.********

4.1.2 Non-Linearities and the Effect of Volatility on Mean Growth

Is it possible that uncertainty has a different effect for “high” growth and “low” growth
countries?13 To explore this possibility we adjust γss, the calibrated non-stochastic

13In the context of this paper the differences in growth rates could be due to distortionary taxes
and/or differences in technology.
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growth rate. Relative to our base case, we considered values between 0% and 4%. Our
numerical results (see Table 6 in the appendix) show that γss has virtually no impact
upon either the mean or standard deviation of output growth. That is, E(γy)− γss
is approximately independent of γss, and σ(γy) while depending on σε and ρ does
not depend on γss. The value of γss does affect the autocorrelation of the growth
rate, however. For example, ρ(γy) = 0.104 when γss = 0.0 and ρ(γy) = 0.188 when
γss = 4.0%. See Table 6 for details.

4.2 Volatility and Cyclical Behavior

Though our primary interest in this paper is to begin the exploration of the effects
of uncertainty upon growth, the model delivers implications for cyclical variables.
However, unlike more standard real business cycle models, we are not free to detrend
the data. Our theoretical model implies that the appropriate detrending procedure
is to consider the ratio of each variable (except for hours worked) to output. In the
case of hours, the model implies that it is a stationary variable.
Before we confront the model’s predictions with the data, it is necessary to match

the notion of investment in human capital with observable quantities. In the model,
the variable xh corresponds to investment and is conceptually different from con-
sumption. What is the counterpart in the data? One reason why this is a difficult
question to answer is that it is not clear what activities constitute human capital in-
vestment. Most economists would agree that it includes education and training, but
it is also likely to encompass other activities like health care, investments in mobility
and the like. Even for those items in which there is consensus (e.g., education and
training) there are no good measures. To say the least, training is poorly measured
and, depending on its nature, may not even be part of measured output. In the case
of education, and some forms of training, gross investments appear in consumption.14

In this paper we assume that all of xh is part of measured output, and we experiment
with two notions of consumption: the “narrow” view that consumption in the data
corresponds to consumption in the model, and the “broad” view that consumption
in the data is the sum of consumption and investment in human capital, c+ xh.
In Table 4 we report the results for cyclical variables for our base case and various

levels of curvature. There are several interesting features:

• As can be seen, the amount of curvature in utility has only a small effect
upon the mean of the consumption-output ratio, both in its narrow version,
c/y, and its broad version, (c + xh)/y. However, the choice of narrow versus
broad consumption has a substantial effect on the mean; the difference between

14Of course, it is possible to net out educational expenditures, both private and public from the
data. However, other components like health care are much more difficult to allocate since not all
expenditures qualify as investments in productive human capital.
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Case σ ρ σε E(c/y) E [(c+ xh)/y] σ(c/y) σ [(c+ xh)/y] σ(n)/E(n)

1 0.90 0.95 0.011 0.354 0.767 0.033 0.012 0.078
2 1.00 0.95 0.011 0.362 0.770 0.021 0.007 0.047

3 (base) 1.07 0.95 0.011 0.368 0.773 0.016 0.006 0.036
4 1.50 0.95 0.011 0.404 0.785 0.007 0.002 0.014
5 2.00 0.95 0.011 0.442 0.799 0.004 0.001 0.007
6 2.50 0.95 0.011 0.475 0.811 0.002 0.001 0.004
7 3.00 0.95 0.011 0.505 0.822 0.001 0.000 0.002
8 0.90 0.95 0.026 0.362 0.770 0.082 0.030 0.184
9 1.00 0.95 0.026 0.367 0.772 0.050 0.018 0.111
10 1.50 0.95 0.026 0.405 0.786 0.016 0.006 0.032
11 2.00 0.95 0.026 0.441 0.799 0.008 0.003 0.016
12 2.50 0.95 0.026 0.473 0.810 0.005 0.002 0.009
13 3.00 0.95 0.026 0.502 0.821 0.003 0.001 0.005

Table 4: The effect of σ on cyclical moments. Note: Columns 5 and 6 give, respec-
tively, the mean of the “narrow”and “broad”consumption to output ratios; columns
7 and 8 give the standard deviation of these same objects; column 9 gives the coef-
ficient of variation of hours worked. The rows correspond to model simulations with
parameter values listed in columns 2 through 4.

columns 5 and 6 indicates that human capital investment comprises roughly 35
percent of output.15

• The model has very sharp implications for the effect of curvature on volatility.
Increasing the degree of relative risk aversion decreases the standard deviation
of the consumption-output ratio drastically using either measure. The standard
deviation falls by over a factor of 25 when moving from σ = 0.90 to σ = 3.0.16

For reference, the standard deviation of the measured consumption-output ratio
in the US data is around 0.014. If we wanted the broad measure in the model
to match this value for σε = 0.011, the best estimate of σ is near 0.9.

• The model implies that the amount of curvature in the utility function has sharp
implications for the coefficient of variation of hours worked. This is shown in the
last column of Table 4. As the coefficient of relative risk aversion moves from

15The size of this depends critically on the calibrated magnitude of δh. For lower and more realistic
values, this is substantially reduced. See JMS.
16Given our definitions, it follows that σ((c + xh)/y) = ασ(c/y). Thus, “broad” consumption is

less variable than the “narrow” measure because the former includes xh which is an investment good
and, as such, its ratio to output increases in good times and decreases in bad times. Curvature in
the utility function implies that the c/y ratio decreases in good times and increases in bad times.
Thus, roughly, c/y and xh/y are negatively correlated, and their sum exhibits lower variability than
either of the components.

16



0.90 to 3.0, the predicted coefficient of variation falls by a factor of almost 40 for
the US calibrated shock parameters. For comparative purposes, the analogous
value of the coefficient of variation of hours worked in the U.S. is 0.0481 (again,
see JMS for details on the US data). Thus, in this case the “best” value of σ is
something close to 1.0, or log utility for σε = 0.011.

In the cases presented to this point, hours worked, n(s), is strictly increasing as
a function of the shock. However, it is possible to modify the model a obtain a non-
monotone n(s) function. Our results (not presented here) suggest that cases in which
the mean growth rate is small (say less than 1.4%) and the serial correlation of the
shock is large (exceeding 0.95) are consistent with an increasing response of hours
worked to productivity shocks when the shock is small, and a decreasing response
when the shock is large. Whether that asymmetric response can account for puzzles
like the productivity slowdown and the behavior of hours worked over the cycle is yet
to be determined.

5 Conclusion

For the class of convex models that we study, changes in the variability of funda-
mentals result in changes in average growth rates. Theoretically, we show that it is
possible for increased uncertainty to decrease average growth. However, this requires
parameter values that lie outside the usual range — high intertemporal substitution,
zero correlation of shocks and very short lived capital. In our calibrated models, for
all levels of risk aversion, eliminating cycles completely would result in lower growth
rates. The size of this effect is as large as 0.3% per year, depending on the para-
meterization. Of course, it is likely that this only reinforces Lucas’ conclusions that
the payoff from eliminating cycles is not too large. For reasonable specification of
exogenous uncertainty, variability in fundamentals can explain only a small part of
the difference in cross country growth rates.
We also identify changes in the variability of the innovations to fundamental shocks

as having a larger impact upon average growth rates than changes in the serial corre-
lation of shocks. Finally, uncertainty in fundamentals has a large impact on the pre-
dicted standard deviation of cyclical variables (e.g., the consumption-output ratio),
and the size of the impact is very sensitive to the degree of curvature of preferences.
Our finding that increased uncertainty increases average growth seems at odds

with the empirical work of Ramey and Ramey (1995). However, since it is possible
to interpret the shocks in our model as shocks to tax rates, our results imply that
— holding average tax rates fixed — increases in the variance of tax rates increases
average growth. Of course, if growth inhibiting policies (on average) are associated
with volatile policies, the model could deliver a negative correlation between volatility
and average growth. However, in this case, it is not the high volatility that is causing
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growth to be low, but the high average tax rates.17

Our preliminary conclusion is that, even though there is a trade-off between fluc-
tuations and growth, bringing stochastic elements to the class of endogenous growth
models that we studied does not radically improve its ability to explain “growth
facts.” However, it delivers very sharp implications about the effect of curvature in
preferences on the variability of cyclical variables and, hence, it can use data to pin
down preference parameters. The version of the model that we studied is too simple
to proceed with this program. One manifestation of this is the difficulty in matching
growth and cyclical observations simultaneously.

A Appendix

A.1 Proof of Proposition 2:

Fix an arbitrary initial state, (h, k, s) and let (e∗(h, k, s), n∗(h, k, s)) denote the so-
lution to problem (2) from this state. Now consider the same problem when the
initial state is (λk, λh, s). It follows immediately from the linear homogeneity of Γ
that (λe∗(h, k, s), n∗(h, k, s)) is feasible for the problem with initial state (λk, λh, s).
Contrary to the conclusion of the proposition, assume that (λe∗(h, k, s), n∗(h, k, s)) is
not optimal. Then, take some alternative plan, (e, n) that is feasible and gives higher
utility:

U(e, n) > U(λe∗(h, k, s), n∗(h, k, s)). (3)

Since (e, n) is feasible given initial state (λk, λh, s), it follows from the the linear
homogeneity of Γ that (e/λ, n) is feasible when the initial state is (λk/λ, λh/λ, s) =
(h, k, s). Moreover, the utility of (e/λ, n) is given by U(e/λ, n) = U(e, n)/λ1−σ. Using
this and (3) we have that:

U(e/λ, n) = U(e, n)/λ1−σ > U(λe∗, n∗)/λ1−σ = λ1−σU(e∗, n∗)/λ1−σ = U(e∗, n∗).

That is, (e/λ, n) is feasible when the initial state is (h, k, s) and it gives higher utility
than (e∗, n∗), a contradiction.
That the value function is homogeneous of degree (1− σ) in e (holding n fixed)

follows immediately from the fact that the policy rules have the property that they
do.
17In their work, Ramey and Ramey (1995) find that policy variability is associated with residual

uncertainty. Our findings do not depend on the shock affecting all sectors. The model in Obstfeld
(1994) can be used to show that for risk aversion levels greater than the log there is an “approx-
imate” positive relationship between variability and growth. The reason why this relationship is
approximate is that, in the model, the relationship between variability of output and mean output
is not a function but a correspondence.
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A.2 Mean Preserving Spreads with i.i.d. shocks and the
Proof of Proposition 3:

Here we consider the case where shocks are i.i.d. and there is full depreciation of both
capital stocks ( δ = 1). We assume that the distribution of the shocks is given by the
measure µθ, where θ is an index of riskiness. More precisely, θ

0 > θ means that µθ0 is
dominated by µθ in the sense of second order stochastic dominance. Thus, a higher
θ corresponds to higher volatility of the innovation to the technology shock.
To guarantee that an equilibrium exists, it must be the case that the economy is

not too productive (for a discussion, see Jones and Manuelli, 1990). For this example,
the relevant condition — which we assume holds — is:

[β(A(1− α)1−ααα)1−σ]1/σ
·Z

S

(1 + ε)1−σµθdε
¸1/σ

< 1.

To ensure an interior solution (in terms of n), we need stronger conditions, namely:

[β(A(1− α)1−ααα)1−σ]1/σ
·Z

S

(1 + ε)1−σµθdε
¸1/σ

< (4)

1− [(σ − 1)(1− α)v(1)/v0(1)],

and,
if 0 < σ < 1, lim

n→0
1− [(σ − 1)(1− α)v(n)/nv0(n)] < 0. (5)

These two conditions guarantee that the equilibrium labor supply is strictly between
0 and 1. We assume that both hold. From now on, we will describe the conditions
for the case σ 6= 1.
The equilibrium decision rules display three properties: saving is a constant frac-

tion, ϕ of income; labor supply is constant; and the ex-post rates of return to physical
and human capital are equal. First, if rates of return to the two forms of capital are
equal (for each realization of s) then the stocks of human and physical capital must
satisfy, ht = [(1− α)/α] kt. Given this, the saving rate, ϕ, and the level of employ-
ment, n, must solve:

ϕ = 1− [(σ − 1)(1− α)v(n)/nv0(n)], (6)

and,
ϕ = Dŝ1/σn(1−α)(1−σ)/σ, (7)

where D =
£
β(A∗)(1−σ)

¤1/σ
, A∗ = A(1 − α)1−ααα, and ŝ =

R
S
(1 + ε)1−σµθ(dε).

Basically, (6) guarantees that at the conjectured equilibrium, the marginal rate of
substitution between consumption and leisure is equal to the real wage, while (7) is
the Euler equation that ensures equality between the intertemporal marginal rate of
substitution in consumption and the rate of return on capital. Let the solution to (6)
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and (7) be a pair (ϕ, n), which depends on the parameters (σ, µθ). An equilibrium is
fully characterized by this pair. The growth rate associated with this equilibrium is
given by:

yt+1/yt = st+1A
∗n1−αϕ = st+1γ,

where, since E(st+1) = 1, γ is the mean growth rate.
Then, we have the following formal statement of Proposition 3:

Proposition 3: Assume that conditions (4) and (5) hold. Then an equilibrium of the
conjectured form exists and is unique. Moreover, if θ0 > θ, the equilibrium satisfies:

1. The effects of increases in risk:

(a) (ϕ, n, γ) increase with θ if σ > 1,

(b) (ϕ, n, γ) decrease with θ if 0 < σ < 1,

(c) (ϕ, n, γ) are independent of θ if σ = 1.

2. Amplification: The ratio of the standard deviation of the growth rate to the
standard deviation of the technology shock, σγ/σs:

(a) is greater than one (σγ/σs > 1) if the growth rate is positive (γ > 1),

(b) increases with θ if σ > 1,

(c) decreases with θ if 0 < σ < 1,

(d) is independent of θ if σ = 1.

Proof. We first consider the case σ 6= 1. The first order conditions for the
problem are:

ctv
0(nt) = (σ − 1)(1− α)ytv(nt)/nt, (8)

c−σt v(nt) = β

Z
S

£
c−σt+1v(nt+1)

¤ £
Aαkα−1t+1 h

1−α
t+1 n

1−α
t+1 (1 + εt+1)

¤
µθ(dε), (9)

c−σt v(nt) = β

Z
S

£
c−σt+1v(nt+1)

¤ £
Aαkαt+1h

−α
t+1n

1−α
t+1 (1 + εt+1)

¤
µθ(dε), (10)

and the feasibility constraints at equality. In order to find the solution to the planner’s
problem, we first hypothesize that (9) and (10) are satisfied by having the terms in
square brackets inside the integral operator equal in each state. Second, we conjecture
that consumption is a constant fraction of income. Finally, we guess that the fraction
of the time allocated to working is constant as well. These conjectures imply that
the solution must satisfy:

ht = [(1− α)/α] kt,

(1− ϕ)v0(n) = (σ − 1)(1− α)v(n)/n,

ϕσ = β(A∗)1−σn(1−α)(1−σ)
Z
S

(1 + ε)1−σµ(dε),
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where ϕ is the fraction of income, y, which is saved (and (1− ϕ) is consumed),
and A∗ is A(1 − α)1−ααα. The solution to equations (8) and (9) can be used to
construct an equilibrium by letting investment in physical capital, xk, be given by
αϕy, while xh is (1 − α)ϕy. To simplify notation, let D = [β(A∗)1−σ]1/σ, and let
ŝ =

R
S
(1 + ε)1−σdµθ(dε). Then, (8) and (9) imply that the equilibrium values of ϕ

and n solve:
ϕ = H(n) ≡ 1− [(σ − 1)(1− α)v(n)/(nv0(n))],

and
ϕ = G(n) ≡ Dŝ1/σn(1−α)(1−σ)/σ.

Note that the function G(n) is upward sloping if 0 < σ < 1, and downward
sloping if σ > 1. Moreover, increases in ŝ increase G(n). The properties of H(n)
depend on the function v (·). However, concavity of the utility function imposes some
restrictions, with the nature of these restrictions dependent on σ. It is straightforward
to verify that positive marginal utility of leisure and concavity imply that v0(n)/(1−
σ) and v00(n)/(1 − σ) must both be negative. In addition, concavity requires that
(σ/(σ − 1))v00(n)v(n) − (v0(n))2 > 0. To ensure that these conditions hold for all
values of σ, we will assume that v00(n)v(n) − (v0(n))2 > 0. These restrictions imply
that H(n) is an increasing function of n. Finally note that H(1) > G(1).
We first discuss existence and uniqueness for the two possible ranges of σ. Consider

the case σ > 1. It follows that:

lim
n→0

G(n) =∞, G(1) = Dŝ1/σ, and G0(n) < 0,

and
lim
n→0

H(n) <∞, H(1) > G(1), and H 0(n) > 0.

It follows that there is a unique intersection. An example is shown in Figure A.1.
Consider next the case 0 < σ < 1. In this case, we have:

lim
n→0

G(n) = 0, G(1) = Dŝ1/σ, and G0(n) > 0,

and
lim
n→0

H(n) < 0, H(1) > G(1), and H 0(n) > 0,

where the first inequality corresponds to (5). Here, both H(n) and G(n) are upward
sloping, and hence, establishing uniqueness requires a separate argument. It is pos-
sible to show (details available from the authors) that if ñ satisfies G(ñ) = H(ñ),
then H 0(ñ) > G0(ñ). Thus, the function H can intersect the function G only from
below. This, of course, suffices for uniqueness. Possible H(n) and G(n) functions are
displayed in Figure A.2.
***********Figures A.1 and A.2 go about here. *********
In both Figures, we use G∗ to denote the function G corresponding to a higher

value of ŝ1/σ. Thus, it follows that increases in ŝ1/σ increase both hours worked
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(the utilization rate of human capital), n, and the fraction of income saved, ϕ. It is
straightforward to calculate the growth rate of output. It is given by:

yt+1/yt ≡ γt+1 = st+1A
∗n1−aϕ = st+1γ.

Thus, the average growth rate, γ, is simply A∗n1−αϕ. It follows that growth rates are
increasing in ŝ.
Let ŝ(θ) be given by ŝ(θ) =

R
S
(1 + ε)(1−σ)µ(dε). Since the function (1 + ε)1−σ

is concave for 0 < σ < 1 and convex for σ > 1, it follows that if 0 < σ < 1,
ŝ(θ) is increasing in θ, and if σ > 1, ŝ(θ) is decreasing in θ. This, in turn, implies
that (ϕ, n, γ) are decreasing in θ when 0 < σ < 1, and increasing if σ > 1. From,
γt+1 = st+1γ, it follows that:

σγ = γσs,

where σs is the standard deviation of the shock, st. Thus:

σγ/σs = γ,

and our claims follow from the properties of γ.
Finally, consider the case σ = 1. The first order conditions are satisfied with

ϕ = β, and n as the unique solution to:

nv0(n) = (α− 1)/(1− β).

It is clear that, in this case, the key elements of the equilibrium are independent of
θ.

A.3 Derivation of the First Order Conditions for the Model
of Section 3

The Euler equations for an interior solution are given by:

uc(t) = Et{uc(t+ 1)[1− δ + Fk(t+ 1)]}, (11)

and
uc(t) = Et{uc(t+ 1)[1− δ + nt+1Fz(t+ 1)]}, (12)

where uc is the partial derivative of u (·) with respect to c and Fk and Fz are the
partial derivatives of F (·) with respect to capital and effective labor.
For the Cobb-Douglas form, (11) and (12) can be combined to yield:

Et{uc(t+ 1)[αF (t+ 1)/kt+1 − (1− α)F (t+ 1)/ht+1]} = 0.
It follows that in any interior equilibrium, we must have that ht/kt = (1− α)/α

for all t. This is an important property of the specification of a Cobb-Douglas pro-
duction function with equal depreciation rates: the human-physical capital ratio is
independent of the level of employment and the productivity shock.
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Given this, and setting A∗ = (1− α)1−ααα, it follows that:

ct = kt[stA
∗n1−αt ((1− nt)/nt)((1− α)/αψ)] ≡ ktg1(st, nt).

Using this, we obtain:

kt+1 = kt

·
stA

∗n1−αt

µ
1− 1− α

ψ

1− nt
nt

¶
+ 1− δ

¸
≡ ktg2(st, nt).

Finally, after substitution, the relevant Euler equation becomes:

[g1(st, nt)(1− nt)
ψ]−σ(1− nt)

ψ = β

Z
S

n£
g2(st, nt)g1(st+1, nt+1)(1− nt+1)

ψ
¤−σ×

(1− nt+1)
ψ
£
1− δ + st+1A

∗(nt+1)1−α
¤ª

P (st, st+1).

A solution to this equation is a function n∗ : S → [0, 1] with nt = n∗(st). Note that
given n∗ (·), the optimal solution to the planner’s problem is given by:

nt = n∗(st),

kt+1 = ktg2(st, n
∗(st)),

ht+1 = ((1− α)/α)ktg2(st, n
∗(st)),

ct = ktg1(st, n
∗(st)),

which correspond to the equations calculated in Section 3.
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Case σ ρ σε σs E(γy) σ(γy) ρ(γy)

1 0.90 0.95 0.011 0.035 2.073 2.822 0.180
2 1.00 0.95 0.011 0.035 2.033 2.146 0.155

3(US) 1.07 0.95 0.011 0.035 2.024 1.915 0.143
4 1.50 0.95 0.011 0.035 2.017 1.423 0.106
5 2.00 0.95 0.011 0.035 2.019 1.272 0.088
6 2.50 0.95 0.011 0.035 2.023 1.206 0.078
7 3.00 0.95 0.011 0.035 2.027 1.170 0.071
8 0.90 0.95 0.026 0.035 2.2376 6.705 0.182
9 1.00 0.95 0.026 0.035 2.159 5.087 0.154
10 1.50 0.95 0.026 0.035 2.079 3.369 0.106
11 2.00 0.95 0.026 0.035 2.095 3.010 0.088
12 2.50 0.95 0.026 0.035 2.117 2.854 0.078
13 3.00 0.95 0.026 0.035 2.139 2.769 0.072

PWT mean - - - - 2.01 5.33 0.138
PWT median - - - - 2.11 4.51 0.143
PWT quartile 1 - - - - 0.93 3.35 -0.012
PWT quartile 3 - - - - 3.04 6.73 0.290

Table 5: The effect of changing σ� and σ on growth. Note: The column labeled
E
¡
γy
¢
gives the average growth rate, σ(γy) the standard deviation of the growth

rate, and ρ(γy) the autocorrelation of the growth rate. The rows correspond to
model simulations with parameter values listed in columns 2 through 5, as well as
the Penn World Table (PWT) dataset.

A.4 Additional Simulation Results

24



Case γss ρ σε σs E(γy) σ(γy) ρ(γy)

1 1.00 0.95 0.011 0.035 0.024 1.902 0.104
2 1.00 0.95 0.019 0.061 0.066 3.290 0.104
3 1.00 0.95 0.038 0.122 0.249 6.618 0.102

4(US) 1.02 0.95 0.011 0.035 2.024 1.915 0.143
5 1.02 0.95 0.019 0.061 2.065 3.310 0.143
6 1.02 0.95 0.038 0.122 2.242 6.656 0.141
7 1.04 0.95 0.011 0.035 4.047 1.934 0.188
8 1.04 0.95 0.019 0.061 4.102 3.344 0.188
9 1.04 0.95 0.038 0.122 4.311 6.721 0.187

PWT mean - - - - 2.01 5.33 0.138
PWT median - - - - 2.11 4.51 0.143
PWT quartile 1 - - - - 0.93 3.35 -0.012
PWT quartile 3 - - - - 3.04 6.73 0.290

Table 6: The effect of changing γss, the callibrated, non-stochastic steady state growth
rate on the distribution of growth rates, σ = 1.07. Note: The column labeled E

¡
γy
¢

gives the average growth rate, σ(γy) the standard deviation of the growth rate, and
ρ(γy) the autocorrelation of the growth rate. The rows correspond to model simula-
tions with parameter values listed in columns 2 through 5, as well as the Penn World
Table (PWT) dataset.
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