Class Notes, Econ 8801
Two Results on Ramsey Taxes
Larry E. Jones

1 The Uniform Commodity Taxation Result

1.1 Basics

Original Reference is Atkison and Stiglitz, 1972.

Representative Consumer with preferences:

\[U(c_1, ..., c_n, l) \]

where \(c_i \) is consumption of the \(i \)-th good and \(l \) is labor supply.

Production function:

\[F(c_1 + g_1, c_2 + g_2, ..., c_n + g_n, l) = 0 \]

Assume that \(F \) is CRS.

Normalize the wage at \(w = 1 \).

HH problem is:

\[
\max_{c, l} \quad U(c_1, ..., c_n, l) \\
\text{s.t.} \quad \sum_i p_i (1 + \tau_i) c_i \leq l.
\]

NOTE: Taxes available on all goods expect leisure/labor supply.

Firm Problem:
\[
\max_{x_i} \quad \sum_i p_i x_i - l \\
\text{s.t.} \quad F(x_1, x_2, \ldots, x_n, l) = 0.
\]

Gov’t Budget Balance:
\[
\sum_i \tau_i p_i c_i = \sum p_i g_i
\]
Feas:
\[
x_i = c_i + g_i \text{ all } i.
\]

1.2 Implementability Constraint

Proposition 1 Assume enough interiority and differentiability so that FOC’s work. Then, a TDCE allocation satisfies:

Proposition 2 1) (FEAS) \quad F(c_1 + g_1, c_2 + g_2, \ldots, c_n + g_n, l) = 0, and

Proposition 3 2) (IMP) \quad \sum_i U_i c_i + U_l l = 0.

Proposition 4 Also, if an interior allocation satisfies (FEAS) and (IMP), then, the exist prices and taxes so that this is the TDCE allocation.

Proof: Standard Primal Approach argument.

FOC’s from HH problem are:
\[
U_i = \alpha p_i (1 + \tau_i) \\
U_i = \alpha
\]

where \(\alpha\) is the multiplier on the budget constraint in the HH problem.

Substituting for \(p_i (1 + \tau_i) = \frac{U_i}{U_l}\) in the budget constraint and multiplying through by \(U_l\) gives (IMP).

Conversely, suppose that \(c\) and \(l\) satisfy (FEAS) and (IMP) for the given \(g_i\). We construct the CE by:

1) Define \(x_i = c_i + g_i\)

2) Use Firms FOC to construct prices: \(p_i = -\frac{F_i}{F_l}\)

3) Construct taxes by: \(1 + \tau_i = \frac{U_i}{U_l} \frac{F_i}{F_l}\).

Check that with these definitions, all the relevant FOC’s and constraints are satisfied.
1.3 Ramsey Problem

The Ramsey Problem becomes:

$$\max \quad U(c, l)$$

s.t. (FEAS) and (IMP).

1.4 Uniform Commodity Taxation

Proposition 5 Suppose U satisfies $U(c, l) = W(G(c), l)$ G is homothetic. Then, at the solution to the RP, $\tau_i = \tau_j$ for all i, j.

Proof: Bunch FOC’s crap....

First a technical property. Since G is homothetic, we have:

$$\frac{U_i(\alpha c, l)}{U_k(\alpha c, l)} = \frac{U_i(c, l)}{U_k(c, l)}$$

or

$$U_i(\alpha c, l) = \frac{U_i(c, l)}{U_k(c, l)} U_k(\alpha c, l)$$

Differentiating with respect to α, and evaluating at $\alpha = 1$, gives:

$$\sum_j c_j \frac{U_{ij}}{U_i} = \sum_j c_j \frac{U_{ik}}{U_k}$$

for all i, k.

Rewriting this we have:

*** $$\sum_j c_j U_{ij} = A U_i$$

where $A = \sum_j c_j \frac{U_{ik}}{U_k}$ is independent of i.

Now, using the FOC’s for both the Firm and HH, we have:

$$1 + \tau_i = \frac{U_i}{U_i} \frac{F_i}{F_i}$$

Thus, $\tau_i = \tau_j$ if and only if:

$$\frac{U_i}{F_i} = \frac{U_j}{F_j}.$$
max \quad U(c, l) \\
\text{s.t.} \quad F(c_1 + g_1, c_2 + g_2, \ldots, c_n + g_n, l) = 0 (\gamma) \quad \text{(FEAS)} \quad \text{and} \\
\sum_i U_i c_i + U_i l = 0 (\lambda) \quad \text{(IMP)}. \\
The FOC for this for c_i is: \\
(1 + \lambda)U_i + \lambda \left[\sum_i U_{ij} c_i + U_{il} l \right] = \gamma F_i. \\
Using *** and the form of the utility function, we can rewrite this as: \\
(1 + \lambda)W_i G_i + \lambda \left[AW_i G_i + lw_{12} G_i \right] = \lambda F_i. \\
Thus, \\
\frac{G_i}{F_i} = \frac{\lambda}{(1 + \lambda)W_i + \lambda [AW_i + lw_{12}]} \\
which doesn’t depend on i. \\
Thus, \\
\frac{G_i}{F_i} = \frac{G_j}{F_j} \quad \text{for all } i, j. \\
Hence, \\
\frac{U_i}{F_i} = \frac{W_i G_i}{F_i} = \frac{W_j G_j}{F_j} = \frac{U_j}{F_j} \\
And hence, \tau_i = \tau_j \quad \text{as desired.} \\
Intuition?????? \\
Example: \quad U = \sum_i \alpha_i \frac{c_i^{1-\sigma}}{(1-\sigma)} + v(l). \\

2 Intermediate Goods

This presentation is taken from Chari and Kehoe, 1999.
Basic Reference is Diamond and Mirrlees, 1974.

They show that Ramsey allocations are ‘productively efficient’ under some assumptions. That is, MRT’s of all firms are the same for all goods. This wouldn’t hold if, for example, government taxed transactions between firms, e.g., for the sale of ’intermediate’ goods.
This is an example that illustrates this result – see Diamond and Mirrlees for the more general version.

- 3 final goods, consumption c, government consumption g and labor l.
- 1 intermediate good, z.

1) g and z are produced using l according to the CRS technology: $h(z, g, l) \leq 0$

2) c is produced using l and the intermediate good, z according to the CRS technology: $f(c, z, l) \leq 0$

HH Problem is:

$$\max \quad U(c, l)$$

s.t. \quad \eta (1 + \tau) c \leq w(l_1 + l_2)

where l_1 is labor supply to the final good producer and l_2 is labor supply to the intermediate good producer.

Final Good Producer Problem is:

$$\max \quad pc - w l - (1 + \tau z) q z$$

s.t. \quad f(c, z, l) \leq 0

Intermediate Good Producer Problem is:

$$\max \quad q z + r g - w l$$

s.t. \quad h(z, g, l) \leq 0

2.1 Ramsey Problem

The Ramsey Problem for this example is:

$$\max \quad U(c, l_1 + l_2)$$

s.t. \quad \xi U_c + (l_1 + l_2) U_i = 0 \quad (\text{IMP})$$

$$f(c, z, l) = 0 \quad (\eta) \quad (\text{FEAS1})$$

$$h(z, g, l) = 0 \quad (\mu) \quad (\text{FEAS2})$$
FOC’s are:

\[z : \quad \eta f_z = -\mu h_z \]
\[l_1 : \quad U_l + \lambda (cU_c + U_l + lU_l) + \eta f_l = 0 \]
\[l_2 : \quad U_l + \lambda (cU_c + U_l + lU_l) + \mu h_l = 0 \]

Thus, \(\eta f_l = \mu h_l \). Using this along with the \(z \) FOC, we obtain:

\[\eta f_l = \mu h_l \]
\[f_l \left(-\mu \frac{h_z}{f_z} \right) = \mu h_l \]
\[-\frac{f_l}{f_z} = \frac{h_l}{h_z} \quad **** \]

(This is ‘Productive Efficiency’ – equality of the MRT’s between \(z \) and \(l \) for both firms.)

The FOC for the firms are:

Final Good Producer Problem is:

\[
\text{max} \quad pc - wl - (1 + \tau_z)qz \\
\text{s.t.} \quad f(c, z, l) = 0 \quad (\lambda_f) \\
c : \quad p = -\lambda f f_c \\
l : \quad w = \lambda f f_l \\
z : \quad (1 + \tau_z)q = \lambda f f_z \\
\]

So,

\[
\frac{(1+\tau_z)q}{w} = \frac{f_z}{f_l} \quad ****_1
\]

Intermediate Good Producer Problem is:

\[
\text{max} \quad qz + rg - wl \\
\text{s.t.} \quad h(z, g, l) = 0 \quad (\lambda_h) \\
z : \quad q = -\lambda h h_z \\
g : \quad r = -\lambda h h_g
\[l : \quad w = \lambda_l h_l \]

So,

\[\frac{q}{w} = -\frac{h_z}{h_l} ****_2 \]

Using ****, ****_1 and ****_2, we see that

\[\frac{(1 + \tau_z)q}{w} = \frac{f_x}{f_l} = -\frac{h_z}{h_l} = \frac{q}{w} \]

and so, \(\tau_z = 0 \).

Summarizing:

Proposition 6 Under interiority, in the solution to the RP, intermediate goods are not taxed.

Problem: Give an example where this doesn't hold – e.g., you can't tax all consumption goods?