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Abstract

These lecture notes describe a basic version of the Diamond-Mortensen-Pissarides model
of unemployment.
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1 Search and Matching

Consider an economy in which consumption is produced by workers who are given a
task—a set of instructions for how an individual worker can produce consumption. Every
single worker who produces consumption has to have his or her own set of instructions.
It takes resources to create these instructions. Unfortunately, the technology is such that
nobody can create instructions for themselves. Instead, anyone who uses resources to
create a task must find another worker to perform that task.

The first key assumption will be that the process of matching a task with a worker
involves delay. The economy has a unit measure of workers. Workers not matched with
a task are called unemployed workers. Tasks not matched with workers are called va-
cancies. Let ut be the number of unemployed workers and vt the number of vacancies.
It the absence of any delay, this would immediately result in min{ut, vt} jobs —matched
worker-task pairs— and these jobs would immediately result in the production of con-
sumption. Instead, it will be assumed that there is a “matching function” M(ut, vt) that
describes the flow of new jobs when there are ut unemployed workers and vt vacancies.
Jobs are also destroyed, randomly, at the rate δ. When this happens, the worker becomes
unemployed, and (the set of instructions for) the task that was performed by the worker
disappears. Over a small interval of time ∆, the number of unemployed workers then
evolves according to

ut+∆ − ut ≈ −M(ut, vt)∆ + (1− ut)δ∆.

Assuming that ut ends up being a differentiable function of time, this yields

Dut = −M(ut, vt) + (1− ut)δ. (1)

If we know u0 and the path for vt, then this equation allows one to compute the path for
ut.

The second key assumption will be that vacancies can be created instantaneously.
There is delay in matching vacancies to unemployed workers, but not in creating va-
cancies. Specifically, during a small interval of time [t, t + ∆), anyone can use a∆ units
of consumption to create a vacancy. The vacancy lasts only during that small interval of
time, and it will take another a∆ units of consumption to supply a vacancy during the
next small interval of time [t + ∆, t + 2∆), and so on. We will say that the flow cost of
“maintaining a vacancy” is a per unit of time.

Clearly, there is a trade-off: maintaining vacancies is costly in terms of current con-
sumption, but it also leads to more employed workers in the future, who can then pro-
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duce more consumption. Maintaining vacancies is a form of investment, and the stock of
matched worker-task pairs is a form of capital. An easy problem to solve is to determine
the number of vacancies and the allocation of consumption across consumers that is op-
timal from the perspective of a planner who cares about the welfare of consumers in the
economy. The more tricky question is: what will happen when vacancies are created by
individuals (say, entrepreneurs or firms) and newly matched workers and vacancy sup-
pliers have to agree on how much of the output to be produced will go to either party in
the match. The most common assumption is that they bargain over this. The resulting
equilibrium will typically not correspond to what a planner would do.

2 The Planner’s Problem

There is a unit measure of infinitely lived households whose preferences over consump-
tion paths are described by the utility function

U(c) =

∫ ∞
0

e−ρtU(ct)dt.

The discount rate ρ is strictly positive and U is strictly increasing, strictly concave, suffi-
ciently smooth, and its derivative goes to infinity as consumption goes to zero.

There are workers who produce y > 0 units of consumption and unemployed who
produce x ∈ [0, y). The fraction of the population who are workers is denoted by nt ∈
[0, 1]. Aggregate output is thus nty+(1−nt)x. Some of this output can be used to maintain
vacancies. It takes a > 0 units of output to maintain a vacancy, and the measure of
vacancies at time t is denoted by vt ∈ [0,∞). The aggregate resource constraint is thus

ct + vta ≤ nty + (1− nt)x, (2)

where ct and vt are both non-negative. A natural alternative interpretation is that workers
can be used not only to produce consumption goods but also to maintain vacancies.

The technology for converting unemployed workers and vacancies into filled jobs is
described by a matching function M : R2

+ → R+ that is increasing, concave, and exhibits
constant returns to scale. The stock of workers who hold jobs evolves according to

Dnt = −δnt +M(1− nt, vt). (3)

Because an employed worker produces more output than an unemployed worker, and
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since there is no utility cost to producing this extra output, there are incentives to push nt
as close to 1 as possible. But jobs are destroyed at the rate δ, and maintaining the vacancies
that can lead to new jobs is a costly investment. What is the optimal allocation of output
to consumption and investment in new jobs?

2.1 The Hamiltonian

The constraint (2) is linear in ct, vt and nt, and the concavity of M implies that the set of
Dnt, nt and vt that satisfy (3) is convex. The HamiltonianH for the planner is

H(n, µ) = max
c,v≥0
{U(c) + µ (M(1− n, v)− δn) : c+ va ≤ ny + (1− n)x} .

This is concave in n and convex in µ. The properties of the utility function ensure that we
can focus on interior solutions for consumption. Let λt be the Lagrange multiplier for the
resource constraint at (nt, µt). The first-order conditions are then

DU(ct) = λt,

µtD2M(1− nt, vt) ≤ aλt, w.e. if vt > 0.

The Hamiltonian dynamics Dnt = D2H(nt, µt) and Dµt = ρµt − D1H(nt, µt) implies (3)
and

Dµt = [ρ+ δ + D1M(1− nt, vt)]µt − (y − x)λt.

In addition, there will be a transversality condition

lim
t→∞

e−ρtµtnt = 0. (4)

Note that Dµt = (ρ + δ)µt − (yλt − [xλt + D1M(1− nt, vt)µt]). So the equation for µt is
like the asset pricing equation for an asset that depreciates at the rate δ and generates
revenues yλt that are produced at the cost xλt + D1M(1 − nt, vt)µt. The cost xλt arises
because unemployed individual do produce x < y. The cost D1M(1 − nt, vt)µt reflects
the fact that new jobs “empty the tank” of unemployed individuals who are an input in
creating even more new jobs.

Eliminating the Lagrange multiplier λt yields

aDU(ct) ≥ µtD2M(1− nt, vt), w.e. if vt > 0 (5)

Dµt = [ρ+ δ + D1M(1− nt, vt)]µt −DU(ct)(y − x). (6)
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The optimal allocation is determined by the resource constraints (2)-(3) and the optimality
conditions (4)-(6), with n0 given.

The resource constraint (2) can be used to eliminate ct from (5)-(6). The first-order
condition (5) then determines vt as a function of (nt, µt). And then (3) and (6) pin down
(Dnt,Dµt) as a function of (nt, µt). Starting from a given n0, one can guess µ0 and then
solve the differential equation forward in time. If the resulting path is such that the
transversality condition (4) is satisfied, then the initial guess for µ0 and the associated
path {(nt, µt)}t≥0 is optimal.

2.2 The Steady State

Conjecture that the optimal combination of unemployment and vacancies converges to a
steady state (1 − nt, vt) = (u, v). In any steady state, the fact that jobs are destroyed at a
positive rate means that the number of vacancies will have to be positive. So (5) will hold
with equality. A constant number of unemployed workers and vacancies also implies
that consumption is constant, and so the left-hand side of (5) will be constant. It follows
that µt is constant in a steady state. Imposing Dµt = 0 in (6) and using (5) to eliminate µt
yields

y − x
a

=
ρ+ δ + D1M(1, v/u)

D2M(1, v/u)
. (7)

Since the matching function is just like a production function, the right-hand side is
strictly increasing in v/u. Any solution to this condition will have to be unique. If we
assume that the marginal products of M range throughout (0,∞), then a solution for v/u
is guaranteed. Imposing Dnt = 0 in (3) gives

δ = δu+M(u, v) (8)

The right-hand side can be interpreted as a production function in (u, v), and so this
steady-state condition is an isoquant in (u, v) space. We already have v/u, and the steady
state level of unemployment is then simply

u =
1

1 +M(1, v/u)/δ

So there will be a unique steady state.
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2.2.1 The Golden Rule

Filled jobs are the capital stock of this economy. As in the one- and two-sector models of
physical capital we have studied before, we can construct a golden rule. It is determined
by maximizing consumption subject to the steady-state condition (8),

max
u,v
{y − [(y − x)u+ av] : δ ≤ δu+M(u, v)} (9)

The inequality is a relaxed version of (3) in any steady state. One can interpret (y − x)u+

av as the cost of unemployed workers and maintaining vacancies, and so (9) requires
minimization of this cost subject to the isoquant (8). The first-order conditions for the
golden rule are simply

y − x
a

=
δ + D1M(1, v/u)

D2M(1, v/u)
, (10)

which says that the line (y − x)u+ av = constant and the isoquant (8) are tangent. As in
the steady-state efficiency condition (7), the right-hand side of (10) only depends on v/u,
and it is strictly increasing. The same assumption about the marginal products of M will
guarantee the existence of a unique golden rule.

0
0

u

v

δ = δu + M(u,v)

 golden rule

optimal

(y­x)u + av = y ­ c

FIGURE 1 Golden Rule and Optimal Steady State

A comparison of (7) and (10) shows that the v/u will be higher in under the golden
rule than in the optimal steady state. The isoquant (8) then implies that the number of
employed workers will be higher (unemployment will be lower) under the golden rule
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than in the efficient steady state. This is familiar from models of physical capital accu-
mulation. An illustration is given in Figure 1. A corollary is that increasing steady state
unemployment from the optimal steady state (and thus lowering v/u along the isoquant
(8)) will move the economy further away from the golden rule and lower consumption.

2.3 The Shadow Present Value Budget Constraint

The number of matched workers nt is the capital stock in this economy, and µt is the
shadow price for the constraint that limits how fast this stock can be augmented. One can
interpret µtnt as the shadow value of the capital stock at time t. In anticipation of decen-
tralizations to come, the following constructs a shadow present value budget constraint,
with µ0n0 as one of the components of wealth.

Observe that (3) and (6) with λt = DU(ct) imply

D [µtnt] = ntDµt + µtDnt

= [ρ+ δ + D1M(1− nt, vt)]µtnt − (y − x)λtnt

+µt [−δnt +M(1− nt, vt)]
= [ρ+ D1M(1− nt, vt)]µtnt − (y − x)λtnt + µtM(1− nt, vt).

Since the matching function M exhibits constant returns to scale,

D1M(1− nt, vt)µtnt + µtM(1− nt, vt) = µtD1M(1− nt, vt) + µtD2M(1− nt, vt)vt
= µtD1M(1− nt, vt) + aλtvt,

where the second equality follows from the first-order condition (5). Combining these
two observations gives

D [µtnt] = ρµtnt − [λt [(y − x)nt − avt]− µtD1M(1− nt, vt)]

and thence

D
[
e−ρtµtnt

]
= −e−ρt [λt [(y − x)nt − avt]− µtD1M(1− nt, vt)] .

Integrating this differential equation from t = 0 to t = T yields

µ0n0 =

∫ T

0

e−ρt [λt [(y − x)nt − avt]− µtD1M(1− nt, vt)] dt+ e−ρTµTnT .
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Using the transversality condition (4) and the resource constraint (2) gives

µ0n0 =

∫ ∞
0

e−ρt [λt [(y − x)nt − avt]− µtD1M(1− nt, vt)] dt

=

∫ ∞
0

e−ρt [λt(ct − x)− µtD1M(1− nt, vt)] dt.

Another way to write this is∫ ∞
0

e−ρtλtctdt = µ0n0 +

∫ ∞
0

e−ρt [λtx+ µtD1M(1− nt, vt)] dt.

The left-hand side is the shadow present value of consumption. The second term on the
right-hand side is the shadow present value of what households can do on their own:
simultaneously produce x units of consumption and contribute to the creation of new
matches. The shadow value µ0n0 of the initial stock of matches reflects the contribution
of already having n0 matches at the initial date.

3 Wage Bargaining

Continue with the same technology for producing consumption, maintaining vacancies,
and creating matches, as described so far, and for which we have characterized the allo-
cation a planner would choose. This section describes a decentralized model of what can
happen in this environment.

3.1 Complete Markets for Consumption

Assume there is a complete set of markets that allows households to trade consumption
subject to a present-value budget constraint. There is no aggregate risk and idiosyncratic
risk (such as the loss of employment, or success in finding a job) is shared across house-
holds, along the lines described in an earlier lecture note. There are no risk premia and
consumption flows are valued using expected present discounted values. Let rt be the
risk-free interest rate.

The typical household maximizes utility subject to∫ ∞
0

exp

(
−
∫ t

0

rsds

)
ctdt ≤ wealth,
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where wealth remains to be specified. The first-order condition for consumption is

e−ρtDU(ct) = λ0 exp

(
−
∫ t

0

rsds

)
, (11)

where λ0 is the Lagrange multiplier on the present-value budget constraint of the house-
hold. Differentiating this first-order condition with respect to t gives

rt = ρ− 1

DU(ct)

d [DU(ct)]

dt
.

This leads to the familiar Euler equations

rt = ρ+ γ(ct)×
Dct
ct

(12)

where γ(c) = −cD2U(c)/DU(c) is the coefficient of relative risk aversion.

3.2 The Labor “Market”

Write ut = 1 − nt for the measure of unemployed workers. As before, the number of
vacancies at time t is vt. Existing matches are destroyed exogenously at an average rate
δ > 0. Either party in a match can also choose to break it up at any time. Destroyed
matches are gone forever. The flow of new matches will be M(ut, vt).

3.2.1 Match Creation

Define
φt = M

(
1,
vt
ut

)
, ψt = M

(
ut
vt
, 1

)
. (13)

These are, respectively, the job finding and the vacancy filling rates. Assuming that all un-
employed workers have an equal shot at finding a match, an unemployed worker search-
ing for a match will be successful at the rate M(ut, vt)/ut = M(1, vt/ut) = φt. Similarly,
vacancies are filled at the rate M(ut, vt)/vt = M(ut/vt, 1) = ψt. The variable vt/ut is called
labor market tightness, traditionally written as θt = vt/ut. Note that φt is increasing in θt
while ψt is decreasing in θt. A tight labor market is a labor market in which it is easy to
find a job and hard to fill vacancies.
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3.2.2 Inside a Match

The matched pair of a firm and a worker are in joint possession of an asset (the match)
that can continue and bear fruit only if both parties cooperate and agree on the terms of
employment. In a frictionless market, immediate competition determines the terms of
trade. Unhappy workers can switch employers without delay, and unhappy employers
can hire other workers without delay. In such a frictionless environment, matches are
free: they can be reproduced at no cost. Here instead, creating a new match is costly:
there is delay, during which potential employers have to pay to maintain vacancies, and
unemployed workers only produce low output.

An important assumption will be that employers and workers cannot sign binding
agreements. At any point in time while a match is still viable, both parties simply have
to agree to continue the match. Consider a particular match and suppose the firm and
its worker agree to continue the match as long as the job is not destroyed exogenously.
Abstract from the possibility of signing bonuses, severance payments, or any other lumpy
transfers between the worker and the firm. We will not need them here. Let {ws}s≥t be the
path of wages paid to the worker from date t on, conditional on the continued viability of
the match.

Continuation Values Given this path of wage payments, define Ft to be the value of the
match to the firm: the expected present value of {y − ws}s≥t. This present value satisfies
the asset pricing or Bellman equation

rtFt = y − wt + DFt − δFt (14)

and a transversality condition. Define Vt to be the expected present value of current and
future earnings of the worker in this match. While the match lasts, these earnings are
simply the wages {ws}s≥t. When the match ends, the worker will be unemployed, earn x,
and search for a new match. Let Ut be the expected present value of all current and future
earnings of someone who is unemployed at time t. Then Vt must satisfy

rtVt = wt + DVt − δ(Vt − Ut) (15)

and a transversality condition. The firm and the worker inside this match will never meet
again after the match is broken up. And they know what will happen to a worker once
their match has broken down. They can both take Ut as given. Destruction of the match
leaves the firm with nothing.
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Adding up the two Bellman equations (14) and (15) equations gives

rt(Ft + Vt) = y + δUt + D(Ft + Vt)− δ (Ft + Vt) .

This differential equation is solved by

Ft + Vt =

∫ ∞
t

δe−δ(τ−t)
(∫ τ

t

exp

(
−
∫ s

t

rada

)
yds+ exp

(
−
∫ τ

t

rada

)
Uτ

)
dτ

= Et

[∫ τ

t

exp

(
−
∫ s

t

rada

)
yds+ exp

(
−
∫ τ

t

rada

)
Uτ

]
(16)

where Et[·] is the expectation over the random time τ at which the match is destroyed
exogenously. To confirm that this is the solution, note that integration by parts implies∫ ∞

t

δe−δ(τ−t)
(∫ τ

t

exp

(
−
∫ s

t

rada

)
yds

)
dτ =

∫ ∞
t

exp

(
−
∫ s

t

(ra + δ)da

)
yds,

as long as we know that the present value of y forever is finite. So the proposed solution
(16) can also be written as

exp

(
−
∫ t

0

(ra + δ)da

)
(Ft + Vt) =

∫ ∞
t

exp

(
−
∫ s

0

(ra + δ)da

)
(y + δUs) ds.

Note that the right-hand side depends on t only through the lower limit of integration.
Differentiating with respect to t proves the result. Equation (16) says that Ft + Vt is the
expected present value of the output y earned while the match lasts, plus the present
value of all earnings of the worker following the destruction of the match. Clearly, (16)
does not depend on the wages earned by the worker while in the match.

Wage Determination If the match were broken up at date t, the continuation value of
the worker would be Ut, and that of the firm would be zero. So the surplus generated
by the match, in present value, is equal to Ft + Vt − Ut. This surplus does not depend
on the wages paid by the firm to the worker while the match lasts. The firm gains from
continuing the match as long as Ft ≥ 0 and the worker gains as long as Vt ≥ Ut. If the
surplus Ft + Vt−Ut is strictly positive, there will be many paths of wages {ws}s≥t that are
consistent with both the firm and the worker consenting to a continuation of the match at
date t.

It will be assumed here that the agreed upon wages are such that the worker receives

11



a constant share of the surplus,

Vt − Ut = β (Ft + Vt − Ut) (17)

for some bargaining parameter β ∈ [0, 1). This division of the surplus is imposed for all
t while the match lasts.1 To see that this does indeed pin down wages, note that Ft + Vt

is determined by (16), with Uτ taken as given by the firm and the worker in this match.
The division of surplus (17) then determines Vt − Ut, and hence also Ft. The fact that (17)
is imposed continuously while the match continues allows one to infer DFt, by taking
a derivative of the path of Ft. And then the Bellman equation (14) pins down wt via
wt = y − (rt + δ)Ft + DFt.

The division of surplus (17) can be viewed as the outcome of a dynamic game in which
both the firm and the worker can break up that match at any time, and in which the
worker is supposed to produce y and the firm is supposed to pay wages. Such a dynamic
game will have many subgame perfect equilibria, and (17) describes one of them as long
as the overall surplus Ft + Vt − Ut is positive.

3.2.3 The Value of Search and Incentives to Create Vacancies

Because of (16), the value of Ft + Vt is the same in any continuing match. Consider equi-
libria in which the same bargaining rule (17) is used in all continuing matches. Then
wages are the same for all employed workers, and so is the value Vt of being an em-
ployed worker. Moreover, searching unemployed workers can all anticipate to receive
those wages in future matches. Since unemployed workers find matches at the rate φt,
the present value of all current and future earnings of an unemployed worker must sat-
isfy

rtUt = x+ φt(Vt − Ut) + DUt (18)

and a transversality condition. Subtracting (18) from (15) gives

rt (Vt − Ut) = wt − [x+ φt(Vt − Ut)] + D (Vt − Ut)− δ(Vt − Ut) (19)

So the value of being an employed worker rather than an unemployed worker is going to
be the present value of wt− [x+φt(Vt−Ut)] for the duration of the match. The earnings of
an unemployed worker are the output flow x and the expected capital gains from finding
a job. The gain from being employed is the amount by which the wage exceeds these
earnings.

1See Hall and Milgrom [2008] for an alternative division of the match surplus.
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There is free entry into vacancy creation, and the rate at which any vacancy is filled is
equal to ψt. In any equilibrium, it will have to be the case that

a ≥ ψtFt, w.e. if vt > 0. (20)

Consumption would be zero if ψtFt > a, and preferences are such that this will not hap-
pen in equilibrium. Vacancies will not be supplied if the cost of doing so exceeds the
expected gain.

Note that (17) implies Ft + Vt − Ut = (Vt − Ut)/β and thus Ft = (1− β)(Vt − Ut)/β. So
(20) can be stated more explicitly as

βa

1− β ≥M

(
ut
vt
, 1

)
(Vt − Ut), w.e. if vt > 0.

If M(∞, 1) =∞ then this forces vt > 0 and we obtain an increasing relationship between
Vt − Ut and vt/ut. The labor market will be tight if and only if the surplus of being an
employed worker over being an unemployed worker is high.

3.2.4 The Implied Wages

Adding (14) to (19) gives

rt (Ft + Vt − Ut) = y − [x+ φt(Vt − Ut)] + D (Ft + Vt − Ut)− δ(Ft + Vt − Ut). (21)

This is the asset pricing equation for the joint surplus of a match. The match produces y,
and the worker could “produce” x + φt(Vt − Ut) while unemployed. The surplus shar-
ing rule (17) says that we can transform this asset pricing equation into an asset pricing
equation for the worker surplus Vt − Ut by multiplying (21) by β. This yields

rt (Vt − Ut) = β (y − [x+ φt(Vt − Ut)]) + D (Vt − Ut)− δ(Vt − Ut).

But we already have the asset pricing equation (19) for the surplus of a worker. The two
equations should be the same. This will be true if and only if

wt − [x+ φt(Vt − Ut)] = β (y − [x+ φt(Vt − Ut)]) . (22)

In other words, the sharing rule for the flow surplus y − [x+ φt(Vt − Ut)] is the same as
the sharing rule (17) for the present values.

Suppose now that vt > 0, so that (20) implies a = ψtFt. The sharing rule (17) says that
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this is the same as a/(1 − β) = ψt(Vt − Ut)/β. Using this to eliminate Vt − Ut from (22)
gives the flow surplus for workers

wt −
[
x+

βa

1− β
φt
ψt

]
= β

(
y −

[
x+

βa

1− β
φt
ψt

])
.

The flow surplus y − wt for firms is then simply 1− β times the joint flow surplus. Using
φt = M(ut, vt)/ut and ψt = M(ut, vt)/vt, this can be written as(

wt −
[
x+ βa

1−β
vt
ut

]
y − wt

)
=

(
β

1− β

)(
y −

[
x+

βa

1− β
vt
ut

])
.

The outside option for an employed worker, x + (βa/(1 − β))vt/ut is high when vt/ut is
high. That is, when the labor market is tight. This means that the joint surplus of any
particular job is low: the match produces y, as always, but it easy for workers to find
alternative employment. The sharing rule (17) means that the flow surplus from a match
is low for both firms and workers when the labor market is tight. For firms, this simply
means low flow profits y − wt. But workers also benefit from their improved outside
option,

wt = (1− β)x+ β

(
y + a× vt

ut

)
. (23)

Wages are increasing in labor market tightness.

3.3 The Marginal Utility Weighted Surplus

As usual, it is convenient to eliminate the risk-free interest rate by considering marginal
utility weighted values instead of values measured in units of consumption. To this end,
define

st = DU(ct) (Ft + Vt − Ut) .

Differentiating this with respect to t and using the Euler equation together with the asset
pricing equation (21) for the joint surplus of a match gives

ρst = DU(ct) (y − [x+ φt(Vt − Ut)]) + Dst − δst.

The sharing rule (17) says that DU(ct)(Vt−Ut) = βst, and so this becomes ρst = DU(ct)(y−
x)− βφtst + Dst − δst, or

Dst = (ρ+ δ + βφt) st −DU(ct)(y − x).
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The free-entry condition (20) for vacancy creation can also be restated in terms of st, as

DU(ct)a ≥ (1− β)ψtst w.e. if vt > 0.

Taking into account the resource constraint (2) and the definition (13) of ψt, this condition
determines vt as a function of the state (ut, st).

3.4 Summary of the Equilibrium Conditions

Given the state (ut, st), consumption and the supply of vacancies are determined by

ct + vta = (1− ut)y + utx, (24)

DU(ct)a ≥ (1− β)M

(
ut
vt
, 1

)
st, w.e. if vt > 0, (25)

and then (ut, st) evolves according to

Dut = δ(1− ut)−M(ut, vt), (26)

Dst =

[
ρ+ δ + βM

(
1,
vt
ut

)]
st −DU(ct)(y − x). (27)

Solving (24)-(25) for ct and vt as a function of the state (ut, st) and then using this solution
to eliminate ct and vt from (26)-(27) produces a differential equation for (ut, st). The initial
value u0 is given and there is a transversality condition that requires e−ρtDU(ct) times
wealth to converge to zero.

3.4.1 The Hosios Condition for Efficiency

Recall from (5)-(6) that efficiency requires that

DU(ct)a ≥ µtD2M(ut, vt), w.e. if vt > 0

Dµt = [ρ+ δ + D1M(ut, vt)]µt −DU(ct)(y − x),

where µt is the Lagrange multiplier for the upper bound on D[1 − ut]. These two con-
ditions resemble (25) and (27), except that marginal products of M(ut, vt) matter for effi-
ciency while the equilibrium conditions depend on the average products M(ut, vt)/vt and
M(ut, vt)/ut. In the special case of Cobb-Douglas matching functions that are proportional
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to uβt v
1−β
t , these marginal and average products are related via[

D1M(ut, vt)ut
M(ut, vt)

,
D2M(ut, vt)vt
M(ut, vt)

]
= [β, 1− β] .

If we now take st = µt, then the efficiency conditions (5)-(6) and the equilibrium condi-
tions (25) and (27) coincide. The resource constraints are the same, and so the efficient
and equilibrium allocations coincide.

3.4.2 Vacancies and Consumption as a Function of (ut, st)

Write ct = c(ut, st) and vt = v(ut, st) for the ct and vt that solve (24)-(25). To focus on
the most interesting case, assume that M(∞, 1) = ∞ so that we can rule out vt = 0.
Combining (24)-(25) then gives

DU((1− ut)y + utx− avt)a = (1− β)M

(
ut
vt
, 1

)
st. (28)

The left-hand side is strictly increasing in vt and the right-hand side is strictly decreasing
as long as ut and st are both strictly positive. Suppose that utility satisfies the Inada
condition DU(0) = ∞. Then the left-hand side will go off to ∞ as avt approaches total
output (1 − ut)y + utx from below. On the other hand, the right-hand side diverges as vt
approaches 0 from above. So this equilibrium condition will have a unique solution for vt
whenever ut and st are strictly positive.

It is easy to see from (28) that v(ut, st) is strictly increasing in st: the higher the surplus
st = DU(ct)(Ft + Vt − Ut), the more vacancies will be maintained. Since maintaining
vacancies is costly, this immediately implies that c(ut, st) is decreasing in st.

It is also immediate from (28) that v(u, ·) is invertible. The fact that given any ut ∈
(0, 1), (28) implies one-to-one relationship between the surplus value st and the supply of
vacancies vt means that one can restate the differential equation in terms of (ut, vt) only,
using Dvt = D1v(ut, st)Dut + D2v(ut, st)Dst.

To examine the dependence of the supply of vacancies v(ut, st) on ut, write (28) as

st =
DU(y − (y − x+ avt/ut)ut)a

(1− β)M(ut/vt, 1)
. (29)

The right-hand side of this equation is increasing in labor market tightness vt/ut, and in-
creasing in ut when holding vt/ut fixed. For given st, an increase in ut therefore requires
a reduction in vt/ut. This says that v(ut, st)/ut is decreasing in ut. Holding fixed st, labor
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market tightness will be low when unemployment is high. But, as we will see, the equi-
librium value of the surplus st will be high when unemployment is high, and this is an
important force in the other direction, towards raising labor market tightness.

3.4.3 The Time Derivatives (Dut,Dst) as a Function of st

It follows from (26) that a high st implies a low Dut. To see how Dst depends on st,
combine (25) and (27) and use the fact that vt > 0 to conclude that

Dst
st

= ρ+ δ + βM

(
1,
vt
ut

)
−
(
y − x
a

)
(1− β)M

(
ut
vt
, 1

)
.

The right-hand side is increasing in vt, and so a high st implies a high Dst/st.
It follows that Dut < 0 above the Dut = 0 curve and Dst > 0 above the Dst = 0 curve,

in a (ut, st) diagram with ut on the horizontal axis and st on the vertical axis. Of course,
the inequalities flip when st is below these curves.

3.5 The Steady State

The steady state is defined by D[ut, st] = 0. This yields two curves in [u, s] space,

Dut = 0⇒ δ = δu+M(u, v), (30)

Dst = 0⇒ ρ+ δ + βM
(

1,
v

u

)
= (1− β)M

(u
v
, 1
)(y − x

a

)
, (31)

where v = v(u, s) is defined by (28). More conveniently, as in (29),

s =
DU(x+ (1− u)(y − x)− av)a

(1− β)M(u/v, 1)
. (32)

To construct the Dut = 0 and Dst = 0 curves in [u, s] space, one can vary u and v along
the two curves (30)-(31) and then use (32) to trace out the implicit s. Alternatively, one
can construct the steady-state directly in [u, v] space using (30)-(31) only, subject to the
constraint that the implied consumption is strictly positive. And then (32) will pin down
the implied surplus of an employed worker.
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FIGURE 2 Steady State and Transition Dynamics From High u0

First, observe that the Dut = 0 curve (30) is an isoquant for the increasing and concave
production function δu + M(u, v). So this defines v as a decreasing and convex function
of u. Second, the Dst = 0 curve (31) only depends on the ratio v/u. The left-hand side
is increasing in v/u and the right-hand side is decreasing in v/u. Any solution will be
unique. A solution is guaranteed by assuming M(∞, 1) = M(1,∞) = ∞. So the steady
state condition Dst = 0 pins down labor market tightness, and hence an upward sloping
line in [u, v] space. The unemployment rate can then be inferred from (30), or

u =
1

1 +M (1, v/u) /δ
. (33)

This is well defined and in (0, 1), and so the two curves (30) and (31) intersect in [u, v]

space. They do so only once. The two curves are shown in Figure 2, together with the
equilibrium trajectories for initial conditions above and below the steady state level of
unemployment.

3.5.1 Labor Market Tightness

To further interpret, write the Dst = 0 condition (31) as

a = M
(u
v
, 1
)
× (1− β)(y − x)

ρ+ δ + βM(1, v/u)
(34)
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The first factor on the right-hand side is the rate at which vacancies are filled, and the
second factor is the share 1−β of the surplus F+V −U that goes to the vacancy suppliers.
In this economy, the cost of maintaining vacancies is always a units of consumption. Both
factors on the right-hand side of (34) are decreasing in the labor market tightness variable
v/u. In a tight labor market, vacancies are filled slowly, and they are less valuable because
the unemployed quickly find jobs and so the effective discount rate at which the flow
surplus (1− β)(y − x) is discounted will be high.

To better understand the role of the job-finding rate M(1, v/u) in (34), recall from (18)
that the value of an unemployed worker has to satisfy

ρU = x+M
(

1,
v

u

)
(V − U)

in a steady state. Solving for U gives

U =
x+M(1, v/u)V

ρ+M(1, v/u)
.

This is an increasing function of v/u, and taking M(1, v/u) → ∞ gives U → V , holding
fixed V . That is, a very high job finding rate means that the value of employed workers
cannot be much above the value of unemployed workers. Unemployed workers will
soon be employed workers if the job-finding rate M(1, v/u) is very high. The difference
between the earnings of unemployed and employed workers can then not be large in
present value. The bargaining solution says that F = (1− β)(V − U)/β, and so the value
of a filled vacancy can then also not be very large. This is exactly what the effective
discount rate ρ+ δ + βM(1, v/u) entails.

Comparative Statics The steady-state condition (34) for v/u only depends on y, x and
a via the “surplus ratio” (y − x)/a. The labor market tightness variable v/u is increasing
in this surplus ratio. If the output gain from employment is high relative to the cost of
maintaining vacancies, then there will be a lot of vacancies per unemployed worker in
the steady state.

The right-hand side of (34) is decreasing in β, and so the steady state u/v ratio will
rise with an increase in β. Improving the bargaining power of employed workers will
unambiguously raise unemployment and lower vacancies because the Dut = 0 curve
does not depend on β. The effect on welfare must necessarily be ambiguous: we know
that efficiency requires that β satisfies the Hosios condition. So there is an optimal amount
of bargaining power.
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3.5.2 Wages

We already have wages from (23). To confirm that these wages will be in (x, y) in the
steady state, note that setting Dst in (27) together with the definition st = DU(ct) (Ft + Vt − Ut)
gives

F + V − U =
y − x

ρ+ δ + βM(1, v/u)
.

Setting DFt = 0 in the asset pricing equation for Ft yields F = (y − w) /(ρ + δ), and we
have the sharing rule βF = (1 − β)(V − U). Eliminating F and V − U from these three
conditions gives

w = x+
ρ+ δ +M(1, v/u)

ρ+ δ + βM(1, v/u)
× β(y − x).

This is a convex combination of x and y, as expected. The weight on y − x is larger than
β, as we can already infer from (23).

3.5.3 The Fast-Matching Limit

Suppose the matching function can be parameterized as M(u, v) = AM̂(u, v) for some
baseline matching function M̂(u, v) and a matching productivity parameter A. Use this
to write the Dst = 0 condition (34) as

a = M̂
(u
v
, 1
)
× (1− β)(y − x)

ρ+δ
A

+ βM̂(1, v/u)
.

The right-hand side is decreasing in v/u and so an increase in A will raise v/u. Taking the
A→∞ eliminates (ρ+δ)/A from the equilibrium condition, and thenM(1, v/u)/M(u/v, 1) =

v/u implies
v

u
=

1− β
β

y − x
a

.

That is, increasing the productivity of the matching function without bound raises labor
market tightness to an upper bound that is proportional to (y−x)/a and increasing in the
share of the surplus in a match that goes to the vacancy suppliers. It follows from (23)
that wages converge to y.

Of course, (33) implies that there is no unemployment in this limit. Since v/u con-
verges to a finite and positive limit, this means that v converges to zero as well. The
resources used to maintain full employment are negligible in the fast-matching limit, be-
cause it takes essentially no time to maintain the vacancies required to make up for job
destruction. In this economy, it is not really costly to design the jobs that allow workers
to produce y instead of x. The only thing that is costly is searching for the workers to do
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those jobs, and those costs disappear in the fast-matching limit.

3.6 The Phase Diagram

Figure 3 shows the equilibrium in [ut, st] space. The flow utility function is logarithmic
and the matching function is Cobb-Douglas.

3.6.1 The Curve Dst = 0

Recall that Dst = 0 pins down vt/ut at its steady state level. From (29) we know that,
holding fixed vt/ut, the zero-profit condition for maintaining vacancies implies that st is
increasing in ut. So Dst = 0 implies an upward-sloping curve in [ut, st] space.

3.6.2 The Curve Dut = 0

The Dut = 0 curve is an isoquant in [u, v] space, determined by δ = δu+M(u, v). So u pins
down v from this isoquant, and then we can use the zero-profit condition (28) (or (29)) to
calculate

s =
DU(y − [(y − x)u+ av])a

(1− β)M(u/v, 1)
.

Increasing u lowers v along the Dut = 0 isoquant, and so vacancy filling rate M(u/v, 1)

is increasing in u. Holding fixed the marginal utility of consumption, the requirement
that the profits from maintaining vacancies are zero forces a lower s. But the effect on
consumption of an increase in u along the Dut = 0 isoquant is ambiguous. Recall the
golden rule displayed in Figure 1. If u is below the golden rule, then increasing u will
raise consumption and the marginal utility of consumption will fall, further lowering s.
So the Dut = 0 curve is guaranteed to be downward sloping when u is below the golden
rule. But the effect of u on s is ambiguous when u is above the golden rule (as it is in
the steady state of the planner’s problem, and hence in the steady state equilibrium if the
Hosios condition holds), and then increasing u will lower consumption and increase the
marginal utility of consumption.

But because of Figure 2, we can be sure there is only one steady state, and this means
that the Dut = 0 and Dst = 0 curves cross precisely once. Along the Dut = 0 isoquant,
u = 1/(1 + M(1, v/u)/δ) implies that v/u ↑ ∞ as u goes to zero. So this means u/v ↓ 0

and hence 1/M(u/v, 1) ↑ ∞. At the same time, we know from Figure 1 that consumption
declines and so the marginal utility of consumption must rise as u becomes small. So
s ↑ ∞ as u ↓ 0. Since the Dst = 0 curve is upward sloping, this tells us that the Dut = 0

curve cuts the Dst = 0 from above.
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This is enough to argue that the stable manifold will be upward sloping. The case in
which s is decreasing in u along the Dut = 0 curve, anywhere in the neighborhood of the
steady state, is shown in Figure 3.
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FIGURE 3 The Phase Diagram

When unemployment is high, the marginal utility weighted value of a vacancy is high,
and the effect of this is to increase the supply of vacancies. A high number of unemployed
workers and a high supply of vacancies both help bringing unemployment back down to
its steady state.

Figure 4 shows the equilibrium trajectories for parameters taken from Pissarides [2009].
The steady state employment rate is 5.7% in this calibration and steady-state wages are
0.983. The initial level of unemployment in Figure 4 is 10%. This implies initial wages
of about 0.980, only a fraction below the steady state. The most striking fact about these
trajectories is the speed of convergence: unemployment is essentially back to the steady
state in about half a year. The next section explains why this happens.
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FIGURE 4 Equilibrium Trajectories for Pissarides [2009]

4 A Calibration

Monthly data on hires, quits, layoffs, and vacancies are available from the Job Open-
ings and Labor Turnover Survey (JOLTS) conducted by the Bureau of Labor Statistics
(BLS). The BLS also publishes data on the numbers of employed and unemployed work-
ers, based on their Current Population Survey (CPS.) The important flows are shown in
Figure 5.

2002 2004 2006 2008 2010 2012 2014 2016
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

th
ou

sa
nd

s

hires
quits
layoffs
hires­quits

FIGURE 5 JOLTS Flows
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See the class web site for more of the evidence for the US labor market. It is important to
note that these data are highly seasonal. The numbers in Figure 5 are seasonally adjusted.
The unadjusted data is available at the JOLTS web site of the BLS.

2002 2004 2006 2008 2010 2012 2014 2016
0

2000

4000

6000

8000

10000

12000

14000

16000

th
ou

sa
nd

s
unemployed
vacancies

FIGURE 6 Unemployment and Vacancies

4.1 Evidence on Job Finding and Destruction Rates

The unemployment rate in the US has come down very significantly from its most recent
peak in 2009, when it was close to 10%. The number of employed in the US is about
150 million, and the number of unemployed is around 8 million. This implies an unem-
ployment rate of 8/158 or about 5.1%. The number of hires currently is around 5 million
per month, and the number of quits around 3 million per month. Many of these quits
are accounted for by job-to-job transitions. The number of layoffs is about 1.75 million
per month. If we interpret these layoffs (rather than all separations, which includes both
layoffs and quits) as resulting from δ shocks, then this says that

δ ≈ 1.75× 12

150
= 0.14

per annum. Suppose there are no quits into unemployment. That is, every quit is initiated
by a hire in a job-to-job transition. Then the net flow of hires that will absorb unemployed
workers is about 2 million per month. So the job finding rate for unemployed workers is

φ =
12× 2

8
= 3
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per annum. In other words, a quarter of the unemployed find a job in every month.

4.1.1 Implied Steady-State Unemployment

Conjecture that φ is (close to) the steady state job finding rate for unemployed workers.
What will be the steady-state unemployment rate if there are no aggregate shocks? An
easy way to add some realism is to take into account that there is population growth.2

Suppose that the labor force is lt and the flow of new workers is jt. Suppose these new
workers initially join the population of unemployed workers and then find jobs, just like
unemployed workers who have already had jobs in the past. One could imagine alterna-
tive assumptions, but if this is the case, then the number of employed workers evolves
according to

Dnt = −δnt +M(lt − nt, vt), Dlt = jt.

Suppose that the population growth rate is η, and has been for a long time. This implies
that in a steady state

[jt, lt, nt, vt] = [j, l, n, v]eηt.

The differential equation for nt then implies that

(η + δ)n = M(l − n, v) = φ× (l − n).

The number of unemployed workers is u = l−n, and this implies an unemployment rate
of

u

l
=

η + δ

η + δ + φ
.

Notice that the population growth rate simply acts like an addition to the random job
destruction rate. In the US, population growth is about 1% per annum, and so the implied
steady-state unemployment rate is

u =
η + δ

η + δ + φ
=

0.15

0.15 + 3
=

1

21
≈ 0.048,

or 4.8%. This is not much different from the 4.5% that we would have estimated without
accounting for population growth. And it is only a fraction below the current unemploy-
ment rate of 5.1%. So the current unemployment rate is close to where it will be in a steady

2One should really include exit from the labor force as well. A simple and fairly realistic way to do that
is to have fixed finite (working) life spans T . But that will make what happens in every match depend on
the age of the worker. This itself may be a very useful step towards realism, but it also complicates the
analysis. Continue to assume that T =∞.
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state, consistent with our conjecture that φ = 3 is close to the steady state. Of course, this
assumes there will be no further aggregate shocks.

4.1.2 Using Vacancy Data to Fit a Cobb-Douglas Matching Function

At any point in time, we can learn about the matching function from

φt = M

(
1,
vt
ut

)
together with data on ut, vt and φt, obtained from data on the stock of unemployed work-
ers, the stock of vacancies, and data on the flow of workers hired per unit of time. Suppose
that the matching function is Cobb-Douglas,

M(u, v) = µuαv1−α.

This implies the log-linear relation

ln(φt) = ln(µ) + (1− α) ln(vt/ut).

At the peak of the 2008-2009 recession in the US, the difference between hires and quits
was roughly 2 million, just has it is now (the difference between hires and quits is very
stable compared to just about everything else in JOLTS.) But the number of unemployed
workers was as high as 16 million in the summer of 2009. The resulting job-finding rate for
the unemployed would then have been φt = 12 × 2/16 = 1.5, only half of its steady state
value. The JOLTS data on vacancies show that the number of vacancies in the summer
of 2009 was about 1/7 of the number of unemployed workers, while now it is up to 2/3.
Taking this to be the steady state, and fitting the matching function to both the steady
state and the trough of the most recent recession gives, roughly,[

ln(3)

ln(3/2)

]
≈
[

1 ln(2/3)

1 ln(1/7)

][
ln(µ)

1− α

]
.

Solving for ln(µ) and 1− α yields[
ln(µ)

1− α

]
≈
[

1 ln(2/3)

1 ln(1/7)

]−1 [
ln(3)

ln(3/2)

]
≈
[

1.28

0.45

]
,

which implies µ ≈ 3.6.
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Figure 7 expands on this back-of-the-envelope estimate. It shows monthly data on φt
(measured in as JOLTS hires minus quits per annum) and vt/ut for the period December
2000 through February 2016.
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FIGURE 7 Fitting a Matching Function with 2000-2016 Data

The regression line shown fits well and is precisely estimated. It has a slope 0.61 and the
intercept is 1.6, which implies µ ≈ 5.

4.2 Difficulties

We have not tried to explain why unemployment is not in its steady state. A simple an-
swer is to assume that there was an recent aggregate shock that destroyed matches. There
must have been a large aggregate shock that, somehow, destroyed a lot of matches in
the US economy, resulting in 10% unemployment. The year 2008 certainly was eventful.
But the difficulty with interpreting what happened subsequently through the lens of this
model of the labor market is that vacancies and unemployment should co-move, as illus-
trated by the equilibrium trajectory shown in Figure 2. Vacancies in the summer of 2009
should have been at an all-time high. Instead, they are at an all-time high now. The evi-
dence of this latest recession is not special: there is a strong negative correlation between
ut and vt in the data, and the resulting downward sloping cloud in u-v space is known as
the Beveridge curve.

Another difficulty is that the unemployment rate converges much more slowly back
to the steady state than is predicted by this model. To see this, continue to suppose that
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lt = leηt and write the dynamics for nt as

D
[
nte
−ηt] = −(η + δ)[nte

−ηt] +M(l − [nte
−ηt], vte

−ηt)

and then
D
[
ute
−ηt] = −[η + δ +M(1, vt/ut)]

[
ute
−ηt]+ (η + δ)l

or
D [ut/lt] = −[η + δ + φt] [ut/lt] + η + δ.

If the job finding rate φt = M(1, vt/ut) is close to its steady state, then this predicts that the
unemployment rate should converge to its steady state at the incredible rate of η+δ+φ =

3.15. The implied half life of a deviation from steady state is ln(2)/(η+δ+φ) ≈ 0.22 years,
or about 2.64 months. The unemployment rate peaked in the summer of 2009 at about
10%, or about 5.2% above the steady state. A constant job finding rate equal to its steady
state value of 3 would say that this should have shrunk to about

4.8 + e−3.15(10− 4.8) ≈ 5.02

only one year later, in the summer of 2010. In fact, the US economy is only now, in 2016,
reaching this level of unemployment. Even a constant job-finding rate at the low level of
2009, about 1.5, would imply fast convergence to the steady state. In the summer of 2010
unemployment would have been 5.8%, a level it only reached in 2015.

A much lower but constant job-finding rate would solve the speed of convergence
problem, but only at the cost of predicting a much higher steady-state level of unemploy-
ment (η+ δ)/(η+ δ+ φ). What the data want is a job-finding rate that is low when unem-
ployment is high, for long enough to slow down convergence, but not forever, to avoid
steady-state unemployment rates that are too high. This is precisely what the empirical
Beveridge curve predicts in the presence of a stable matching function, but the model
does not generate a realistic Beveridge curve because the model generates vacancies that
are well above their steady state when unemployment is high.

4.3 Outline of a Solution: Vacancies Are a Stock

The following is taken from Luttmer [2011], where a complete model with endogenous
entry and replication decisions is presented.

Abstract from population growth. Suppose workers have to be assigned to “projects,”
one per project. Let kt be the stock of projects at time t and continue to let nt denote the
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number of employed workers. Suppose any project not assigned to a worker is automat-
ically a vacancy. So nt ∈ [0, kt], ut = 1 − nt, and vt = kt − nt. Employed workers can
generate new projects (replicate the project they are currently assigned to) randomly at
the rate γ > δ. So we have

Dkt = −δkt + γnt,

Dnt = −δnt +M(1− nt, kt − nt).

Observe that this system now has two state variables. Vacancies can no longer jump up
to quickly soak up high unemployment. The steady state is determined by

δn = M(1− n, k − n), δk = γn.

Figure 8 shows the trajectories for ut = 1 − nt and vt = kt − nt together with the Dkt = 0

and Dnt = Dut = 0 curves.
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FIGURE 8 Project Replication and Matching

The matching function is very productive in this example, and this very quickly puts the
trajectory close to the downward-sloping Dut = 0 curve. Figure 9 displays the resulting
time series for ut = 1−nt and vt = kt−nt. Note the similarity to the US evidence following
the 2008 recession, shown in Figure 6.
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FIGURE 9 Starting From High Unemployment

5 Further Reading

Pissarides [2000] and Shimer [2010] are two monographs on search and matching models
of unemployment. A very useful survey can be found in Rogerson, Shimer and Wright
[2005].

References

[1] Hall, R.E. and P.R. Milgrom, “The Limited Influence of Unemployment on the Wage
Bargain” American Economic Review, vol. 98, no. 4 (2008), 1653–1674.

[2] Luttmer, E.G.J., “Firm Growth and Unemployment,” seminar at the Federal Reserve
Bank of Chicago (2011).

[3] Pissarides, C.A., Equilibrium Unemployment Theory—Second Edition, MIT Press (2000).

[4] Pissarides, C.A., “The Unemployment Volatility Puzzle: Is Wage Stickiness the An-
swer?” Econometrica, vol. 77, no. 5 (2009), 1339-1369.

[5] Rogerson, R., R. Shimer, R. Wright, “Search-Theoretic Models of the Labor Market: A
Survey,” Journal of Economic Literature, vol. XLIII (2005), 959-988.

[6] Shimer, R., Labor Markets and Business Cycles, Princeton University Press (2010).

30


