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B Theoretical Additions

B.1 Illustration of equation (1)

Figure B.1: Comparative Statics with respect to U1
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B.2 The log utility case

Here we show that the utility function used in Lucas (2002), a special case of Razin and
Ben-Zion (1975)’s utility function using log utility, is also a special case of the Becker and
Barro (1988) and Barro and Becker (1989) utility function.1 Define ψ such that ψ ≡ η

1−σ ,
where ψ ≥ 1 under both, AI and AII. Then, we can rewrite the aggregate utility function in
equation (3) as:

(1) U0 =
∞X
t=0

βtg(Nt)u

∙
Ct

Nt

¸
=

∞X
t=0

βtN
ψ(1−σ)
t

c1−σt

1− σ
=

∞X
t=0

βt
(Nψ

t ct)
1−σ

1− σ

Next, consider the monotone transformation given by:

(2) Û0 =
∞X
t=0

βt
(Nψ

t ct)
1−σ − 1

1− σ

1For the AI parameter configuration with π = 0, proofs are also available in Lucas (2002) and Bar and
Leukhina (2007).
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Taking the limit as σ → 1 gives:

lim
σ→1

Û0 = lim
σ→1

∞X
t=0

βt
(Nψ

t ct)
1−σ − 1

1− σ
=

∞X
t=0

βt lim
σ→1

(Nψ
t ct)

1−σ − 1
1− σ

=
∞X
t=0

βt log(Nψ
t ct) =

∞X
t=0

βt(log ct + ψ logNt).

Recall that Nt = N0Π
t−1
k=0(π + πsnb,k) and we normalize N0 = 1. Thus:

∞X
t=0

βt logNt = β
∞X
t=0

βt log(π + πsnb,0) + β2
∞X
t=0

βt log(π + πsnb,1) + β3
∞X
t=0

βt log(π + πsnb,2) + ...

=
β

1− β
log(π + πsnb,0) +

β2

1− β
log(π + πsnb,1) +

β3

1− β
log(π + πsnb,2) + ...

=
β

1− β

∞X
t=0

βt log(π + πsnb,t)

Hence, we can rewrite the limit above as:

lim
σ→1

Û0 =
∞X
t=0

βt(log ct +
βψ

1− β
log(π + πsnb,t)).

Let Ũ0 ≡ limσ→1 Û0 and φ ≡ βψ
1−β
¡
= βη

(1−β)(1−σ)
¢
. Then

Ũt = log ct + φ log(π + πsnb,t) + βŨt+1

and for π = 0 and πs = 1
Ũt = log ct + φ log nt + βŨt+1

The utility function Ũ can then be interpreted as the period t household’s utility function
and is the one used in Lucas’s book.

Notice that since ψ ≥ 1, we need

φ(1− β) ≥ β

if we are working with the log case.

B.3 Altruism toward unborn children

This section concerns the utility of unborn children and altruism toward them. That is,
one interpretation of the fact that children that are not born do not enter the calculation of
time-t utility is that they are assigned U = 0. This interpretation is fine when σ < 1, but
causes difficulty when σ > 1. When utility is negative we can assume that unborn children

3



also get negative utility, and even less than that received by born children (ūunborn < ūborn)
and that parents are altruistic towards these children too. To see this, let the utility of the
parent be given by:

Ut = u(ct) + g(nt)ūborn + h(np − nt)ūunborn

where np is the number of potential children and nt is the number of children born.
As can be seen from this, one interpretation of the preferences we use is that h = 0, not
that ūunborn = 0. Under this interpretation, parents are only weakly altruistic toward their
children however.

Strict altruism with respect to the level of utilities holding the number of births fixed
requires g(·) > 0 and h(·) > 0. Since ūunborn < ūborn, strict altruism also requires that
increasing nt strictly increases Ut. This can be written as:

d
dn
[g(n)ūborn + h(np − n)ūunborn] > 0.

This condition is not necessarily satisfied. In particular, it is important that the marginal
utility from the unborn increases more slowly than the marginal utility from born children
decreases as children move from the unborn to the born state. To gain some intuition,
consider the case where utilities are isoelastic and the same–g(n) = h(n) = nη. Then the
condition above becomes:

1 < (np
nt
− 1)

h
ūunborn
ūborn

i1/(η−1)
.

One simple way to satisfy this condition is to assume that the number of children that
can feasibly be born, n̄t = wt

θt
, is small relative to the number of potential children, np,

i.e., as n̄t
np
→ 0, the additive term representing the unborn in parent’s utility is more or less

independent of parent’s choices. In this case, the decisions made are approximately the same
as the ones made with the utility functions used throughout the paper.

B.4 Solution of the model in Section 6 (with physical capital)

The representative dynasty problem we are interested in is given by

Max{Ct,Nt,Kt} U0({Ct, Nt, Kt}) =
P∞

t=0 β
tNη+σ−1

t
C1−σt

1−σ

s.t. Ct + θstNst +Xt ≤ wtNt + rtKt

Kt+1 ≤ (1− δ)Kt +Xt,

Nt+1 ≤ πNt +Nst

(N0,K0) given.

Note that this problem is well defined under both assumption AI and AII derived in
Section 2 as long as η 6= 1 − σ. The first order condition with respect to Kt+1 and Nt+1

together with the budget constraint, boil down to the following system of equations governing
the solution to this (partial equilibrium) problem:
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γσctγ
1−η
Nt = β(rt+1 + 1− δ)

θt(rt+1 + 1− δ) =
h
(η+σ−1)
(1−σ)

Ct+1
Nt+1

+ [wt+1 + θt+1π]
i

Ct
Nt
+ θtγNt +

Kt+1

Nt+1
γNt = [wt + πθt] + (rt + 1− δ)Kt

Nt
.

To ensure interiority in partial equilibrium, we have to (1) either rule out η = 1−σ or, (2)
if η = 1− σ, make the necessary parameter assumptions so that rates of returns to children
and capital are equalized. In general equilibrium, prices will adjust to achieve this. To close
the model, wages and interest rates are determined in equilibrium by a firm hiring labor and
capital to maximize profits with a constant returns to scale–Cobb-Douglas–production
function, F (Kt, γ

tNt) = AKα
t (γ

tNt)
1−α. That is,

rt = FK(Kt, γ
tNt)

wt = FN(Kt, γ
tNt).

On a balanced growth path, we have γc,t = γc = γ, γN,t = γN , γC = γK = γγN , wages
grow at γ and interest rates are constant. Denoting detrended variables by bx the above
equations become:

γN =
[β(r+1−δ)]

1
1−η

γ
σ
1−η

bc∗ = [bw + πθs] + γ (r + 1− δ)bk∗ − θsγN − bk∗γNγ
r + 1− δ = γ

θs

(η+σ−1)
(1−σ) bc∗ + γ

θs
bw + πγ

r = αAbk∗α−1
bw = (1− α)Abk∗α.

These five equations together with initial conditions completely characterize the equilib-
rium path.
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C Quantitative Additions

C.1 Auxiliary figures

C.1.1 Historical experiment in Section 5 (labor income only)

Here we give figures–like the one given in the main text for CBR in Section 5–for the other
measures of fertility we have discussed, CTFR and γN . They show a similar pattern overall
with the model capturing significant fractions of the overall changes seen in the data–about
half (see also Table 2).

Figure B.2: The U.S. experience from 1800 to 1990, CTFR and TFR
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Figure B.3: The U.S. experience from 1800 to 1990, annual population growth rate
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Next, we plot the decomposition exercise in Section 5 of the overall changes in these
three measures into the three components, changes in γ only, changes in π only and changes
in πs only (see also Table 3).

Figure B.4: Decomposition, CTFR
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Figure B.5: Decomposition, CBR
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Figure B.6: Decomposition, annual population growth rate
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C.1.2 Historical experiment in Section 6 (with physical capital)

Here, we show figures of the calculations for the history of U.S. fertility using the version
of the model including physical capital discussed in Section 6.2. We include only the
calculations for σ = 3.0 and σ = 0.5. We find that the results are very similar as described
in the main text. The decomposition confirms our previous finding about timing of events.

Figure B.7: CBR: Model with K vs. Data σ = 3
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Figure B.8: CBR: Model with K vs. Data σ = 0.5
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Table B.1: Decomposition: Productivity (γ) vs. Mortality (πs) and Longevity (π) for the
model with physical capital (Section 6)

σ = 3 γN,ann CBRann CTFR
1800 1880 1990 1800 1880 1990 1800 1880 1990

Data 1.027 1.016 1.006 45.4 35.2 15.8 7.04 4.90 1.97
Productivity (γ) 1.018 1.007 1.004 38.3 31.5 29.5 4.48 3.62 3.40
Mortality (πs) 1.018 1.018 1.020 38.3 37.8 25.4 4.48 4.43 3.02
Longevity (π) 1.018 1.018 1.018 38.3 37.9 35.2 4.48 4.48 4.50

Figure B.9: CBR: Decomposition, Model with K, σ = 3
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Figure B.10: Population Growth Rate: Decomposition, Model with K, σ = 3

1800 1850 1900 1950 2000
1

1.005

1.01

1.015

1.02

1.025

Decade

P
o

p
u

la
ti

o
n

 G
ro

w
th

 R
at

e,
 a

n
n

u
al

 

 

γ
N
 all

γ
N
 γ only (prod. growth)

γ
N
 π

s
 only (youth mort.)

γ
N
 π only (longev.)

C.2 Sensitivity analysis

C.2.1 Simple quantitative comparative statics

Here we give some simple comparative statics of our measures of fertility for various values
of σ for the range of relevant parameter values. We calibrate θs/w to match γN = 1 using
γ = 1.02, π = 1.0, πs = 1.0. Table B.2 shows the results of changing only γ from γ = 1.00 to
γ = 1.02 while Table B.3 does the same for πs = 0.6 to πs = 1. Finally, Table B.4 examines
changes in π corresponding to an expected lifetime at age twenty ranging from 25 to 45
years.

Table B.2: Changing productivity growth

Productivity Growth σ = 0.5 σ = 1.0 σ = 3.0

γann γN,ann CBRs,ann γN,ann CBRs,ann γN,ann CBRs,ann

1.00 0.98 5.25 1.00 15.38 1.013 21.37
1.01 0.99 10.49 1.00 15.38 1.007 18.45
1.02 1.00 15.38 1.00 15.38 1.00 15.38
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Table B.3: Changing survival to adulthood (STA)

πcy θs/w γN,ann CBRann CBRs,ann

(STA)
0.6 0.85 0.993 19.68 11.81

σ = 0.5 0.8 0.80 0.997 17.51 14.01
1.0 0.77 1.00 15.38 15.38
0.6 0.65 0.996 22.46 13.48

σ = 1.0 0.8 0.61 0.998 18.31 14.65
1.0 0.59 1.00 15.38 15.38
0.6 0.26 0.998 24.16 14.50

σ = 3.0 0.8 0.24 0.999 18.80 15.04
1.0 0.23 1.00 15.38 15.38

Table B.4: Changing expected lifetime (EL)

πann
T
1−π γN,ann CBRs

(EL)
0.923 25 0.979 15.60

σ = 0.5 0.959 35 0.993 15.26
0.971 45 1.00 15.38
0.923 25 0.991 19.56

σ = 1.0 0.959 35 0.997 17.00
0.971 45 1.00 15.38
0.923 25 0.998 21.84

σ = 3.0 0.959 35 0.999 18.01
0.971 45 1.00 15.38
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C.2.2 Changing base costs θb

In the main text, we have assumed that the base costs (relative to wage income) of raising a
child to adulthood have been unchanged over the period. However, when one adopts a broad
view of what determines these costs–e.g., subtracting out any direct input from the child
on a farm–this is clearly a strong assumption. Mateos-Planas (2002) adjusts base costs
residually in order to match the entire path of population growth rates in several European
countries and finds large increases in these costs since 1900. A similar exercise in the present
model with U.S. data would require base costs, θb/w, to have increased threefold over and
above the assumed increase proportional to wages to capture the full change in CBR or
twofold to capture the full change in population growth rates when σ = 3. Clearly the
analysis would benefit greatly from a more direct accounting of the costs of children along
these dimensions but is beyond the scope of this paper.

C.2.3 Increasing σ

Similarly, given the results in the main text, one could ask: how low does the IES have to be
to fit fertility in 1800? Although when σ increases the implied levels for the CBR and the
population growth rate are ever higher in the earlier periods, this change is not large. Even
levels of σ close to 1,000 do not generate the entire change seen in the data.

C.2.4 Deviating from η = 1− σ

In all the quantitative experiments, we assume that η = 1 − σ. Without this assumption,
given our two admissible parameter configurations, AI and AII, η would have to satisfy
η < 1 − σ whenever σ > 1 or η > 1 − σ whenever σ < 1. Hence, the assumption that
η = 1 − σ makes results more readily comparable. In this case, the two utility effects of
increasing dynasty size cancel out–independently of σ.

We performed sensitivity with respect to η and found that, for η < 1 − σ < 0, results
are not very sensitive to the value of η, holding σ = 3 (see Figure B.11). For the case,
η = 0.8 > 1 − σ = 0.5, the effect of mortality on CBR starts to be negative, so that the
model predicts an upward hump until 1880 and a slight decrease thereafter (see Figure B.12).
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Figure B.11: Sensitivity with respect to η < 1− σ, for σ = 3
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Figure B.12: Sensitivity with respect to η > 1− σ, for σ = 0.5
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C.2.5 Using other estimates of early productivity growth

In Section 5, for the period from 1800 to 1830, we follow Lucas (2002) in assuming γ = 1.00
and use data on real wages in Greenwood and Vandenbroucke (2005) for a consistent series
for γ from 1830 to 1988.

Other estimates suggest slightly higher productivity growth for the early period. For ex-
ample, Geib-Gundersen and Zahrt (1996) estimate the annual growth rate in U.S. agriculture
between 0.10-0.14 from the 1800-1820 period and between 0.44-1.33 in the 1820-1840 period.
However, according to Lucas (2002), early increases in productivity differ from those later on
in that they were one-time improvements in technology, rather than sustained growth—the
relevant object for our argument. Note that our results are slightly sensitive to the choice
of the early growth rate. For example, assuming γann = 1.001 in 1800 changes the results
for σ = 3 in Table 2 from γann,N = 1.0142 to γann,N = 1.0135, from CBRann = 36.3 to
CBRann = 35.9 and from CTFR = 4.2 to CTFR = 4.14.

C.2.6 Using estimates from the U.K. to infer youth mortality rates before 1850

Since data is not available for the U.S. mortality experience before 1850, we assume that πi,
πic, πcy and πann were constant at their 1850 values before 1850.

We could use data for the England and Wales to approximate πi, πic and πcy for 1800
to 1840, namely 1800 to 1830 from Wrigley et al. (1997, Table 6.1, pp.215), and 1840 from
Human Mortality Database. With this data, the results for σ = 3 for 1800 in Table ??
change from γann,N = 1.0142 to γann,N = 1.0135, from CBRann = 36.3 to CBRann = 34.4
and from CTFR = 4.2 to CTFR = 4.0. Since mortality rates are lower in England and
Wales than in the U.S. in 1850 suggesting they may have been lower before as well, these
results should be taken with a grain of salt. Interestingly, since mortality rates decreased
from 1800 to 1820 but then sharply increased in 1830 and 1840, the predicted pattern of
population growth when only youth mortality changes (i.e. Table 3, column 1, line 3) is a
slight increase from 1800 to 1820, a sharp decrease from 1820 to 1830 followed by a sustained
increase as in the baseline experiment.

C.2.7 Using expected working life data, instead of life expectancy data

In this section we compare results when expected working lifetime instead of expected lifetime
conditional on reaching age 20 is used in the experiments. The range for survival probabilities
conditional on reaching age 20, π, in the main text are deduced from measures of expectation
of life (EL) at age 20 (see Table A.1., column g, in the main text). EL increased from 38.5
to 53 years. One issue related to this is that expected time in retirement has increased
dramatically over the past 150 years (see Lee (2001)). We performed the same experiment
using expected working life at age 20 (EWL) (i.e. the difference between expected lifetime
and expected years of retirement) which implied an increase from 36.7 to 40.3 years (taken
from Lee (2001), Column C). We obtained very similar results since the effect of longevity
on births and population growth rates are small in the experiments above. In particular,
we find a decrease in CTFR from 4.21 to 2.3, a decrease in CBR from 36.95 to 19.6 and
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a decrease in population growth from 1.44 percent per year to 0.65 percent per year. The
trade-off between using either one of these measures is that on the one hand, EL overstates
the benefits in terms of income from having children, while EWL understates the benefits
from dynasty size (since retirement is analogous to death in this case).

C.2.8 Perfect foresight transition path versus balanced growth path

In this section, we discuss an alternative to the calculation given in Section 5. There,
the simulated data were calculated assuming that the agents believed that their current
circumstances, in terms of child costs, productivity growth rates and survival probabilities,
would prevail indefinitely into the future when making their decisions–i.e., the calculations
are balanced growth path to balanced growth path. The weakness of this is that it assumes
that agents act as if circumstances will not change in the future, even though they actually
will. At the other extreme, one could assume that agents in a give period t, anticipate exactly
all future changes that will occur–i.e., there is perfect foresight with respect to future values
of γ, π and θs. Here we give the calculations for the model under this alternative assumption.
We find that this makes very little difference in the end.

Solving the model with perfect foresight
From the Planner’s problem in Section 3, the first-order condition for Nt+1 is:

θs,tN
η+σ−1
t C−σt = β

h
(η+σ−1)
(1−σ) Nη+σ−2

t+1 C1−σ
t+1 + [wt+1 + θs,t+1πt+1]N

η+σ−1
t+1 C−σt+1

i
The other equation determining the solution is:

Ct = [wt + θs,tπt]Nt − θs,tNt+1.

After some algebra, these two equations can be rewritten as:

γ1−ηNt

"
wt+1
θs,t+1

+πt+1 −γNt+1

wt
θs,t

+πt −γNt

#σ

= β
h
θs,t+1
θs,t

i1−σ h
(η+σ−1)
(1−σ)

hh
wt+1
θs,t+1

+ πt+1
i
− γNt+1

i
+
h
wt+1
θs,t+1

+ πt+1
ii

Ct
Nt

1
θs,t
=
h
wt
θs,t
+ πt

i
− γNt.

The first of these is a first order difference equation in γN . It has time varying coefficients
however.

If (θs,t, wt, πt) converge in the sense that wt
θs,t
→ w

θs
, θs,t+1

θs,t
→ γ, πt → π, it can be shown

that the solution to the model converges to the balanced growth path determined by w
θs
, γ,

and π. Further, assuming that wt
θs,t

= w
θs
, θs,t+1

θs,t
= γ, and πt = π for all t ≥ t∗ for some t∗, it

can be shown that all of the relevant variables, measured in per capita terms, are constant
after date t∗. Because of this, the model can be solved backwards from t∗ in this case. Thus,
suppose that the sequence of exogenous parameters is given by:
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(θs,0, w0, π0, ..., θs,t∗ , wt∗ , πt∗, γθs,t∗ , γwt∗ , πt∗, ...).

Then, the solution to the perfect foresight infinite horizon problem is of the form:

(C0, N0, ....., Ct∗, Nt∗, Ct∗+1, Nt∗+1, ....)

where:

1) for t ≥ t∗ + 1, Nt+1 = γNNt with γN given by the solution to:

γ1−ηN = βγ1−σ
h
(η+σ−1)
(1−σ)

hh
wt∗
θs,t∗

+ πt∗
i
− γN

i
+
h
wt∗
θs,t∗

+ πt∗
ii
;

2) Ct∗
Nt∗

1
θs,t∗

=
C∗
t∗

Nt∗
1

θs,t∗
=
h
wt∗
θs,t∗

+ πt∗
i
− γN ;

3) for s ≥ 1,
C∗
t∗

Nt∗
1

θs,t∗
=
h
wt∗
θs,t∗

+ πt∗
i
− γN ⇔

Ct∗+s
Nt∗+s

1
γsθs,t∗

=
h
wt∗
θs,t∗

+ πt∗
i
− γN ;

4) For t < t∗, γNt evolves according to the difference equation:

γ1−ηNt

"
wt+1
θs,t+1

+πt+1 −γNt+1

wt
θs,t

+πt −γNt

#σ

= β
h
θs,t+1
θs,t

i1−σ h
(η+σ−1)
(1−σ)

hh
wt+1
θs,t+1

+ πt+1
i
− γNt+1

i
+
h
wt+1
θs,t+1

+ πt+1
ii
;

5) For t < t∗, Ct
Nt
is given by:

Ct
Nt

1
θs,t
=
h
wt
θs,t
+ πt

i
− γNt.

Numerical Implementation
We keep the length of a period at T = 20 years. Suppose from t∗ = 1990 on the growth rate in
productivity, γ, infant, child and youth mortality (πi, πic, πcy) (and hence, detrended costs of
raising surviving children, θs) and adult mortality (longevity), π, are constant. Then, we can
use 1) above to solve for the population growth rate, γN , on the balanced growth path using
parameter values for 1990. We can then use 4) to solve backward for γNt, t = 1970 using
γNt+1 = γNt∗ t

∗ = 1990 and so on. To do this, we have to make one additional assumption
(similar to the balanced growth assumption), namely that base costs of raising children,
(θi, θc, θy) grow at the same rate as wages every period but are otherwise constant while the
cost of raising a surviving child, θs, may vary additionally because youth mortality varies.

As in Section 5, we assume that base costs are constant fractions of calibrated costs when
children survive with certainty. The results from this experiment are almost indistinguishable
from the balanced growth path to balanced growth path experiment in Section 5. This is
not surprising since changes in mortality and productivity growth are very smooth. That
is, knowing that mortality and productivity change slightly in the next few periods induces
very similar choices to the setting in which people believe today’s parameters will prevail
forever. Moreover, the length of a period being 20 years implies large discounts of future
utility (children’s utility) and hence changes expected in the future do not affect current
decisions very much.
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Figure B.13: Perfect Foresight versus Balanced Growth to Balanced Growth, CBR
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Figure B.14: Perfect Foresight versus Balanced Growth to Balanced Growth, γN
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D The case of the U.K.

In this section, we perform the same experiment as in Section 5 but using data for the United
Kingdom (England and Wales for the most part). The results are quite similar: we capture
about two-thirds of the change in CBR and one half of the change in population growth.

The fertility experience in the U.K. over the past 200 years is similar to that of the U.S.,
except that levels in 1800 were lower already. Because of this the decrease, both in CBR and
population growth, was smaller. Mortality was also lower in the U.K. than it was in the U.S.
around that time. Finally, our estimates of productivity growth suggest the latter was higher
in 1800 as well. Since, fertility, mortality and productivity growth are very similar in the
two countries in 1990, all these observations are consistent with our theory and one would
expect the model to capture the same fraction of changes in fertility and population growth.

Table B.5: U.K. Costs of children in 1990, Time Series Experiment

σ θs
w

T × θs
w

Max CTFR

0.5 0.76 15.19 2.63
1.0 0.56 11.27 3.55
3.0 0.20 4.04 9.90

Table B.6: U.K. Time Series Experiment: Data versus Model, for several values of σ

γN,ann CBRann CTFR
1801 1881 1986 1801 1881 1986 1801 1881 1986

Data 1.013 1.012 1.003 37.6 33.9 13.2 – – –
σ = 0.5 0.967 0.974 1.003 1.65 5.31 15.1 1.46 1.74 2.17
σ = 1.0 0.989 0.992 1.003 18.1 18.2 15.1 2.43 2.46 2.17
σ = 3.0 1.007 1.005 1.003 29.8 26.2 15.1 3.44 3.13 2.17

Table B.7: U.K. Decomposition: Productivity (γ) , Mortality (πs) and Longevity (π)

σ = 3 γN,ann CBRann CTFR
1800 1880 1990 1800 1880 1990 1800 1880 1990

Data 1.013 1.012 1.003 37.6 33.9 13.2 – – –
Productivity (γ) 1.007 1.003 0.998 29.8 27.9 24.7 3.44 3.24 2.94
Mortality (πs) 1.007 1.007 1.011 29.8 28.8 21.8 3.44 3.32 2.51
Longevity (π) 1.007 1.006 1.007 29.8 29.0 25.4 3.44 3.35 3.48
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Table B.8: Annual Data Used for the Time Series Experiment in Section D, U.K.

a b c d e f g h i j k
Y ear γ πi πic πcy

T
1−π πann CBR CBR PG PG
EL EL data HP data HP

1801 1.006 0.863 0.884 0.864 39.00 0.965 37.60 39.23 1.014 1.014
1806 1.006 0.863 0.884 0.864 39.00 0.965 37.90 38.98 1.013 1.014
1811 1.006 0.867 0.870 0.925 39.00 0.965 39.18 38.72 1.015 1.014
1816 1.006 0.867 0.870 0.925 39.00 0.965 39.48 38.46 1.015 1.014
1821 1.006 0.855 0.864 0.943 39.00 0.965 40.22 38.17 1.016 1.014
1826 1.006 0.855 0.864 0.857 39.00 0.965 37.30 37.87 1.014 1.014
1831 1.006 0.860 0.877 0.840 39.00 0.965 36.03 37.55 1.012 1.014
1836 1.007 0.860 0.877 0.840 39.00 0.965 35.27 37.21 1.012 1.014
1841 1.007 0.838 0.859 0.894 40.57 0.967 35.61 36.86 1.011 1.013
1846 1.007 0.826 0.847 0.886 38.99 0.965 35.06 36.47 1.012 1.013
1851 1.008 0.829 0.858 0.893 40.19 0.966 35.98 36.05 1.016 1.013
1856 1.008 0.830 0.856 0.898 40.63 0.967 35.89 35.57 1.012 1.013
1861 1.009 0.836 0.854 0.902 40.48 0.967 36.30 35.02 1.012 1.013
1866 1.009 0.826 0.864 0.909 39.93 0.966 35.95 34.39 1.012 1.012
1871 1.010 0.830 0.874 0.913 40.01 0.966 35.00 33.67 1.015 1.012
1876 1.010 0.839 0.882 0.926 40.29 0.966 36.30 32.84 1.015 1.012
1881 1.010 0.845 0.889 0.930 41.33 0.967 33.90 31.91 1.012 1.011
1886 1.010 0.844 0.898 0.941 41.79 0.968 32.80 30.88 1.010 1.011
1891 1.010 0.837 0.900 0.942 41.37 0.968 31.40 29.76 1.016 1.010
1896 1.010 0.825 0.907 0.950 42.85 0.969 29.60 28.57 1.013 1.009
1901 1.010 0.843 0.919 0.953 43.43 0.970 28.50 27.32 1.010 1.009
1906 1.010 0.868 0.932 0.957 44.59 0.971 27.20 26.04 1.010 1.008
1911 1.011 0.883 0.939 0.958 45.37 0.971 24.30 24.74 1.006 1.008
1916 1.011 0.900 0.936 0.919 38.3 0.964 20.90 23.47 0.984 1.007
1921 1.011 0.918 0.958 0.964 47.54 0.973 22.40 22.23 1.010 1.007
1926 1.011 0.927 0.963 0.968 47.85 0.973 17.80 21.06 1.005 1.007
1931 1.012 0.935 0.972 0.970 48.54 0.974 15.80 19.98 1.004 1.006
1936 1.013 0.942 0.981 0.975 49.32 0.974 14.80 18.99 1.005 1.006
1941 1.013 0.946 0.984 0.968 48.33 0.974 13.90 18.09 0.979 1.006
1946 1.014 0.960 0.992 0.982 50.76 0.975 19.20 17.29 1.050 1.006
1951 1.015 0.972 0.995 0.992 52.39 0.976 15.50 16.55 1.003 1.006
1956 1.015 0.976 0.996 0.993 53.17 0.977 15.70 15.87 1.005 1.006
1961 1.016 0.978 0.997 0.993 53.48 0.977 17.60 15.22 1.010 1.005
1966 1.017 0.981 0.997 0.993 53.97 0.977 17.80 14.60 1.006 1.005
1971 1.017 0.983 0.997 0.994 54.26 0.977 15.90 13.98 1.005 1.005
1976 1.017 0.986 0.998 0.994 54.79 0.978 11.80 13.36 1.000 1.004
1981 1.018 0.989 0.998 0.995 55.69 0.978 12.80 12.75 1.000 1.004
1986 1.018 0.991 0.998 0.996 56.46 0.978 13.20 12.15 1.003 1.003
1991 1.018 0.993 0.999 0.996 57.39 0.979 13.20 12.15 1.004 1.003
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Data Sources for Table B.8:2

• Column b, γ (annual productivity growth rate) from annual growth rate in GDP per
capita, (log GDP HP filtered λ = 400):
1800 to 1865 from Clark (2001),
1850 to 1990 from Maddison (1995), p. 194, rescaled to match Clark in 1850;

• Column c,d,e, (πi, πic, πcy) (survival rates from age specific mortality rates)
1800 to 1837 from Wrigley et al. (1997), Table 6.1, p.215,
1841 to 1990 from Human Mortality Database;

• Column f, T
1−π (EL) (expectation of life at age 20):

1841 to 1990 from Human Mortality Database,
1800 to 1836 set constant at 39 years;

• Column g, πann (EL) (annual adult survival rate): derived from Column f;
• Column h, CBR (crude birth rate, annual):
1800 to 1871 from Wrigley et al. (1997),
1871 to 1986 from Mitchell (1998)

• Column i, CBR HP filtered (crude birth rate, annual): Column h HP filtered, λ = 400;
• Column j, PG (population growth rate, annual):
1800 to 1837 from Wrigley et al. (1997), Table 6.1, p.215;
1841 to 1990 from Human Mortality Database;

• Column k, PG HP filtered (population growth rate, annual): Column j HP filtered,
λ = 400.

Figure B.15: The U.K. experience from 1800 to 1990, CBR
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2We thank Michael Bar and Oksana Leukhina for help with data sources.
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