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Abstract

In this Appendix we provide additional details on some of the ideas

developed in the paper, “Efficiency with Endogenous Population Growth,”

(2006). We first give the formal proof that A-efficiency is generically

non-empty. The second section extends the notions of efficient fertility

developed in the paper for the discrete case to environments in which

fertility is a continuous choice variable. It also provides an extension of

the First Welfare Theorem, given in the paper for the discrete case, to

the continuous case. The second section gives an explicit example of an

economy with negative externalities. We show that a negative exter-

nality can lead to too many people in equilibrium in the A-sense, and

also show how to decentralize A-efficient allocations through Pigouvian

tax systems. The third section provides a proof that the limit of the

equilibria of the finite horizon B&B games exists, and is an equilibrium

of the infinite horizon B&B game.
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welcome: golosov@mit.edu, lej@econ.umn.edu, tertilt@stanford.edu. †Massachusetts Insti-
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1 Generic Non-emptiness of A

Here we prove Result 3b formally. Suppose that there are multiple solutions

to the maximization problem:

max{f,x}
∑

i∈P0
αiui(f, x)

s.t., {f, x} ∈ A

for some choice of αi with αi > 0 for all i ∈ P0.

Define U(f, x; α) =
∑

i∈P0
αiui(f, x) and choose, arbitrarily, a one solution

(f ∗, x∗).

For i ∈ P0, define:

vi(f
i, xi) = ui(f

i, xi)− εi
d((f i,xi),(f i∗,xi∗))

1+d((f i,xi),(f i∗,xi∗)) .

Then |vi(f
i, xi)− ui(f

i, xi)| < εi for all i and all (f i, xi), and vi(f
i∗, xi∗) =

ui(f
i∗, xi∗).

Defining

V (f, x) =
∑

i∈P0
αivi(f, x),

note that:

|V (f, x)− U(f, x; α)| ≤ ∑
i∈P0

εi

Finally note that V (f ∗, x∗) = U(f ∗, x∗; α) and that V (f, x) < U(f, x; α)

for all (f, x) 6= (f ∗, x∗). Thus, it follows that the problem:

max{f,x} V (f, x)

s.t., {f, x} ∈ A

has a unique solution, (f ∗, x∗), and because of this, it follows that (f ∗, x∗)

is A-efficient for the economy with period 0 utility functions given by vi instead

of ui and nothing else changed.
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2 Non-Integer Fertility

In this section of the Appendix we present a version of our environment that

can be used to show that the Barro and Becker (BB) model is efficient. There

are two reasons why the BB model doesn’t quite fit into the framework of

Sections 2 and 3 in our paper. First, in the BB model, there is no integer

constraint, i.e. the number of children can be anything in R+, while our

framework constrains children to be natural numbers. Second, the BB model

imposes symmetry, i.e. only allocations where all siblings do the same thing

are considered feasible, while we do not impose symmetry.

2.1 Notation and Definitions

Assume that there is a finite number of dynasties, each associated with one

dynastic head i ∈ P0 = {1, . . . , N}. The maximal number of children per

person is f̄ . Let F = [0, f̄ ]. Then we can define the set of potential people

recursively as P1 = P0 × F , and Pt = Pt−1 × F . As before, let P = ∪tPt be

the set of all potential people in this economy. A person i ∈ Pt can be written

as it = (it−1, it) where it−1 is it’s parent and it specifies it’s position in the

sibling order. The measure of children actually born to person i is f(i) ∈ R.

Then f̄ − f(i) is the measure of potential children of person i who are not

born. To simplify what follows we will assume that the children that are born

have indexes [0, f(i)]. Then, it ≤ f(it−1) means that it is born and it > f(it−1)

implies that it is not born.

We assume that there are k goods available in each period. There is one

representative firm, which behaves competitively. The technology is charac-

terized by a production set: Y ⊂ Rk∞. In other words, an element of the

production set is an infinite sequence of k-tuples, that describes feasible in-

put/output combinations. Note that goods are defined in a broad sense here, it

can include labor, leisure, capital stock, etc. An element of the production set

will be denoted by y ∈ Y . We can write y = {yt}∞t=0, where yt = (y1
t , . . . , y

k
t )
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is the projection of the production plan onto time t.

An allocation is a fertility, a consumption and a production plan, (f, x, y),

where (f, x) = {f(i), x(i)}i∈P . Define a consumption set Z ⊂ F × Rk. We

require that (f(i), x(i)) ∈ Z if i is born.

As in the paper, for each i ∈ P0, we define Di to be the set of potential

descendants of i, including i. Further, we define I(f) to be the set of people

that are alive in an allocation with the fertility plan f . Then we define I(fi) =

I(f)∩Di to be the set of people of dynasty i alive under the dynastic fertility

plan fi. Finally, let It(fi) = I(fi) ∩ Pt denote the set of descendants of i that

are alive at date t under allocation (f, x, y).

Definition 1 An allocation is feasible if

1. (f(i), x(i)) ∈ Z for almost every i ∈ I(f).1

2.
∑

i∈P0

(∫
It(fi)

xjdj +
∫

It(fi)
c(fj)dj

)
≤ ∑

i∈P0

∫
It(fi)

ejdj + yt ∀t ≥ 1

3. y ∈ Y

Note this formulation allows for different children of the same parent to be

treated differently. This is more general than the Barro-Becker formulation

where all children of the same parent receive the same allocation by assump-

tion.

The profits earned by dynasty i, Πi, are defined exactly as in the paper.

Definition 2 An allocation (f, x, y) = ({(fj, xj)}j∈P , y) is P-efficient if it is

feasible and there is no other feasible allocation (f̂ , x̂, ŷ) s.t.

1. uj(f̂ , x̂) ≥ uj(f, x) for almost every j ∈ P

1Note that since fertility is a continuous variable, it is possible to change assignments

of endowments, consumption, fertility, etc., for measure zero sets of children (for periods

beyone period 0) without affecting aggregate resources and/or utilities. Thus, all statements

are ‘almost everywhere.’ Formally, we use the measure which is the counting measure on

period 0 individuals and Lebesgue measure for all other periods.
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2. There exists S ⊂ P with positive measure s.t. uj(f̂ , x̂) > uj(f, x) for all

j ∈ S.

Definition 3 Given (p, y), a dynastic allocation for dynasty i (fi, xi) = {f(j), x(j)}j∈Di

is said to be Dynastically P-maximizing if (f(j), x(j)) ∈ Z for almost every

j ∈ I(fi) and
∑

t pt

∑
j∈It(fi)

[x(j) + c(f(j))] ≤ ∑
t pt

∑
j∈It(fi)

e(j) + ψi

∑
t ptyt

and if @(f̂i, x̂i) s.t.

1. (f(j), x(j)) ∈ Z for almost every j ∈ I(f̂i).

2. uj(f̂i, x̂i) ≥ uj(fi, xi) for almost every j ∈ Di.

3. There exists S ⊂ Di s.t. uj(f̂i, x̂i) > uj(fi, xi) for all j ∈ S and S has a

positive measure.

4.
∑

t pt

∫
It(f̂i)

(x̂(j) + c(f̂(j)))dj ≤ Πi +
∑

t pt

∫
It(f̂i)

e(j)dj

Next we define the analogue of a competitive equilibrium among the dynasties

in the partition (exactly the same as before).

Definition 4 (p∗, f ∗, x∗, y∗) is a dynastic P-equilibrium if

1. For all dynasties i, given (p∗, y∗), (f ∗i , x∗i ) is dynastically P-maximizing.

2. (f ∗, x∗, y∗) is feasible.

3. Given p∗, y∗ maximizes profits, i.e. p∗y ≤ p∗y∗ ∀y ∈ Y .

The definitions of A-efficient allocations, Dynastically A-maximizing deci-

sions and dynastic A-equilibria are modifications of these definitions along the

lines in the paper and are not included here.
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2.2 First Welfare Theorem and Proof

Assumption 1 (No negative externalities)

We assume that uj is monotone increasing in xj′, that is each agent is weakly

better off when consumption is increased for a set of agents of positive measure.

Thus, there are no negative external effects in consumption.

Assumption 2 (Positive externalities only within a Dynasty)

For all i ∈ P0, we assume that if (f, x, y) and (f̂ , x̂, ŷ) are two allocations

such that (f(j), x(j)) = (f̂(j), x̂(j)) for almost every j ∈ Di, then, uj(f, x)) =

uj(f̂ , x̂) for almost every j ∈ Di.

Lemma 1 Assume that ui is strictly increasing in own consumption for all

i ∈ P0. Let (f ∗i , x∗i ) be dynastically P-maximizing for dynasty Di, given prices

p and production y. Then uj(fi, xi) ≥ uj(f
∗
i , x∗i ) for all j ∈ Di implies that∑

t pt

∫
It(fi)

(x(j) + c(f(j)))dj ≥ Π∗
i +

∑
t pt

∫
It(fi)

ejdj.

Proof. This will be proved by contradiction. Suppose not. Then there ex-

ists a (fi, xi) such that uj(fi, xi) ≥ uj(f
∗
i , x∗i ) for all j ∈ Di and

∑
t pt

∫
It(fi)

(x(j)+

c(f(j)))dj < Π∗
i +

∑
t pt

∫
It(fi)

ejdj. Then construct a new dynastic alloca-

tion (f̃i, x̃i) as follows: (f̃i, x̃i) = (fi, xi + ε) for i ∈ P0 ∩ Di and (f̃i, x̃i) =

(fi, xi)∀ other j ∈ Di. Then ∃ε > 0 such that the dynastic allocation (f̃i, x̃i)

does not violate the dynastic budget constraint. Moreover, by Assumption 1

(f̃i, x̃i) is weakly preferred over (fi, xi) by all j in the dynasty, and hence also

over (f ∗i , x∗i ). Finally, by strict monotonicity, ui(f̃i, x̃i) > ui(f
∗
i , x∗i ), but this

contradicts the assumption that (f ∗i , x∗i ) was dynastically P-maximizing. ¤

Proposition 1 Suppose ui(xi, fi) is strictly increasing in own consumption

for all i ∈ P0. If (p∗, f ∗, x∗, y∗) is an P-dynastic Walrasian equilibrium,

then
∑

t[pty
∗
t +

∫
Pt∩I(f)

pte(j)dj] < ∞, and (f ∗, x∗, y∗) is P-efficient.

Proof. First, note that since ui(xi, fi) is strictly monotone in own consump-

tion, for all i ∈ P0, for the given allocation to be a dynastic P-equilibrium,
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(fi, xi) must be dynastically P-maximizing, and hence, Πi+
∑

t pt

∫
It(fi)

e(j)dj <

∞, for all i. Summing over all dynasties and substituting in the definition of

profits Πi, gives
∑

t[pty
∗
t + (

∫
Pt∩I(f)

e(j))dj] < ∞, which proves the first part.

Suppose now that (f ∗, x∗, y∗, p∗) is a dynastic P-equilibrium and by way

of contradiction, assume that it is not P-efficient. Then there exists an alter-

native feasible allocation (f, x, y) that is P-superior to (f ∗, x∗, y∗). That is,

uj(fi, xi) ≥ uj(f
∗
i , x∗i ) for almost all j ∈ P and there exists S ⊂ P s.t. ∀j ∈ S,

uj(fi, xi) > uj(f
∗
i , x∗i ). For some i, it must be that S ∩Di has strictly positive

measure. Then, for this dynasty i, since (f ∗i , x∗i ) is dynastically P-maximizing,

and since there are no external effects across dynasties (Assumption 2), it must

be that (fi, xi) was not affordable, i.e.

∑
t

p∗t

∫

It(fi)

(x(j) + c(f(j)))dj > Π∗
τ +

∑
t

p∗t

∫

It(fi)

e(j)dj

Moreover, by Lemma 2, we know that for all other dynasties the following

must hold.

∑
t

p∗t

∫

It(fi)

(x(j) + c(f(j)))dj ≥ Π∗
τ +

∑
t

p∗t

∫

It(fi)

e(j)dj

Summing up over all dynasties, we get

∑
t

p∗t

∫

It(f)

(x(j) + c(f(j)))dj >
∑

t

p∗t [y
∗
t +

∫

It(f)

e(j)di] (1)

Since the right hand side is finite, the strict inequality is preserved. Profit

maximization implies that p∗y∗ ≥ p∗y for all other production plans y ∈ Y .

Using this, we can rewrite equation (1) as

∑
t

p∗t

∫

It(f)

(x(j) + c(f(j)))dj >
∑

t

p∗t [yt +

∫

It(f)

e(j)dj] (2)

Finally, feasibility of (fmx, y) implies that

∫

It(f)

(x(j) + c(f(j)))dj ≤ yt +

∫

It(f)

e(j)dj for all t
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Multiplying the above by p∗t and summing up over all t gives

∑
t

p∗t

∫

It(f)

(x(j) + c(f(j)))dj ≤
∑

t

p∗t [yt +

∫

It(f)

e(j)dj]

But this contradicts equation (2). This completes the proof. ¤
The proof thatA-dynastic Walrasian equilibrium allocations areA-efficient

is similar and is omitted.

3 Pollution

In this section, we outline the details of the example discussed in section 6.2

of the main paper. The example features a negative external effect across

agents. We characterize the set of symmetric A-efficient and symmetric P-

efficient allocations and show how to implement them using Pigouvian taxes.

We find that typically both a pollution tax and a ‘child’ tax are necessary to

implement efficient allocations.

Assume that there are a continuum of agents in period 1, indexed by i ∈
[0, 1]. Each period 1 agent has a unit endowment of the consumption good,

e1(i) = 1 for all i. This endowment is divided between own consumption, c1(i),

and child rearing. The cost of rearing n children is θn. The j − th child of the

i − th period one agent is denoted by (i, j). Agents in period 1 are altruistic

toward their own children as in Barro and Becker (1989) and have utilities

given by u(c(i)) + βnα
i

∫ ni

0
V (i, j)dj, where V (i, j) is the utility received by

child (i, j). We assume that u satisfies the Inada condition, u′(0) = ∞.

Each agent in period 2 can sell labor that can be transformed into a con-

sumption good according to the linear technology c = l. The utility of the

agent is V (i, j) = v(c2(i, j), C)− l(i, j), where c2(i, j) is consumption of indi-

vidual (i, j), C =
∫ 1

0

∫ ni

0
c2(i, j)didj is aggregate production in the economy,

and l(i, j) is the amount of time that (i, j) works. We abstract from constraints

on leisure and only assume that there is disutility from work for simplicity.

Finally, feasibility requires:
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∫ 1

0

∫ ni

0
c2(i, j)djdi =

∫ 1

0

∫ ni

0
l(i, j)djdi, and

∫ 1

0
θnidi +

∫ 1

0
c1(i)di =

∫ 1

0
e1(i)di = 1.

We assume that the economy lasts for only two periods. Note that this is a

simplified version of a Barro-Becker economy, where if v2 = 0 the equilibrium

is efficient as in Theorem 2 in the paper. The effect of pollution is captured

by assuming that v2 < 0. For simplicity, we assume that there is no pollution

in the first period.

Define n̄ =
∫ 1

0
nidi as the number of people born in period 1 and alive in

period 2.

3.1 Characterization of Symmetric, Efficient Allocations

Claim 1 If v(c, C) is strictly concave in c for each C, then, in every P-

efficient and in every A-efficient allocation, the second period consumptions

are equal across agents, c(i, j) = c for all (i, j) where c must satisfy:

v1(c, n̄c) + n̄v2(c, n̄c) = 1. (3)

Proof of the Claim: First, from Result 1 in the paper, all P-efficient and

A-efficient allocations are Pareto optimal given the set of people. As is stan-

dard with quasi-linear preferences, without limits on labor supply, a necessary

condition for Pareto optimality is that the allocation solve a planner’s problem

with equal weights (or the agent with the lowest weight will work an infinite

amount of hours). The allocation of labor effort across the agents is ambigu-

ous, each giving the planner the same utility (but corresponding to different

optima among the agents). Because of this, it follows that, given ni, second

period consumption must solve:

max

∫ 1

0

∫ ni

0

[
v

(
c2(i, j),

∫ 1

0

∫ ni

0

c2(i, j)

)
− l(i, j)

]
djdi

s.t.(µ) :

∫ 1

0

∫ ni

0

c2(i, j)djdi ≤
∫ 1

0

∫ ni

0

l(i, j)djdi
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Since v(c, C) is strictly concave in c for each given value of C, it follows

that the optimal choice of c(i, j) is a constant, c(i, j) = c for some c. (If not,

the planner’s utility can be increased by giving each agent the average c since

this does not change C or the aggregate labor supply required.) Thus, the

problem can be rewritten as:

max
c

n̄v(c, n̄c)− n̄c

The result follows directly from this. ¤
For symmetric, efficient allocations, it follows that l(i, j) = c2 as well, and so,

in this case, this equation can also be written as

v1(l, nl) + nv2(l, nl) = 1. (4)

Assumption 3 Assume that there is a unique solution to (4) for every n.

Under Assumption 3, equation (4) implicitly defines a relationship between

l and n, call this l∗(n), i.e. l∗(n) is the efficient labor supply, given population

size n, in any efficient, symmetric allocation. Then, the utility of a person

alive in period 2 at the symmetric efficient labor choice, given n, is given by:

V (n) ≡ v(l∗(n), nl∗(n))− l∗(n) (5)

Lemma 2 ∂V
∂n

< 0

Proof of the lemma. ∂V
∂n

= v1l
′(n) + v2[l

∗(n) + nl′(n)] − l′(n) = l′(n)[v1 +

nv2 − 1] + l∗(n)v2 = l∗(n)v2, where the third equality uses equation (4). But

this last expression is negative because v2 < 0 by assumption and l(n) > 0

from feasibility. ¤
Next, we want to discern what restrictions efficiency places on n = n̄ in

symmetric, efficient allocations. The conclusions from the following discussion

are summarized in Proposition 2. Define U(n) to be the utility of the typical

parent in a symmetric efficient allocation in which (3) is satisfied in the second

period. That is,

U(n) = u(e1 − θn) + nα+1V (n) = u(e1 − θn) + βnα
∫ n

0
(v(c, nc)− c)di.
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Assumption 4 U(n) is strictly concave in n and U ′(0) > u′(e1).

Note that the feasible choices for n in symmetric allocations are bounded

above by n = e1/θ and here, U ′(e1/n) < 0. Define nA to be the unique value

of n that maximizes U(n). Then, nA satisfies:

−θu′(e1 − θnA) + β(α + 1)nα
AV (nA) + βnα+1

A V ′(nA) = 0. (6)

It follows from Lemma 2 that nα+1
A V ′(nA) < 0. Finally, it must also be true

that V (nA) > 0 since, if this does not hold, U is maximized at nA = 0. To see

that the allocation characterized by (4) and (6) is A-efficient, note that any

potentially superior allocation must involve the same nA, c1 and c2, because

otherwise the period 1 agents would be strictly worse off. That leaves only

rearrangements of labor among period 2 agents, which would immediately

make some period 2 agents strictly worse off.

We now show that any allocation with n < nA can be dominated in the

A− and the P-sense. Suppose n < nA and consider the following change in

plan:

1. Increase n to n + ∆n;

2. Have c(i, j) = ĉ for all i and all 0 ≤ j ≤ n + ∆n, where ĉ is the solution

to v1(ĉ, (n + ∆n)ĉ) + (n + ∆n)v2(ĉ, (n + ∆n)ĉ) = 1, i.e., ĉ is the new

optimal consumption level for all agents in the second period given that

n has been increased to n + ∆n;

3. Let l(i, j) = l̂ for all i and for all 0 ≤ j ≤ n, where l̂ is defined by:

v(ĉ, (n + ∆n)ĉ)− l̂ = v(c, nc)− c. That is, l̂ is just enough extra leisure

so that all children in period 2 are indifferent to this change.

4. Let l(i, j) = l̃ for all i and for all n ≤ j ≤ n + ∆n, where l̃ is defined by

feasibility: nl̂ + ∆nl̃ = (n + ∆n)ĉ.
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Note, this has children (i, j) with n ≤ j ≤ n + ∆n, working more than

those children (i, j) with 0 ≤ j ≤ n (to compensate them for the loss in utility

they experience from the increased population).

Finally, it is left to show that the new allocation is strictly better for

the typical parent. The utility received by the typical parent from the new

allocation is given by

W (∆n) = u(e1 − θn− θ∆n) + β(n + ∆n)α

∫ n+∆n

0

[v(ĉ, (n + ∆n)ĉ)− l(i, j)] dj

= u(e1 − θn− θ∆n) + β(n + ∆n)α

[
(n + ∆n)v(ĉ, (n + ∆n)ĉ)−

∫ n+∆n

0

[l(i, j)] dj

]

= u(e1 − θn− θ∆n) + β(n + ∆n)α [(n + ∆n)v(ĉ, (n + ∆n)ĉ)− (n + ∆n)ĉ]

= u(e1 − θn− θ∆n) + β(n + ∆n)α+1 [v(ĉ, (n + ∆n)ĉ)− ĉ]

= u(e1 − θn− θ∆n) + β(n + ∆n)α+1 [V (n + ∆n)]

Differentiating this with respect to ∆n we obtain:

W ′(∆n) = −θu′(e1−(n+∆n)θ)+β(α+1)(n+∆n)α [V (n + ∆n)]+β(n+∆n)α+1 [V ′(n + ∆n)] .

Evaluating this at ∆n = 0, we obtain:

W ′(0) = −θu′(e1 − nθ) + β(α + 1)nαV (n) + βnα+1V ′(n).

This is positive for all n < nA. Thus, by construction, this change improves the

welfare of the parent and leaves indifferent all children, (i, j) with 0 ≤ j ≤ n.

The change in utility of the children (i, j) with n ≤ j ≤ n + ∆n is given

by v(ĉ, nĉ) − l̃. By continuity, this is approximately equal to V (n) when ∆n

is sufficiently small. Thus, this gives a Pareto Improvement anytime n < nA

and V (n) > 0.

Moreover, it follows that if n > nA, the symmetric allocation satisfying (3)

is not A-efficient. To see this, simply note that by reducing n to nA, and using
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the corresponding allocation satisfying 3 improves the welfare of the surviving

period 2 agents (since V ′(n) < 0) and improves welfare of the period one

agents as well (since W is maximized at n = nA).

The following Proposition summarizes this discussion.

Proposition 2 In every symmetric P-efficient allocation we have:

• n ≥ nA,

• c2(i, j) = c2 satisfies: v1(c2, nc2) + nv2(c2, nc2) = 1,

• l(i, j) = l = c2,

• c1(i) = c1 = 1− θn,

• V (n) ≥ 0.

Also, there is a unique symmetric A-efficient allocation with n = nA, as

defined by equation (6).

3.2 Implementation of Efficient Allocations

Next, we characterize equilibrium choices of fertility and consumption by pri-

vate agents acting in a decentralized way in markets. Since there is no way

to physically transfer goods across the periods, and all dynasties are identical,

we can, without loss of generality, assume that bequests are not allowed.

In the market equilibrium allocation with a tax of τ c on the production of

c2 we have that each period 2 child takes as given C, τ c and T2, the transfer

received from the government. Thus, a period 2 agents solves:

max
{c2,l}

v(c2, C)− l

s.t. (1 + τ c)c2 = l + T2

Let c̃2(τ c, C, T2) denote the individual’s solution to this problem. Note

that, it does not depend on the period 1 choice of n due to the assumed
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linearity of the period 2 production function. In equilibrium, C̃ = ñc̃2, and so

the FOC is

v1(c̃2, ñc̃2) = (1 + τ c). (7)

If τ c = 0, we have the standard, fixed population, result that each agent

sets his own MRS equal to the price ratio, ignoring the external effect on the

other agents. This induces too much output in the equilibrium and hence, it

follows that the undistorted market equilibrium quantities (i.e., with τ c = 0)

are neither P nor A efficient.

In period 1, the parent maximizes utility knowing what will happen in

period 2. However, each period one parent views that their own choice of n

will have no effect on C̃. Thus, a parent solves:

max
{c1,n}

u(c1) + βnα+1 [v(c̃2, C)− c̃2]

s.t.

c1 + (θ + τn)n = 1 + T1.

The FOC imply that

(θ + τn)u′(c̃1)/β = (α + 1)ñα [v(c̃2, ñc̃2)− c̃2] . (8)

Comparing these conditions with those derived above for symmetric, ef-

ficient allocations, we see that τ c = −ñv2(c̃2, ñc̃2) is required (to see this,

compare equation (7) with (4)). This is standard, each agent must be induced

to set his consumption so that his marginal rate of substitution equals the

marginal social cost, not the marginal private cost.

It also follows that privately chosen fertility, n, will generally not be A-

efficient. For any given n, n ≥ nA, equation (8) defines the unique level

of τn necessary to implement that n as an equilibrium choice (in conjunc-

tion with τ c = −nv2(c2, nc2)). For example, to implement nA as an equilib-

rium outcome, it is necessary that τ c = −nAv2(l
∗(nA), nAl∗(nA)) and τn =

−nα+1
A c̃2v2(c̃2, n̂c̃2)/u

′(c̃1) per child (this follows from (6) and (8)). Note that
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τn > 0. This (τ c, τn) decentralizes the unique symmetric A-efficient alloca-

tion, and hence, it follows that the resulting allocation is both P- and A-

efficient. Whether or not a given symmetric, P-efficient allocation will require

non-trivial taxation also follows from these results. Examination of (8) shows

that implementation with τn = 0 is equivalent to:

θu′(e1 − θn)/β = (α + 1)nα [v(l∗(n), nl∗(n))− l∗(n)] .

Typically, there will be only one such n. Note however, that for large n, one

would typically expect τn < 0 to be required for implementation. Summarizing

this discussion:

Proposition 3 The unique symmetric, A-efficient allocation can be imple-

mented with positive taxes on both the number of children and second period

consumption. Most symmetric, P-efficient allocations require non-zero taxes

on children (but they could be negative) and all require a positive tax on second

period consumption.

As argued above, with only τn = 0, the resulting equilibrium will not be

A-efficient. In other words, standard Pigouvian taxes are not sufficient to

implement A-efficient allocations. A fertility tax is needed in addition. But

are equilibrium allocations with τn = 0 (and τ c set as described above) P-

efficient? The answer is typically yes. The lack of a fertility tax will lead to

overproduction of kids from the perspective of period 1 agents, however, there

is no allocation that is superior in the P-sense, as it would necessarily require

less children to be born, which would make those children strictly worse off.

Note that this logic would be different if the externality was positive! Then,

an equilibrium with τn = 0 would lead to too low fertility, and a P-superior

allocation could easily be constructed.
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4 The Limit of the SPE of the T Period B&B

Game

In this section we fill out the details of the claim (footnote 19, page 25 in the

paper) that the limit of the SPE of the finite horizon games of the B&B model

as presented in the paper, both exists and is an SPE of the infinite horizon

version of the game. This is done in two steps. We start with a brief discussion

of each step, and then provide details.

Step 1: The limit of the equilibrium strategies of the T horizon game

exists.

To do this, use the characterization of the equilibrium strategies in period

t of the T period game as the first period of the solution to a planning problem

that runs from period t to period T + 1. The planning problems for period t

in the T period game can all be embedded in a common ’space,’ one with an

infinite horizon, but in which after period T +1 all variables are required to be

0. The solutions to this sequence of planning problems converge to the solution

to an infinite horizon planning problem state by state and period by period.

Thus, the equilibrium strategies of the period t players of the T period game

have a limit, given by the first period actions of the solution to the infinite

horizon planning problem.

Step 2. These limiting strategies form an SPE of the infinite horizon

game. Moreover, the characterization of the strategies as the solution of the

appropriate infinite horizon planner’s problems also holds for this limit. I.e.,

the first period actions of the solution to the infinite horizon continuation plan-

ner’s problems are an SPE.

To do this step, suppose it is false. Then there is some node and some

player who can do better by using a different strategy. We argue that this

better strategy has to be symmetric across siblings by the strict concavity of

the continuation utility. Use this better strategy to construct a better strategy

for the finite horizon games by having it be the better strategy for the infinite
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horizon game. Argue for large enough T , this is better for the finite horizon

game since the utilities of the two relevant possibilities converge to the limiting

utilities, and there is strict improvement in the limiting utilities by assumption.

This contradicts the assumption that the original strategies were an SPE for

the finite horizon game.

4.1 Step 1

From the characterization result in the current appendix to the paper, we

have that there is a unique SPE of the T-period horizon game, and that for

each t ≤ T and for every node, ht the only thing that matter for each alive

individual (i.e., those it = (it−1, it) such that it ≤ f(it−1) for all j ≤ t) is the

wealth passed forward to him by his parent, a(ht). This SPE can be calculated

through the solution to a planner’s problem which is given by:

For every (a, t, T ), and every history up to t, the outcome of the contin-

uation subgame is unique, symmetric, depends only on the bequest given to

each agent, a, and solves:

max
Xt,Ft,Xt+1,Ft+1...,XT+1,FT+1

Ut =
T+1−t∑

s=0

βs [Ft+sg(Ft+s)u(Xt+s/Ft+s)]

s.t.

T+1−t∑
s=0

ps [Xs + c(Fs)] ≤
T+1−t∑

s=0

psFses + a

Ft = 1

We can embed this problem in an infinite horizon one to have them all

defined on the same space:

For every (a, t, T ), and every history up to t, the outcome of the contin-

uation subgame is unique, symmetric, depends only on the bequest given to

each agent, a, and solves:

P (a, t, T ):
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max
Xt,Ft,Xt+1,Ft+1...

Ut =
∞∑

s=0

βs [Ft+sg(Ft+s)u(Xt+s/Ft+s)]

s.t.

∞∑
s=0

ps [Xs + c(Fs)] ≤
∞∑

s=0

psFses + a

Ft = 1

Fs = Xs = 0, s > T + 1

Denote the solution to this problem by ((Xs(a, t, T ), Fs(a, t, T ))∞s=0) ∈ <∞×
<∞.

These belong in a bounded set from our assumption that the set of feasible

allocations is bounded (Assumption 6.5).

To find the equilibrium strategies for the period t agent in the T horizon

game at the node a define:

XT
t (a) = Xt: this is the consumption of the agent.

F T
t (a) = Ft+1: this is the number of children the agent has, and,

BT
t (a) = Bt = qtet − a − (Xt + c(Ft+1)): this is the bequest he leaves in

total to his children, or, per person:

bT
t (a) = bt = Bt/Ft+1.

These are the equilibrium strategies for the period t agent in the T horizon

game at the node summarized by a.

Similarly, use ((Xs(a, t,∞), Fs(a, t,∞))∞s=0) ∈ <∞×<∞ and (X∞
t (a), F∞

t+1(a), B∞
t (a))

to denote the solutions to the infinite horizon problem:

P (a, t,∞):
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max
Xt,Ft,Xt+1,Ft+1...

Ut =
∞∑

s=0

βs [Ft+sg(Ft+s)u(Xt+s/Ft+s)]

s.t.

∞∑
s=0

ps [Xs + c(Fs)] ≤
∞∑

s=0

psFses + a

Ft = 1

In what follows, we denote first period components of the solution as:

(XT
t (a), F T

t+1(a), BT
t (a)), (X∞

t (a), F∞
t+1(a), B∞

t (a)), etc.

Lemma 3 For each a, ((Xs(a, t, T ), Fs(a, t, T ))∞s=0) → ((Xs(a, t,∞), Fs(a, t,∞))∞s=0)

in the product topology.

Proof. This is a standard result. The set containing the solutions of the

finite horizon problems is bounded by feasibility in each period and hence, for

each a, are all contained in a set that is compact in the product topology.

Using the arguments in Jones and Manuelli (1990), it also follows that the

utility function is continuous in this topology. Finally, for each fixed a, the

constraint set is both uhc and lhc in T . That is, letting ZT and Z∞, if zT ∈ ZT

and if zT → z∞ in the product topology, then z∞ ∈ Z∞ and if z∞ ∈ Z∞ then

letting zT be the projection of z∞ on the first T components, we have that

zT ∈ ZT and zT → z∞. From this, it follows that the solutions of the T

problem converge to the solution of the ∞ problem in the product topology.

(This is basically the Theorem of the Maximum.)

Lemma 4 For each a, (XT
t (a), F T

t+1(a), BT
t (a)) → (X∞

t (a), F∞
t+1(a), B∞

t (a)).

Proof. This follows immediately from the Lemma above since (Xs(a, t, T ), Fs(a, t, T ))∞s=0) →
((Xs(a, t,∞), Fs(a, t,∞))∞s=0) in the product topology.
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4.2 Step 2

Proposition 4 The strategies, (X∞
t (a), F∞

t+1(a), B∞
t (a)), form an SPE of the

infinite horizon game.

Proof. Suppose not. Then there is some player, and some node a, for

whom the prescribed strategy is not optimal. Let (X̂∞
t (a), F̂∞

t+1(a), B̂∞
t (a))

the supposed improving strategy choice at node a. Note that it is possible

that bt(i
t+1) might vary across it+1 = (it, it+1). Finally, let

((X̂s(a, t + 1,∞, it+1), F̂s(a, t + 1,∞, it+1))
∞
s=0)

denote the equilibrium outcome of the continuation game resulting from

using the strategy (X̂∞
t (a), F̂∞

t+1(a), B̂∞
t (a)) at the node a.

Then, by hypothesis,

Û = U(X̂∞
t (a)) + βg(F̂∞

t+1(a))
∫ F̂∞t+1(a)

0
Û(it, it+1)dit+1

> U∗ = U(X∞
t (a)) + βg(F∞

t+1(a))
∫ F∞t+1(a)

0
U(it, it+1)dit+1

where Û(it, it+1) and U(it, it+1) are, respectively, the utility of the children

under the two strategies.

First use the characterization result from the old appendix to show that we

can make b not depend on it+1. This follows from the convexity of the payoff

function of the continuation payoffs from the succeeding node forward. (This

is only shown for the T period games in the current appendix, but it follows

by taking limits as T →∞ and continuity.)

Thus, without loss of generality, we can assume that:

Û = U(X̂∞
t (a))+βg(F̂∞

t+1(a))F̂∞
t+1(a)u

(
X̂∞

t+1(a)

F̂∞
t+1(a)

)
+β2g(F̂∞

t+2(a))F̂∞
t+2(a)u

(
X̂∞

t+2(a)

F̂∞
t+2(a)

)
+. . .

and,

U∗ = U(X∞
t (a))+βg(F∞

t+1(a))F∞
t+1(a)u

(
X∞

t+1(a)

F∞
t+1(a)

)
+β2g(F∞

t+2(a))F∞
t+2(a)u

(
X∞

t+2(a)

F∞
t+2(a)

)
+. . .

From this, we want to show that we can construct a strategy for this player,

at the same node a, but in the finite horizon version of the game which also

does better. This will give us a contradiction.
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To see this consider the payoff that the agent will receive in the T period

game if he adopts the strategy (X̂∞
t (a), F̂∞

t+1(a), B̂∞
t (a)). Denote this by ÛT .

By construction, it follows as in the argument given above that ÛT → Û .

Similarly, letting U∗T denote the payoff from using the strategy (X∞
t (a), F∞

t+1(a), B∞
t (a)),

we have that U∗T → U∗.

But, then it follows that for large enough T , ÛT > U∗T contradicting the

fact that (X∞
t (a), F∞

t+1(a), B∞
t (a)) is an optimal strategy in the T period game.

This completes the proof.
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