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Abstract. A Genome-wide association study (GWAS) estimates size
and significance of the effect of common genetic variants on a pheno-
type of interest. A Polygenic Score (PGS) is a score, computed for each
individual, summarizing the expected value of a phenotype on the ba-
sis of the individual’s genotype. The PGS is computed as a weighted
sum of the values of the individual’s genetic variants, using as weights
the GWAS estimated coefficients from a training sample. Thus, PGS
carries information on the genotype, and only on the genotype, of an in-
dividual. In our case phenotypes of interest are measures of educational
achievement, such as having a college degree, or the education years, in
a sample of approximately 2700 adult twins and their parents.

We set up the analysis in a standard model of optimal parental invest-
ment and intergenerational mobility, extended to include a fully specified
genetic analysis of skill transmission, and show that the model’s predic-
tions on mobility differ substantially from those of the standard model.
For instance, the coefficient of intergenerational income elasticity may
be larger, and may differ across countries because the distribution of
the genotype is different, completely independently of any difference in
institution, technology or preferences.

We then study how much of the educational achievement is explained
by the PGS for education, thus estimating how much of the variance of
education can be explained by genetic factors alone. We find a sub-
stantial effect of PGS on performance in school, years of education and
college.

Finally we study the channels between PGS and the educational
achievement, distinguishing how much is due to cognitive skills and
to personality traits. We show that the effect of PGS is substantially
stronger on Intelligence than on other traits, like Constraint, which
seem natural explanatory factors of educational success. For educational
achievement, both cognitive and non cognitive skills are important, al-
though the larger fraction of success is channeled by Intelligence.
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1. Introduction

In recent research of heritability of phenotypes based on genome-wide
association studies (GWAS) a number of markers have been identi�ed. A
GWAS is a study of common genetic variants spanning the entire genome
(typically one million Single Nucleotide Polymorphisms (SNP ’s) or more)
in a typically large set of individuals to determine if and how much any
variant is associated with a trait. The markers that achieve signi�cance at
the conventional GWAS threshold 1 are still limited in number, and together
explain a limited fraction of the variability of the phenotype. In spite of this,
a considerable fraction of phenotypic variation can be explained by a larger
set of genetic markers that includes variants not signi�cantly associated with
the phenotype.

A way to take into account the information available in markers, includ-
ing perhaps those with signi�cance lower than the GWAS threshold, is to
compute a Polygenic Score (PGS). A PGS is an individual speci�c score,
obtained as sum of the value of the markers in a selected set, each value
weighted by a coe�cient that has been estimated separately on an indepen-
dent training sample (Dudbridge (2013)). Our analysis here is based on the
large GWAS of educational attainment reported by Lee et al. (2018) (see
also Rietveld et al. (2013), Okbay et al. (2016)). An illuminating discussion
of the analysis of educational attainment in the modern GWAS era is in
Cesarini and Visscher (2017).

We set up the investigation in a fully speci�ed model of parental invest-
ment in education of children. The classical papers are Becker and Tomes
(1979), Loury (1981), Becker and Tomes (1986). Important developments
are, among many, in Solon (1992), Mulligan (1997), Mulligan (1999), Solon
(2004), Black and Devereux (2011)). Our model di�ers from most existing
ones in this �eld in two respects, both made necessary by the need to take
into account the information on genotype and its transmission. First, we
introduce explicitly the fact that children are the outcome of a joint process
involving a father and a mother; so we need to include a theory of mat-
ing in the the model (similarly to Aiyagari et al. (2000), Greenwood et al.
(2003)). The importance of assortative mating has been well documented
in the past. For instance Greenwood et al. (2016) document that assor-
tative mating along educational characteristics has increased in the USA.
We build here on research like Fernandez and Rogerson (2001), Fernandez
et al. (2005) which studies models where assortative mating directly a�ects
intergenerational mobility. Second, we model the process of skill formation
consistently with the transmission of genotype from parents to children,
along well known lines in genetics (see for example Nagylaki (1992)).

Within this theoretical framework, we address two basic sets of questions.
First, how much of the variance in educational achievement is explained by

1The threshold is 5 � 10�8; the factor 10�8 corrects (Bonferroni) for multiple
comparisons.
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the PGS? Recalling that the score contains only genetic information, this
estimate would give us a lower bound on how much of the variance of success
in education can be attributed to the individual’s genotype. How is this
e�ect mediated by assortative mating among parents, and the correlation
among their genotypes? And �nally, how is the e�ect of genes mediated by
the direct e�ect on the genotype of the children, and how much mediated by
the indirect e�ect on the environment provided to them, as well as parental
investment?

Second, what are the channels through which the e�ect of genotype, as
summarized by the PGS operates? Recall that the score is built on a statis-
tical association between genotype and the phenotype of interest, in our case
success in education. A natural �rst channel to consider is Intelligence: the
score likely summarizes a set of highly polygenic e�ects on intelligence, and
in turn intelligence improves the chances of success in education. But Intel-
ligence is not the only plausible channel; personality traits are an important
additional way. We use the term personality to indicate a set of individual
characteristics possessed by a person that together determine a consistent
pattern of cognition, emotions, motivations, and behaviors in various situ-
ations. A substantial fraction of success in education might be traced back
to motivation, self-control, ambition; in general, personality traits distinct
from pure cognitive skills. A gene a�ecting these traits would also appear
as contribution to the PGS score, even if unrelated to intelligence. These
are all natural channels. The e�ect of genes on education could operate,
however, along completely di�erent pathways, involving individual charac-
teristics that have no bearing on the technology of educational attainment,
for example discrimination. Clearly, understanding which of these pathways
operates, and in what measure, is essential, particularly for policy guidance.

The paper is organized as follows. In section 2 we present the model,
discuss its predictions, and how they di�er from the standard model, par-
ticularly regarding inter-generational mobility. Data and methods used are
reported in section 3. Section 4 argues that PGS is a good predictor of a
substantial fraction of the variance in several measures of educational suc-
cess at di�erent age. Estimates of the model’s parameters predicting the
e�ect from PGS to educational success are presented in section 5; di�erent
methods are used and compared. The e�ect of parental genotype on chil-
dren’s success operating thought he environment, in addition to the direct
e�ect on their genotype (passive gene-environment correlation) is estimated
in section 6. Fixed e�ects analysis of dizygotic (DZ) twins, in section 7,
allows us to separate the role of environment (which is common for DZ
twins) and genes (which are di�erent in a fraction that we can estimate).
Conclusions are presented in section 8.
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2. Parental investment and genetic transmission

We begin by providing the conceptual and theoretical structure for our
analysis below. To do so we must and do provide a model and an equilibrium
concept. We build the model in section 2.1 to 2.4; the complete model to
be tested is presented in section 2.5. Our aim is to show how the standard
analysis of parental investment in education and inter-generational mobility
(as pioneered in Becker and Tomes (1979), where the skill transmission
follows a simple AR(1) process) should be modi�ed to take into a account
a fully speci�ed genetic mechanism of skill transmission. A core component
of the model is the adaptation of the theory of marriage 2 (Becker (1973))
to predict mating and a model of genetic transmission. A comparison of
the prediction of the two models is provided in section 2.6; we show that
they di�er substantially on key predictions, for instance on intergenerational
mobility.

2.1. Parental Investment. A household maximizes a utility function of
own consumption and future income of two children, which in turn is af-
fected by the parental investment in education, genetic endowment and en-
vironment. The restriction to two children is consistent with the assumption
that population size is constant. In our data, the two children also happen
to be twins: this detail is irrelevant when we study parental investment,
and only becomes important when we study the correlation of skill and in-
come across siblings. We denote y the natural log of income, E consumption
expenditure, I parental investment in education of children and h human
capital measured by the education level. �e and �y denote the random shock
to education and income: each one is i:i:d: across periods and the two are
independent within periods. �’s denote productivity parameters of the sub-
scripted variable; so �I ; �h denote positive real numbers. � 2 (0; 1) is the
discount factor. A vector of real numbers � = (�1; : : : ; �n1 ; �n1+1; : : : ; �n)
describes the n skills, where index from 1 to n1 refers to hard or cognitive
skills, and those from n1 + 1 to n to soft or non-cognitive skills (Heckman
and Kautz (2012), Heckman and Kautz (2012)). Skills enter linearly into
the production of the education level though an n-dimensional vector of co-
e�cients ��. The superscript i refers to the family, the subscript j = 1; 2 to
the siblings; so a sibling is uniquely identi�ed by the pair ij. Household log-
income yi is some combination of the log-income of father yif and mother,

yim to be speci�ed later.

2In this paper, two terms, matching and mating are used interchangeably, as synony-
mous for marriage. The reason for the multiple terms is that the term matching is used
more frequently in the economics literature, and mating behavioral genetics. We use every
time the term most appropriate in the context.
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The ith household solves:

(1) max
(Ei;Ii1;I

i
2)
E(�i1;�

i
2)

0@(1� �) lnEi + �
X
j=1;2

yij

1A ;

subject to:

(2) Ei +
X
j=1;2

Iij = Y i

(3) hij = �I ln Iij + ���
i
j + �h;ij ; j = 1; 2

(4) yij = �hh
i
j + �y;ij ; j = 1; 2

We assume:

(5) 8i; j(8k 2 fh; ygE�k;ij = 0);E�h;ij �y;ij = 0;

The choice on consumption and educational investment is taken with the
knowledge of the skills (�i1; �

i
2) of the children, hence the sub-script in the

expectation of equation (1), which refers to the random shocks �h and �y.
At the optimal solution of the problem in equations (1-5) optimal parental

investment is equal for the two siblings (Îi1 = Îi2 � Îi), and is a constant
fraction of household income:

(6) Îi =
��Ih

1� � + 2��Ih
exp(yi) �  exp(yi):

where �Ih = �I�h. Equal investment in education for the two children is if
course a very special feature due to the preferences we have adopted.

2.2. Skill Transmission. We replace the standard AR(1) mechanism of
skill transmission (discussed in section 2.6 below) with a detailed model
where the skill vector � results from genetic factors, parental investment
in education, family environment common to all children, and idiosyncratic
random events for each individual. We examine these components sepa-
rately, beginning with the genetic component.

If K is the number of loci, a genotype is a g 2 GK � f0; 1; 2gK , where
0; 1; 2 refers to the count of one of the alleles in a bi-allelic system (GWAS’s
overwhelmingly deal with variants, SNP ’s, that are bi-allelic in the analy-
sis). The joint distribution of genotypes of the children, given the genotype
of the two parents, depends on the twin type, that may be monozygotic,
MZ or dizygotic, DZ. To de�ne it we start with the function from par-
ents’ genotype to the probability over genotypes of an individual o�spring,
described by a function H from GK �GK to �(GK):

(7) H : (gm; gf ) 7! H(gm; gf ) 2 �(GK):

H follows well known rules of Mendelian inheritance; for instance if K = 1
so GK = f0; 1; 2g, then H(1; 1) is (0:25; 0:5; 0:25), and H(0; 2) is (0; 1; 0).
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Children in our sample are all twins; in this case the genetic transmission
functions depend on the twin type T 2 fDZ;MZg, and are de�ned as:

(8) HDZ(gm; gf )(g1; g2) = H(gm; gf )(g1)H(gm; gf )(g2)

for the genotype pair (g1; g2) of the DZ twins and

(9)
HMZ(gm; gf )(g1; g2) = H(gm; gf )(g1) if g1 = g2

= 0 otherwise

for MZ twins.
Let w denote the n-valued function determining skills by the genotype g.

The use of polygenic scores relies on the two assumptions that w is additive
across loci{that is,

(10) w(g) =
KX
k=1

wk(gk)

and within each locus{that is,

(11) 8k;wk(gk) = �kgk for some real number �k

X a vector of observable variables (which include for instance the parents’
education, the family income and social status, and so on), � a matrix with n
rows, F a family speci�c n-dimensional shock (common to both twins, either
MZ or DZ), and �� an individual speci�c n-dimensional environmental zero-
mean shock on the skill. The skill of twin ij is given by:

(12) �ij = w(gij) + �Xi
j + F i + ��;ij :

In the analysis below we pay special attention to the simpli�ed model
where the only observable variable in the vector X in equation (12) is
parental income, modeling the e�ect of income on skill, distinct from the
e�ect of parental investment on human capital in equation (3). Equation
(12) becomes:

(13) �ij = w(gij) + �yi + F i + ��;ij

We assume:

(14) 8i; j(8k 2 fh; ygE�k;ij ��;ij = 0); EF i(��;ij )T = 0:

In the analysis below we also use the more general model to control for
education of parents, college degree of parents, work status of the father.
Substituting the optimal investment determined by equation (6) into (3)
and substituting the result into equation (4) we get the reduced equation
for income:

(15) yij = a+ �Ihy
i + ��h�

i
j + �h�

h;i
j + �y;ij

where a = �Ih ln , and ��h = ���h.
The complete model of the process on genotype, income, education and

skill for twins of type T is given by equations (3) for education, (8) and (9)
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for the genotype transmission, (12) for skill, and the above reduced equation
(15) for income. In the simple model (13) we assume

(16) �Ih + ��h� < 1

These equations completely determine a non-linear (because of the func-
tion H in equation (7)) transition on measures on the space of genotypes
and income, �(GK ��� Y ) when we specify how the pairs of parents are
selected. To this we turn now.

2.3. Matching Processes. To complete the system (8, 9, 12, 15) we need
to specify the matching process for parents. We assume that this process
depends on the individual characteristics that we have described so far, skill
and income, which are relevant for economic outcomes, but also on charac-
teristics in a set C that are important for matching but not for economic
activity (such as, to a �rst approximation, physical appearance); we let
Z � GK���Y �C, and the observable characteristics ZO � ��Y �C with
generic element zO; for convenience we indicate with a subscript whether the
element in �(Z) refers to the mother (as in �m(Z)) or the father.

A matching associates to a pair of distributions (�m; �f ) 2 �m(Z) �
�f (Z) an element M(�m; �f ) � � 2 � (Z � Z), describing the distribution
of pairs of genotypes, skills, income and characteristics of the two parents.
The matching process is required to be:

(1) Feasible: the marginal over the parents distribution is the same as
the original one:

M(�m; �f )∆i(Z) = �i; i 2 fm; fg

(2) Independent of genotype: the matching only depends on the
observable characteristics zO 2 �� Y � C.

The independence assumption is reasonable, at least as long as genetic test-
ing has not become widespread: it assures that for every zmO, and zfO; z

′
fO,

for every pairs of genotypes (gm; gf ) and (g′m; g
′
f ) the derivative below only

depends on zmO; zfO; z
′
fO

(17)
d�(gm; zmO; gf ; zfO
d�(g′m; zmO; g

′
f ; z

′
fO)

= R(zmO; zfO; z
′
fO)

Random Matching is an example of matching. With random matching,
a mother of type zmO is selected, and independently a zfO for the father,
according to �m and �f respectively. This model is convenient for its sim-
plicity, but it is not supported by the data, which show instead substantial
positive correlation between several characteristics of the parents. Thus
a model induced by preferences over matchings is desirable, and a better
approximation.
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2.4. Preferences and Stable Matchings. We assume a preference order
over matchings; consistently with our assumption on matchings, the order
is de�ned on the observable vector zO of each of the two mates. It is also
monotonic in the ��Y component, and is homophilic in the C component.
More precisely, recall that � � �nl=1�k, each component has a natural order
(taller, more intelligent, lower Neuroticism score), and Y has a natural order,
so � and ��Y have the natural induced partial order. An individual in the
marriage market is a type zO 2 � � Y � C. Preferences over mates of the
individual zO of sex s 2 fm; fg (recall m is mother, assumed to be female)
are represented by a weak order �zsO that is monotonic:

(18) 8z00M ; z
0
M : z

00
M � z

0
M implies 8c 2 C; (z00M ; c) �zOs (z

0
M ; c)

and homophilic:

(19) 8zM ; c; e; f : d(f; c) � d(e; c) implies 8z0M (z
0
M ; f) �(zM ;c)s (z

0
M ; e):

The household maximization problem described in equation (1)-(5), which
only depends on the �� Y components, de�nes a preference over matches.
In the household maximization problem an individual (�m; ym) evaluates the
utility U(�m; ym; �f ; yf ) from a match with an individual (�f ; yf ) anticipat-
ing the household income and the skill of the two children; so her preferences
(if the preferences are completely described by the household maximization
problem) are represented by U(�m; ym; �). The same holds for the f poten-
tial spouse. We assume that household log income yh is linear combination
of the income of the two spouses with weights wyi adding to 1, and that
the expected (by the parents) skill of each child �c is linear combination of
the skills of the parents with weight w�i , i 2 fm; fg also adding to 1. In
summary we assume:

(20) yh = wymym + wyfyf ;

and

(21) �c = w�m�m + w�f�f ;

Substituting the optimal investment (6) into the budget constraint (2)),
the education (3) and income(4) equations we �nd that, up to a constant
independent of � and y, the worth in the marriage market of a type (�; y) of
sex i 2 fm; fg is:

(22) Wi(�; y) � (1� � + 2��hI)w
y
i y + 2��h�w

�
i �

and the utility of a household is the sum of the worth of the spouses:

(23) U(�m; ym; �f ; yf ) = Wm(�m; ym) +Wf (�f ; yf )

so the household utility from the households maximization problem is linear
and monotonically increasing in the parents’ types and incomes, hence the
overall utility is (if we assume that any additional components are mono-
tonically increasing ) monotonically increasing.
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A stable matching is de�ned as usual a matching that cannot be blocked
by individuals or pairs of mates.3 By the properties we have derived we
conclude:

Proposition 2.1. A stable matching exists, and the distribution over genes
conditional on any pair of observable characteristics is uniform, that is (17)
holds.

Note that the stable matching does not in general imply perfect segrega-
tion according to characteristics C; imperfect segregation may occur if the
distribution of the (�; y) components is not the same conditional on the C
characteristics.

2.5. Complete Model. The genotype and income process determine com-
pletely the equilibrium. Note �rst that:

Proposition 2.2. If assumption (16) holds the system has an invariant
distribution � 2 �(Z).

We can then subtract from the variables (yij ; �
i
j ; h

i
j ; w(gij)) their expected

value with respect to the invariant distribution; so the constants are elimi-
nated (for example the a term in the reduced equation for income is elim-
inated). Since no confusion is possible, we keep the same names for these
variables which have now zero mean. We write the equations (8) and (9) in
the compact form:

(24) gij � HT (gim; g
i
f ); T 2 fMZ;DZg:

If we substitute equation (13) into the reduced equation for income (15)
we get the twin’s income as function of genetic endowment, family income,
family environment and idiosyncratic shocks:

(25)
yij = ��hw(gij) + (�Ih + ��h�)yi + ��hF

i+

��h�
�;i
j + �h�

h;i
j + �y;ij :

Our PGS measure is a summary of the e�ect of w(gij). The analysis of the
invariant distribution is simple if we set

(30) w�m = w�f ; w
y
m = wyf ;

4

3More precisely: A matching ν is stable, if and only if for all, except possibly a zero

measure set (with respect to the product measure ν 
 ν), pairs (zm, zf , z
′
m, z

′
f ),

zf �zm z
′
f or z

′
m �

z
′
f
zm or

�
zf �zm z

′
f & z

′
m �

z
′
f
zm

�
.

4The system resulting if we assume equation (26) is:

(27) yij = α�hθ
i
j + αIhy

i
j + εy;ij

(28) gij distributed as H(gim, g
i
f )



POLYGENIC ANALYSIS 11

� = 0; F i = 0; �� = 0; �h = 0; �y � N(0; �2
�y):

We call worth class the set of individuals with the same worth. In this
model, in each generation children are born of spouses of same worth (not
necessarily income: higher skill may compensate a lower income).

We call the skill allele at a locus the allele which yields a higher value of the
skill (more precisely, it has a higher genic value). 5 At equilibrium, match-
ing is random within each worth class, thus alleles are in Hardy-Weinberg
equilibrium. But the frequency may di�er across classes:

Proposition 2.3. Assume that skill a�ects human capital formation (��h 6=
0), and that the worth of an individual depends on income and skill, as in
equation (30). Then alleles at each locus are in Hardy-Weinberg equilibrium
within each worth class. Also the frequency of the skill allele is increasing
with the worth, thus society is strati�ed according to income, with higher
frequency of skill alleles associated with higher income.

Figure 2 below illustrates the second part of the proposition.

2.5.1. Numerical computation. In this simple case the main properties of the
process and equilibrium distribution of the model can be illustrated with a
numerical computation of the equilibrium. 6 We study the distribution in
�(Y � GK) in successive generations of a constant size population where
each household has two children, and a single skill (n = 1). The sex of
each child is determined independently (from each other and from the other
variables) with probability 1=2 on each sex.

Speed of Convergence. Convergence to the invariant distribution is fast, and
approximately achieved with �ve generations. Figure 1 reports the value,
for each k generation, of the ratio of the norm of the di�erence between
current and past �, and the norm of the current �. The ratio is within ten
per cent after �ve generations.

Strati�cation. The skill allele has at equilibrium a frequency that is increas-
ing with worth, but also with income. As we mentioned in proposition 2.3,
society is strati�ed. The e�ect is strong, and is stronger the higher the genic
value of the allele. Both facts are illustrated in Figure 2.

(29) θij = w(gij)

(30) W (θ, y) = (1 � δ + 2δαIh)y + 2δα�h

5The genic value is a measure of the contribution of the allele to the phenotype of
interest, the skill in our case (see for example page 117 of Crow and Kimura (1970)).

6Coding in Matlab (R2017a). The Matlab code is available upon request.
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Figure 1. Speed of convergence to invariant dis-
tribution. Normalized distance on the vertical axis is the
ratio of the norm of the di�erence between the current
and previous distribution, and the norm of the current
distribution.

2.6. Intergenerational mobility in standard and genetic model. The
standard model with autoregressive transmission of skill (Becker and Tomes
(1979)) has (in our notation) the following equations for income in generation
t:

(31) yt+1 = �Ihyt + ��h�t+1 + �yt+1

and for skill:

(32) �t+1 = ��t + ��t+1

where � 2 (0; 1) is a �xed \heritability" parameter. Note that there is only
one type of skill. At the stationary distribution, we can compute, using
the Yule-Walker equations, the intergenerational income elasticity �PM (the
reason for the subscript PM will be soon clear) to be:

(33) �PM = �Ih + ��h
�E(�; y)

V ar(y)
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Figure 2. Frequency of the skill allele by income.
The skill allele is the one higher genic value (relatively
larger e�ect on skill). The blue line, with largest di�er-
ences across income, describes the frequency of the allele
with highest genic value; the others are in decreasing or-
der.

where E(�; y) and V ar(y) have an explicit expression in terms of the primi-
tive parameters. 7 When ��y = 0, the inter-generational persistence formula
(33) becomes the well known formula (see e.g. Solon (2004)) where persis-
tence is a simple weighted average of the income and skill transmission:

(37) �PM =
�Ih + �

1 + �Ih�

7The explicit expressions are:

(34) V (θ) =
σ2
��

1 � η2

(35) E(θ, y) =
α�hV (θ)

1 � αIhη

(36) V (y) =
1

1 � α2
Ih

�
α2
�hV (θ) + σ2

�y + 2αIhα�hηE(θ, y)
�
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A direct comparison of the standard model (equations (31) and (32)) with
a genetic model like (24) and (25), where sex is an essential component of
reproduction, is meaningless, since, apart from the genes, there are not even
two parents in the standard model. So we must �rst build a more general
model which includes the standard one as a special case of the general class
of models (with gametic reproduction, as is the case for human population)
in sections 2.5 and 2.4. We assume income and skill to be the weighted
average of the income and skill of the two parents, as in equations (20) and
(21). Thus, the income of the child follows the equation:

(38) yt+1 = �Ih
X
i=m;f

wyi yit + ��h�t+1 + �yt+1

and the skill transmission follows:

(39) �t+1 = �
X
i=m;f

w�i �it + ��t+1

The matching between parents that decides the pairing of (�mt; ymt) with
(�ft; yft) is determined by preferences and stable matching as in section 2.4.
The standard model (31 - 32) becomes a special case of (38 - 39) when we
assume that preferences of mothers and fathers are lexicographic (with any
order on � and y) and �m = �f , so matching occurs only among identical
types (Perfect Matching, hence the PM subscript).

We now show that the formulas for intergenerational income elasticity (33)
or (37) of the standard model are an upper bound on the persistence within
the class of models requiring equations (31), (38) and (39). The reason is
that, as we have just seen, the standard model maximizes the similarity
among parents, forcing their income and skill to be identical. For example
consider the case where parents match only on income, but may di�er in
skill. This happens when preferences are linearly ordered by the income of
the spouse. In this case, the corresponding intergenerational elasticity, call
it �MY , can be shown to satisfy: 8

(41) �MY < �PM

We can now discuss the relation between prediction of the standard and
genetic model on the important issue of the size of intergenerational mobil-
ity. The standard model with autoregressive transmission of skill assumes
a �xed � (in equation 32). Such a �xed parameter, however, does not ex-
ist: the genetic model shows that the persistence represented by that � is
endogenous, and depends on the distribution of the genotype. Therefore

8The inequality follows because when parents match on income and only on income
the system (34-36) is as follows. Equation 34 becomes:

(40) V (θ) =
σ2
�� + �2

2
E(θm, θf )

1 � �2

2

.

Equations (35) and (36) are unchanged. Rearranging one obtains the inequality 41.
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the corresponding elasticity, call it �G, also does depend on the distribution,
which is di�erent in di�erent populations. So persistence may di�er among
populations independently of preferences, technology and institutions in the
economy, but depending only on the distribution of the genotype in that
population.

An important implication of the di�erences we have highlighted so far
is that the persistence in a model with genetic transmission of skill can be
higher than the one in the the standard model, even higher than the high-
est possible value in the class of standard models with sexual reproduction
(equations 38 and 39). That is, it may be the case that �G > �PM . It follows
in particular that the adoption of the amended model with AR(1) transmis-
sion and sexual reproduction (equations (38 {39)) might make predictions
worse, by further underestimating the persistence.

We illustrate this possibility in a simple but clarifying example. Take K =
1 (a single locus with alleles fA; ag), with frequency p(A) of A, determining
a one dimensional skill � 2 f�0; �1; �2g, ordered as the index. Preferences are
determined by the household maximization problem, hence are described by
(23); and to ease comparison with the simple form (37) we assume ��y =
0;� = 0; F = 0; �� = 0.

This economy has a stationary distribution at two values:

(42) (0; y0; �0) with prob 1� p(A); (2; y2; �2) with prob p(A);

where

yi =
��h�i

1� �Ih
:

The persistence here is 1, and this can never occur in an autoregressive
model with � < 1.

The example is obviously arti�cial in the assumption that a skill phe-
notype is determined by a single locus, whereas the skills of interest for
economic applications are highly polygenic; the force highlighted by the
example, however, is not at all arti�cial, and points to the e�ect that as-
sortative mating has on pulling apart the distribution of the genotype into
classes of homozygous individuals. 9 This e�ect is absent by assumption in
the autoregressive model, even in the amended version given by equations
(31), (38) and (39).

2.7. Correlation among Twins. In the �xed e�ects analysis below we
rely on the fact that DZ twins share important environmental character-
istics, but do not entirely share the genotype. The degree of the sharing
depends on the nature and strength of the assortative matching between
parents. Genetic correlation among parents may occur for two di�erent

9This force is well recognized in population genetics: see chapter 4 of Crow and Kimura
(1970), in particular sections 4.6 for our single locus example and 4.7. for a multifactorial.
The analysis in population genetics is very different form the one we present here because
the assortative mating in our model is endogenous and determined at equilibrium in the
marriage market.



16 ALDO RUSTICHINI, WILLIAM G. IACONO, JAMES LEE, AND MATT MCGUE

reasons. Correlation may exist because matching is directly on the rele-
vant phenotype (for example, the correlation on genes a�ecting Intelligence
among parents occurs because parents match according to Intelligence); or
it may occur indirectly, when matching occurs along dimensions unrelated
to the phenotype (for example, matching occurs along the characteristics
in the set C of physical appearance), but due to population strati�cation
a correlation between genes a�ecting variables in C and � exist. We can
illustrate this second possibility considering the extreme case in which there
is no overlap between loci a�ecting the � skills and the characteristics in
C, and matching along C characteristics is perfect. In this case the station-
ary distribution has segregated populations with di�erent frequencies on the
alleles determining �, thus di�erent distributions on the � skills. This equi-
librium is not robust, of course: with a small imperfection in the C-matching
the frequency of the � alleles converges exponentially in the long run to a
value independent of the C characteristics; however, the transition is slow
when the imperfection is small and in the transition the correlation may be
substantial.

Whatever the cause, the correlation for DZ twins is a simple function
of the correlation between the PGS of the parents. We use subscripts 1; 2
and m and f to indicate that the variable refers to �rst and second sib-
ling, mother and father respectively, and indicate with Gi be the algebra of
genotype of i, with i = m; f . Then:

Lemma 2.4. The correlation between the PGS of non identical full siblings,
hence in particular of DZ twins, is equal to 1

2 plus half of the correlation
between PGS of the parents, that is:

E(PGS1PGS2) =
1

2
+

1

2
E(PGSmPGSf ))

Proof. The proof follows well known lines (Nagylaki (1992)); they are per-
haps less familiar to an audience of economists, so it is presented here.

E(PGS1PGS2)
= E(E(PGS1PGS2)jGm;Gf )
= E(E(PGS1)jGm;Gf )E(PGS2)jGm;Gf ))
= E(E(1

2(PGSm + PGSf ))jGm;Gf )E(1
2(PGSm + PGSf ))jGm;Gf ))

= 1
2E(E((PGSm)2 + PGSmPGSf ))jGm;Gf )

= 1
2 + 1

2E(PGSmPGSf ))

where the �rst equality follows from elementary property of expectation, the
second from the conditional independence of PGS with respect to parents’
genotype, the third from additivity of PGS of each o�spring (our de�nition
of PGS ignores the dominance e�ects), the fourth from symmetry between
PGSm and PGSf , and �fth follow from elementary properties of expecta-
tions. �

Lemma 2.4 gives the correlation among DZ twins as a function of the
correlation among parents. In section 7 below we estimate the correlation
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among parents’ PGS, and �nd a perfect match with the prediction of the
lemma.

2.8. Gene-Environment Correlation. Genes and environment operate
together to determine personality and behavior of individuals. Importantly,
choice of environment is included in behavior. Behavior genetic research in
the last forty years has re�ned the conceptual tools to model the way in
which this joint e�ects operate (Plomin et al. (1977), Scarr and McCartney
(1983), Ja�ee and Price (2007)). Gene-environment interaction (usually de-
noted G � E) describes the idea that even if genes and environment are
independent, the way in which each of the two operates on personality and
behavior may depend on the value of the other; that is, genes and envi-
ronment do not operate additively. For example, genes may determine the
motivation of an individual (as a personality trait, measured for example by
tasks or survey questions) and environment may o�er opportunities (mea-
sured for instance by schooling available in the place of origin); but the
resulting success of the individual (measured by education or income) may
be di�erent from a linear combination of the two. In an extreme example,
in poor environments where opportunities are severely constrained a person
with high motivation and intelligence may fail just as one with low values,
and the di�erence may emerge only when adequate opportunities are o�ered.

The idea of Gene-Environment correlation (usually denoted as rGE, al-
though sometimes (Scarr and McCartney (1983)) the more explicit and re-
strictive notation Gene! Environment is used) rejects the assumption that
environment and genes are uncorrelated. There are three main ways in
which the correlation may arise. The most important for our purposes is
the passive rGE e�ect. 10 Genes of the parents a�ect directly the genes of
the children; but they also a�ect the environment in which the child grows,
hence the potential for correlation between the two. Of course, the action
of the genes of the parents on the environment does not arise directly as an
e�ect of genes: Higher Intelligence of parents, due in part to the genes of the
parents, a�ects directly the genes of the children, and together with shared
environment, parental investment on the parents, a�ect the environment of
the children.

2.9. Estimation Strategy. The next sections test and estimate the pa-
rameters of the model given by equations (13), (24) and (25). The data we
have available for income of twins are at the moment limited to income at
age 29 (see section 3.3 for details), hence they reect only approximately
the full earnings potential, and are therefore not yet suitable for a test. We

10The other two effects are evocative and active. The evocative effect refers to the dif-
ference in response that different genotypes induce in the environment; for instance, more
active children are more likely to induce stronger social stimulation from the environment,
and hence richer learning. The active effect is produced by the selection, perhaps pur-
poseful, of different environment by different genetic types. These two effects are harder
to measure in our data than the effects of passive GE correlation.
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have instead reliable data on educational achievement, and in our model
income is a linear function of human capital (see equation (4)), so we focus
in particular on the model (13), (24) and (43). The latter equation describes
human capital accumulation:

(43) hij = �Iy
i + ���

i
j + �h;ij

and is obtained substituting (6) into (3) and subtracting the constant term.
We are in particular interested in an estimate of w, the function mapping
from genotype (measured by the PGS) and skills, and the parameters ��
a�ecting the di�erent components of personality. This analysis is presented
in section 4; the interpretation of the estimated coe�cients and the possible
pathways is presented in section 5.

In our model, the passive correlation is modeled as the e�ect of parents’
genotype on the characteristics a�ecting the environment of the children. As
clear from the model (using equation (25) for both parents) the correlation
is mediated by the environmental e�ect (in particular the income of the
household of the parents, not just the parents’ genes). Results of the analysis
of the passive rGE are presented in section 6.

As we mentioned in the remarks after lemma 2.4 the bound on the corre-
lation among DZ twins allows us to use �xed e�ects analysis of the role of
PGS. In section 7 below we estimate the correlation among parents’ PGS,
and the results of the �xed e�ects analysis. We can now proceeds with the
description of the data.

3. Methods

3.1. Computation of PGS. The PGS’s of subjects were computed us-
ing LDpred, (Vilhjlmsson et al. (2015)), with prior probability of 0:3, us-
ing weights for each single nucleotide polymorphism (SNP) estimated from
the meta-analysis in Lee et al. (2018), excluding our (MTFS, described
below) sample. The analysis is restricted to individuals of European de-
scent. We control for Principal components (the potential problems associ-
ated with population strati�cation have been recently highlighted in Sohail
et al. (2018) and Berg et al. (2018)).

3.2. Measures of Educational achievement. Individuals in the sample
we use here are twin participants in the Minnesota Twin Family Study
(MTFS) (Iacono et al. (1999), Disney et al. (1999)), which includes two
cohorts of twins, one assessed initially at a target age of 11 (N=1512) and
a second assessed initially at a target age of 17 (N=1252), and subsequent
follow-up assessments undertaken at target ages of 20, 24 and 29 for the older
cohort and 14, 17, 20, 24 and 29 for the younger cohort. The participation
rates in the follow-ups of MTFS have generally been above 90 % McGue et al.
(2014). Information on educational achievement in the sample is provided
by a classi�cation of the individual in seven classes, described in Table 1.
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Data on academic performance of the twins in school were collected in a
dedicated academic history interview, given to both mother and child. Four
scores were calculated: GPA, Behavior Problems, Academic Problems and
Academic Motivation.

The GPA score used here is a GPA-like index, not the actual GPA. Five
questions in the Academic History survey asked separately both the mother
and the child about grades the child was getting in school. The questions
provided a 5-point letters scale, from A to F for the answer. The questions
asked about grades in (a) Reading/English, (b) Arithmetic/Math, (c) Sci-
ence, (d) Social Studies/History, and (e) Overall. The GPA score was then
calculated to represent an average of items a�d transformed to a four-point
scale. In a validation sample (Johnson et al. (2004)), the correlation between
reported grades and actual GPA from school transcripts exceeded 0:80.

Table 1. Education years variable. The variable Class
is a coarser classi�cation used in the analysis.

Education level Class Years
less than HS 1 10
GED 1 11
HS 2 13
HS + Vocation 3 14
Community college 3 15
College 4 19
Professional degree 5 22

3.3. Explanatory variables. A speci�c strength of our data is the avail-
ability of information on variables that are natural candidates to provide an
explanation of the way in which the genetic pro�le of individuals, summa-
rized by the PGS, can a�ect educational achievement. We describe these
data here.

Cognitive ability. Cognitive ability was assessed at intake for both MTFS
cohorts using four subtests from the age-appropriate Wechsler Intelligence
Scale. Twins in the younger cohort were assessed with the Wechsler Intel-
ligence Scale for Children-Revised (WISC-R) and twins in the older cohort
were assessed with the Wechsler Adult Intelligence Scale-Revised (WAIS-R).
The short forms consisted of two Performance subtests (Block Design and
Picture Arrangement) and two Verbal subtests (Information and Vocabu-
lary), and the scaled scores from these subtests were prorated to determine
overall IQ. IQ from this short form has been shown to correlate (r = 0:94)
with IQ from the complete test (Sattler (1974)).
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Non-cognitive Skills: Personality measures. Six measures of non-cognitive
skills derived from the age-17 assessment of both cohorts were used. First,
we used three higher-order scales from the Multidimensional Personality
Questionnaire (MPQ, Tellegen and Waller (2008)). The MPQ has eleven
primary trait scales (Absorption, Well-Being, Social Potency, Achievement,
Social Closeness, Stress reaction, Aggression, Alienation, Control, Harm
Avoidance, Traditionalism). Each is assessed with 18 self-report items. The
three higher order MPQ scales (Positive Emotionality (here PE, associated
with Wellbeing, Social Potency, Achievement, and Social Closeness), Neg-
ative Emotionality (NE, associated with Stress Reaction, Alienation, and
Aggression) and Constraint (CN, associated with Control, Harm Avoidance,
and Traditionalism.)) are computed as linear functions of the 11 primary
scales. 11

High Constraint is associated with tendencies to inhibit and constrain
impulsive as well as risk-taking behavior. Individuals with higher Negative
Emotionality scores are more prone to experience anxiety anger, and in gen-
eral negative engagement. Positive Emotionality is associated with search
for rewarding behavior and experience, while low PE may be associated
with loss of interest, depressive engagement and fatigue. In our sample the
three higher order dimensions, as well as IQ, are approximately normally
distributed.

Additional Non-cognitive Skills. Three additional measures of soft skills were
derived from answers to questionnaires.

Externalizing was the total number of DSM-IV symptoms of oppositional
de�ant disorder, conduct disorder, and adult antisocial behavior (i.e., the
adult symptoms used in diagnosing antisocial personality disorder) obtained
by interviewing the twin using with the Diagnostic Interview for Children
and Adolescents (DICA-R) (Reich (2000), Welner et al. (1987)) and Struc-
tured Clinical Interview for DSM-III-R (SCID) Spitzer et al. (1992)). The
interviews were modi�ed to ensure complete coverage DSM-IV and symp-
toms were reported over the lifetime of the adolescent. In the analysis re-
ported here, the Externalizing scale was log-transformed (after adding 1) to
minimize positive skew.

The Academic E�ort scale consisted of eight items answered by the twins’
mother on a 4-point scale (De�nitely False, Probably False, Probably True,
De�nitely True). Items on this scale (� = 0:91, (Cronbach (1951))) cover
academic e�ort (e.g., \Turns in homework on time") and motivation (\Wants
to earn good grades").

Finally, the Academic Problems scale consisted of three items (� = :77)
answered on the same 4-point format by the mother and covering behavioral
problems in a school setting (e.g., \Easily distracted in class").

11For details, see https://www.upress.umn.edu/test-division/mpq/copy_of_mpq_

BF-overview.
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Family Background. Three indicators of family background assessed at in-
take were analyzed here. First, Parent Occupational Status was based
on mothers’ and fathers’ reports and coded using the Hollingshead scale
(Hollingshead (1957)). We inverted the 1-7 point Hollingshead scale, so
that higher scores represented higher occupational status. Individuals were
coded as missing if they did not work full-time, were disabled or institution-
alized, or reported their occupation as homemaker. The occupation status
of the home was taken as the maximum of the two parent reports. Parent
College was the number of parents having completed a four-year college de-
gree. Finally, Family Income was measured on a 13-point, self-report scale
that ranged from 1 = less than $10,000 to 13 = Over $80,000. 12 Informa-
tion on the income of the twins was collected at the age 29 assessment, and
was the answer to the question: "What is your annual income before taxes
(in thousands of dollars?". In the analysis the data on income are translated
into dollar amount, then log transformed, and standardized.

4. PGS and educational achievement

The GWAS analysis in Lee et al. (2018) was conducted to identify SNP’s
signi�cantly associated with educational achievement. In this section we test
whether the PGS constructed using coe�cients estimated in that study
are useful to predict the same measures of educational achievement (like
Education Years and College) as well a related measure (the GPA score) in
a sample of subjects that had been excluded from a new meta-analysis using
the same methods as in Lee et al. (2018).

4.1. GPA score. A �rst measure of educational achievement is a summary
of the grades in school, collected at age 17 for the twins, the GPA-like score,
from now GPA score, described in detail in section 3.2. We use here the
information on grades provided by the mother, as more reliable than the one
provided by the child (the correlation between the two measures is 0:76).
The score ranges between 0 and 4, mode = 3, mean =2.984 SD = 0.88. Most
of the observations (94:8 per cent) are concentrated in the top three scores
(2 or larger). Figure 3 displays mean and 95 % con�dence interval for each
decile; each group contains between 251 and 253 twins. Note that in this
and in the other �gures in this section the horizontal distance between two
dots is proportional to the di�erence in PGS standardized score.

The di�erence between the bottom decile (mean = 2.67) and the top
(mean = 3.45) is large, considering that the scores are concentrated in the
top three. The simple linear regression has an intercept of 2:99 and a slope
of 0:23 (t = 12:22, p < 0:001).

12The bands were: less than $10K, $10,001 to $15K, $15,001 to $20K, $20,001 to $25K,
$25,001K to $30K, $30,001K to $35K, $35,001K to $40K, $40,001K to $45K, $45,001K to
$50K, $50,001K to $60K, $60,001K to $70K, $70,001K to $80K, more than $80K.
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Figure 3. GPA score and PGS. PGS is standardized with mean 0 and
SD 1. The GPA score is in original units, ranging between 0 to 4.

4.2. College degree. An important component of educational achievement
after school is the achievement of a college degree. We have data on parents’
college degree and PGS in addition to those of the twins, so we can compare
the change over two successive generations of the relation between the two
variables. Figure 4 reports the fraction of subjects achieving college for each
PGS decile, separately for parents and twins, for both sexes. The number
of subjects in each group for parents is 220; for Twins is between 251 and
253.

For parents, the fraction reaching a college degree in the lowest decile is
0.12 (SE=0.022); in the top decile the fraction is .59 (SE=0.033). The cor-
responding �gures for twins are 0.265 (SE =0.027) and .688 (SE =0.0293),
an increase of 14.5 per cent in the lowest and 9.8 per cent in the top. Overall,
the curve linking college to PGS shifts upward in a parallel way by about
10 to 15 percentage points. In a simple linear regression model of college on
the PGS the intercept is 28 per cent for parents and 44 per cent for twins
(SE =0.009 for both group). The slope is 12:7 per cent for both parents
and 13 per cent for twins (SE =0.009 for both group); the interaction term
between PGS and the indicator variable for parents is not signi�cant. Thus,
achieving college is easier (higher intercept) for the younger generation, but
the easier access has not made the role of genetic factors, however they may
operate, weaker (same slope).

This parallel shift is an average of two quite di�erent changes occurring
for the two sexes over the same period. The results for each sex are reported
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Figure 4. College degree and PGS. PGS is standardized with mean
0 and SD 1. \Fraction with college" is mean college achievement for each
group.

in the Appendix, section A.2. The conclusion of the analysis can be summa-
rized in the observation that the slope of college on PGS is 0.12 (SE=0.014)
for fathers and 0.10 (SE=0.014) for sons; it is 0.094 (SE=0.012) for mothers
and .11 (SE=0.013) for daughters. Overall, a stable relationship of approx-
imately 10 per cent, with a slight decline for sons and a slight increase for
daughters (for the latter, the intercept shifted to 0.509 from the 0.255 for
mothers). In conclusion, the larger college graduation rate for women has
been the result of a more favorable relation with PGS over the two genera-
tions. The analysis is made more precise by the �ndings in Tables 2 and 3
(see in particular models (6) in both tables).

Finally, we consider a robustness check: the details and the relation be-
tween college and PGS may depend on the somewhat arbitrary way in which
we decide to split the sample of subjects into deciles (rather than, say, quin-
tiles). For comparison, the lowess is reported in the Appendix, �gure 11.
The conclusions we reached with the analysis based on deciles are con�rmed;
the e�ect size is similar, and the curves for the twins are parallel shifts of
those for the parents.
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4.3. Education Years. If we consider education years, we �nd a relation
with PGS broadly similar to the one we have seen for college, as �gure
5 shows. Slightly di�erent is the evolution over time of the relation for
parents and twins between years of education and PGS. The slope of the
years of education on PGS is 0.75 for parents and 0.55 for twins (so the
curve is substantially atter for twins, with interaction term �18:6 per cent
(p = 0:005); the intercept is similar (13.5 for parents and 14.4 for twins).

Figure 5. Education Years and PGS. The variable Education Years is
de�ned in table 1.

5. Identifying the path from PGS to education

We have seen estimates indicating a substantial and signi�cant relation
between the PGS score summarizing information on the genotype, �ltered
though the coe�cients derived from the education GWAS on three mea-
sures of educational achievement. Since the GWAS-derived weights are the
same for individuals in our sample, when we try to predict the di�erence
in educational achievement of two individuals based on the PGS we are
only using information on the two individuals’ genotype. In this sense, the
analysis in the previous section identi�es purely genetic e�ects.
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While these results clearly indicate a link between genotype and educa-
tion, they are completely silent on the pathway though which a potential
e�ect operates. However, identifying these paths is a crucial pre-condition
to any attempt to derive policy conclusions from the �ndings. From our pre-
vious analysis no �rm conclusion can be derived, precisely because we have
yet no information on the way the e�ect operates. To illustrate, one may
consider two completely unrelated, plausible but both hypothetical path-
ways.

In an extreme case, di�erences in educational achievement due to genetic
factors are only due to discrimination, which is based on genetic di�erences
(or else they would not be visible through the lens of the PGS), which
however has no bearing on the ability to reach education. Factors like color
of the eyes, of the hairs and of the skin, or height are in large part genetic in
origin, but have no impact on the ability or inclination to achieve education.
If the pathway from genotype to education was entirely of this type, then
a clear implication for policy is that equality of educational outcome can
be achieved at no cost. At the other extreme we can consider a case where
di�erences in educational achievement due to genetic factors are produced
by di�erences in individual characteristics that are essential prerequisites for
educational achievement. Intelligence, and features of personality such as
Conscientiousness or Constraint are examples of such characteristics. This
scenario does not preclude of course policies aimed at reducing inequality of
educational outcomes. However, and this is very di�erent from the previous
scenarios, the policies to be adopted would be potentially costly.

In this section we identify how much of the e�ect of PGS on educational
achievement can be attributed to factors such as Personality traits and In-
telligence, as well as family environment variables like parents’ education
and family income.

5.1. From Intelligence and Personality to education. Tables 2 and 3
below report the regression analysis for GPA score and College for twins;
4 reports the analysis of College achievement for parents. In the Appen-
dix, section A.4, Table 17 reports the ordered logit analysis for Education
Years and Table 18 the corresponding analysis for parents. The analysis of
these three distinct measures of educational achievement supports speci�c
common conclusions.

First, Intelligence and Personality traits explain a substantial part of the
outcome. The coe�cient of IQ score is signi�cant in the full model in
all cases, including the parents. The coe�cients of Positive A�ect, Nega-
tive A�ect and Constraint are signi�cant in all cases in the model where
only Intelligence and Personality are introduced (model 3 for both twins
and parents), in particular when variables describing attitude to academic
work (Academic E�ort and Academic Problems) and socialization problems
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(Externalizing) are excluded. These latter variables are closer to the educa-
tional outcome, hence they naturally capture part of the explanatory power
of Personality and Intelligence.

Second, only part of the explanatory power of the PGS is contained in
the variables Intelligence and Personality. The coe�cient of PGS remains
signi�cant and large in all cases, including parents, after these controls are
introduced, although of course introducing them reduces the coe�cient of
the genetic information in PGS.

Third, the sizes of the e�ects of Intelligence and Personality are compara-
ble. In the regression for GPA score of twins (table 2) the coe�cient of IQ
score is around 28 per cent (model (2) and (4)); the sum of PA and CN is
27.9 per cent (model (3)), and NA has a signi�cant coe�cient of 10.5 (with
negative sign in the original variable). In the table 3 for College of twins the
odds ratio for IQ is between 3.18 (model (2)) and 25:1 (model 4), whereas
the product of PA and CN is 3.02, and NA (reversed) has a coe�cient 1.69.

Fourth, family environment matters even after we control for the informa-
tion in genetic data given by PGS, Intelligence and Personality. Two vari-
ables describe family environment in our data, and the possibly independent
and speci�c contribution to success in education of the twins: family income
and education of parents. Both variables have considerable and signi�cant
explanatory power even after we condition on PGS, as well as Intelligence
and Personality traits (with the exception of the role of family income in
the GPA score).

Fifth, for measures of educational achievement, and for both parents and
twins, the information contained in the PGS has explanatory power even
after we condition on Personality, Intelligence and Family Income in the full
model (see in particular model 5 for twins in tables 2 and 3, and model 3 in
table 4).

Finally, the role of Intelligence and Personality is qualitatively consistent
for twins and parents, although the size of the coe�cients changes. There are
some striking and interesting exceptions, most notable the role of MPQ CN
(Constraint) for twins and parents (see in particular model (3) of Table 3
compared to model (2) of Table 4). Decomposing the e�ect of Constraint in
the three components (see section 3.3) of Control, Traditionalism and Harm
Avoidance shows that its negative e�ect on college achievement in parents
is the result of a positive e�ect of Control (as expected, and consistent with
the �nding for twins) and a negative e�ect (resulting from cultural factors)
of Traditionalism and a negative e�ect of Harm Avoidance (as expected).

5.2. From PGS to personality. In the previous section we have examined
the link between Personality traits and Intelligence on the one hand, and
educational outcome on the other. We now consider the other natural link:
that between PGS and these two sets of individual characteristics. Figure
6 shows the scatter-plot for the IQ score, separately for parents and twins.
The correlation is around 30 per cent. It is interesting to note that the
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correlation is very similar for both groups; we may contrast this with the
di�erence in the relation between educational outcomes and PGS that we
have seen in section 4, that showed instead signi�cant di�erences.

Figure 7 shows the corresponding scatter-plot for the average of the soft
skill indexes (these data are only available for twins). The correlation is
between one third and one half the one we have found for IQ.

Table 5 summarizes the analysis of the e�ect of PGS on di�erent traits.
It presents the coe�cient of univariate regressions of PGS on each of the
indicated traits. By far the largest coe�cient is the one for IQ. Those for
the three MPQ meta-traits are all in the expected direction, but smaller in
size; the one for Constraint, surprisingly is small and not signi�cant. In line

Table 2. GPA score for Twins. Panel on PGS, IQ and Personality.
Education of parents is the average of years of education of the parents. All
variables, including College of parents, are standardized to mean zero and
SD 1. The signs of MPQ NA, Externalizing and Academic problems are
reversed.

(1) (2) (3) (4) (5) (6)
b/se b/se b/se b/se b/se b/se

PGS 0.247*** 0.173*** 0.241*** 0.164*** 0.098*** 0.067***
(0.025) (0.025) (0.024) (0.023) (0.019) (0.025)

IQ 0.282*** 0.293*** 0.175*** 0.192***
(0.023) (0.022) (0.018) (0.018)

MPQ PA 0.063*** 0.049*** 0.007 0.013
(0.019) (0.018) (0.015) (0.015)

MPQ NA 0.105*** 0.086*** 0.026* 0.024
(0.019) (0.018) (0.015) (0.015)

MPQ CN 0.216*** 0.243*** 0.045** 0.033*
(0.021) (0.020) (0.018) (0.018)

Externalizing 0.041* 0.034
(0.024) (0.023)

Academic effort 0.494*** 0.475***
(0.023) (0.023)

Academic problems 0.116*** 0.122***
(0.021) (0.021)

Education of parents 0.052** 0.053**
(0.021) (0.021)

Family Income 0.037 0.028
(0.023) (0.023)

Male –0.248***
(0.041)

Male� PGS 0.067*
(0.036)

Constant 0.041 0.052* 0.149*** 0.166*** 0.016 0.132***
(0.028) (0.027) (0.028) (0.027) (0.025) (0.031)

N 1801 1801 1801 1801 1801 1801
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with what we have seen in �gure 7, the coe�cient for the Soft Skill index is
signi�cant and in size about one third of that for IQ.

5.3. Mediation Analysis. Mediation analysis tests the hypothesis that
the way in which an independent variable (IV ) a�ects a dependent variable
(DV ) may depend on the intervention of an intermediate mediating variable
(MV ). 13 A mediating variable should a�ect the value of the dependent

13A different approach to mediation analysis is Causal mediation analysis: see Hayes
(2009) for an exposition. The results in this case confirm those obtained from the standard,
Sobel-Goodman, method. They are available from the authors upon request.

Table 3. Probability of College for Twins, Logit regression on
PGS, IQ and Personality. Odds ratios reported. Standard error of
OR in parenthesis. Education of parents is the average of years of education
of the parents. All independent variables, including College of parents, are
standardized to mean zero and SD 1. The signs of MPQ NA, Externalizing
and Academic problems are reversed.

(1) (2) (3) (4) (5) (6)
b/se b/se b/se b/se b/se b/se

PGS 2.732*** 2.187*** 2.758*** 1.927*** 1.686*** 1.269
(0.350) (0.289) (0.360) (0.251) (0.214) (0.210)

IQ 3.185*** 2.517*** 2.173*** 2.286***
(0.439) (0.340) (0.288) (0.311)

MPQ PA 1.645*** 1.437*** 1.429*** 1.470***
(0.171) (0.158) (0.156) (0.162)

MPQ NA 1.692*** 1.415*** 1.361*** 1.361***
(0.179) (0.155) (0.147) (0.148)

MPQ CN 1.836*** 1.153 1.238 1.200
(0.208) (0.151) (0.161) (0.159)

Externalizing 1.367* 1.335* 1.320*
(0.225) (0.216) (0.215)

Academic effort 3.703*** 3.285*** 3.182***
(0.674) (0.583) (0.572)

Academic problems 1.308* 1.336** 1.342**
(0.193) (0.194) (0.197)

Education of parents 2.049*** 2.057***
(0.277) (0.280)

Family Income 1.489*** 1.479***
(0.213) (0.214)

Male 0.590**
(0.151)

Male� PGS 1.858**
(0.456)

Constant 0.841 0.872 1.192 0.754* 0.726** 0.915
(0.103) (0.110) (0.158) (0.124) (0.118) (0.182)

N 1838 1838 1838 1838 1838 1838
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variable, but should also be a�ected by the IV . The composition of the
e�ect from IV to MV with that from MV to DV is the indirect e�ect of
the IV on DV . In our application, the IV is the PGS, the dependent
variable may be any of the variables of interest in our analysis, such as the
GPA score, college degree, or the education years. The mediating variables
we consider are natural candidates for the role of carrying at least part
of the e�ect from IV to DV , such as Intelligence and Personality traits.
Once we decompose the total e�ect from IV to DV into the direct and

Table 4. Probability of College for Parents, Logit regression on
IQ and Personality. Odds ratios reported. Standard error of OR in
parenthesis. All independent variables are standardized to mean zero and
SD 1. The sign of MPQ NA is reversed.

(1) (2) (3) (4)
b/se b/se b/se b/se

PGS 1.803*** 2.337*** 1.769*** 1.673***
(0.163) (0.209) (0.160) (0.196)

IQ 4.883*** 4.640*** 4.641***
(0.612) (0.585) (0.588)

MPQ PA 1.443*** 1.443*** 1.445***
(0.124) (0.128) (0.129)

MPQ NA 1.286*** 1.155 1.155
(0.115) (0.106) (0.106)

MPQ CN 0.591*** 0.869 0.875
(0.057) (0.085) (0.088)

Male 1.024
(0.161)

Male� PGS 1.138
(0.194)

Constant 0.149*** 0.246*** 0.159*** 0.157***
(0.022) (0.032) (0.025) (0.028)

N 1970 1970 1970 1970

Table 5. Dependent variables: IQ, MPQ, school attitudes. Each
variable regressed on PGS. OLS, Twins only All variables are stan-
dardized to mean zero and SD 1.

IQ PA NA CN Soft Ext AC Eff Ac Pr
b/se b/se b/se b/se b/se b/se b/se b/se

PGS 0.271*** 0.065*** –0.046* –0.010 0.093*** –0.065*** 0.139*** –0.105***
(0.022) (0.024) (0.024) (0.022) (0.027) (0.023) (0.026) (0.026)

Const. –0.041 0.110*** 0.274*** –0.408*** –0.001 –0.374*** 0.038 –0.030
(0.025) (0.025) (0.025) (0.023) (0.029) (0.026) (0.029) (0.028)

N 2265 2265 2265 2265 1838 1838 1838 1838
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Figure 6. Intelligence and PGS. Parents (left panel)
and twins (right panel) separately.

indirect e�ect, we have a quantitative estimate of the fraction of the e�ect
of IV that we can explain (through the action of the MV ) and the fraction
that we can call \direct" and is therefore no further explained. In our
data we have detailed information on these variables. Multiple mediation
analysis considers several mediating variables simultaneously. The results
on multiple mediation analysis are reported in section A.7 of the Appendix.

We consider here the indirect e�ect of IQ as a MV with Education Years
as DV ; it is instructive to compare the e�ects for parents and for twins.
For the entire sample (parents and twins) the coe�cient of the regression of
IQ on PGS is :302 (SE = 0:014, Z = 21:49). As we know, this coe�cient
is remarkably stable over time: it is :301 (SE = 0:019, Z = 15:09) for
twins, and :304 (SE = 0:019, Z = 15:38) for parents. The coe�cient of the
regression of Education Years on IQ is for the entire sample :301 (SE =
0:014, Z = 21:76). This coe�cient changes in the two generations. It is :187
(SE = 0:018, Z = 15:03) for twins, but is substantially larger for parents:
:477 (SE = 0:019, Z = 15:38). The proportion of the total a�ect that is
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Figure 7. Soft skills and PGS; Twins only. The
information on soft skills is not available for parents.

explained by the mediating variable IQ is :34 (Sobel-Goodman test (SGT )
= 0:09, SE = 0:006, Z = 15:29), but lower in twins: :24 (SGT = 0:05,
SE = 0:006, Z = 8:51), and higher in parents: :47 (SGT = 0:14, SE =
0:011, Z = 12:82). In all cases, bootstrapping con�rms the signi�cance of
the estimated coe�cients.

In conclusion, the role of IQ as mediating variable between genetic factors
and Education Years is approximately 1

3 , but this is the average of almost
1
2 for parents and, one generation later, 1

4 for twins.

6. Passive Gene Environment Correlation

An additional insight on the role of genetic factors can be gained by con-
sidering the information on the PGS of the parents. Clearly, all the infor-
mation on the genotype of the parents that is relevant for the determination
of the genotype of the twins is rendered irrelevant by the direct information
that we have on the genotype of the twins. The genotype of the parents
determines a probability distribution on the genotype of the o�spring (with
higher correlation between MZ twins, but the same distribution for each
individual considered separately); the same holds, in a slightly more com-
plicated way, for PGS, which is a linear functions of the genotype. The
information on PGS of the children gives us a more precise information
than the one provided by the PGS of the two parents, because it takes into
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account the speci�c realization of the random variable \genotype of the o�-
spring". However, as we discussed in detail in section 2.8, the genotype of
the parents can very well have an additional indirect e�ect of the phenotype
of interest of the o�-springs (educational achievement in our case) through
the e�ect of the environment on the phenotype (passive Gene-Environment
correlation, rGE).14 We analyze this information in the case of several vari-
ables: GPA in Table 6, number of education years in Table 7, Intelligence
in Table 8, and �nally probability of college degree in table 9.

Table 6. GPA on PGS of Twin and PGS of parents, IQ and Soft
Skills. All variables, including GPA, are standardized to mean zero and SD
1.

(1) (2) (3) (4) (5)
b/se b/se b/se b/se b/se

PGS 0.213*** 0.199*** 0.130*** 0.224*** 0.139***
(0.034) (0.036) (0.031) (0.033) (0.031)

PGS mother 0.064* 0.062* 0.025 0.011 0.000
(0.033) (0.035) (0.029) (0.034) (0.029)

PGS father 0.052 0.036 –0.008 –0.014 –0.039
(0.035) (0.036) (0.030) (0.036) (0.031)

IQ 0.222*** 0.207***
(0.022) (0.023)

Soft Skills Index 0.414*** 0.408***
(0.021) (0.021)

Education of parents 0.160*** 0.088***
(0.033) (0.028)

Family Income 0.095** 0.041
(0.037) (0.031)

Constant 0.038 0.061* 0.044* 0.012 0.031
(0.031) (0.032) (0.026) (0.030) (0.026)

N 1583 1393 1393 1583 1393

The estimated coe�cients for all variables have a common natural pat-
tern across the models. The PGS of each of the parents is signi�cant and
in some case not negligible (for example, for education years and IQ) when
no control is introduced (model 1); therefore there is an e�ect of the geno-
type on education that is operating through the environment that parents
provide. The last model (6) shows however that when controls are intro-
duced the PGS of the parents is small and usually insigni�cant: hence the
controls we have introduce capture most of this environmental e�ect. The
di�erence between unconditional and conditional model persists even if we
use a restricted sample in the latter model (model 2); this model is intro-
duced to make the comparison between the �rst and the last model more

14The role of family environment in considered in detail in the companion paper
Willoughby et al. (2018).)
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transparent, since in model (2) and (5) the sample size is the same. The
control variables IQ and the soft-skill index (model 3) are signi�cant but do
not reduce substantially the estimated coe�cients of the parents. Instead,
as natural, the controls variables parents’ education and family income do
reduce the size and signi�cance of the coe�cients of the parents’ PGS, as
the passive rGE model predicts. It is interesting to note also that the PGS
of the mother and the father have distinct e�ects.

Table 7. Education Years on PGS of Twin and PGS of parents, IQ
and Soft Skills. All variables, including Education Years, are standardized
to mean zero and SD 1.

(1) (2) (3) (4) (5)
b/se b/se b/se b/se b/se

PGS 0.106*** 0.122*** 0.082** 0.121*** 0.097***
(0.031) (0.034) (0.032) (0.030) (0.031)

PGS mother 0.106*** 0.084*** 0.059** 0.045* 0.025
(0.027) (0.029) (0.027) (0.026) (0.027)

PGS father 0.091*** 0.054* 0.024 0.009 –0.023
(0.028) (0.030) (0.028) (0.028) (0.028)

IQ 0.139*** 0.112***
(0.023) (0.023)

Soft Skills Index 0.230*** 0.218***
(0.021) (0.021)

Education of parents 0.182*** 0.114***
(0.025) (0.025)

Family Income 0.116*** 0.088***
(0.027) (0.028)

Constant 0.298*** 0.327*** 0.317*** 0.271*** 0.296***
(0.023) (0.025) (0.023) (0.023) (0.023)

N 1690 1337 1337 1690 1337

For college, to compare coe�cients we report in Table 9 the result for
the linear model on the standardized (mean zero and SD 1) college variable.
The logit analysis is reported in Table 20 of the Appendix.

7. Fixed Effects Analysis in DZ twins

DZ twins o�er a uniquely informative way for the analysis of the e�ect
of genetic variables on educational achievement. DZ twins share many
signi�cant variables: date and condition of birth, family background and
very similar family environment in the following years. Therefore, a �xed
e�ect analysis of measures of educational achievements regressed on PGS,
once restricted to DZ twins, will control for the e�ect of environmental
factors common to the two twins. The correlation of PGS between twins
(once we restrict to DZ twins) is high, but there is su�cient variability to
allow robust analysis. Figure 8, top panel, illustrates.
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Table 8. IQ on PGS of Twin and PGS of parents, IQ and Soft
Skills. All variables are standardized to mean zero and SD 1.

(1) (2) (3) (4) (5)
b/se b/se b/se b/se b/se

PGS 0.186*** 0.178*** 0.173*** 0.203*** 0.187***
(0.033) (0.037) (0.037) (0.032) (0.036)

PGS mother 0.068** 0.059* 0.053 0.000 –0.000
(0.032) (0.035) (0.035) (0.032) (0.035)

PGS father 0.115*** 0.122*** 0.117*** 0.032 0.046
(0.032) (0.036) (0.036) (0.033) (0.037)

Soft Skills Index 0.087*** 0.074***
(0.024) (0.024)

Education of parents 0.242*** 0.221***
(0.031) (0.034)

Family Income 0.022 0.005
(0.033) (0.038)

Constant –0.015 –0.009 –0.011 –0.033 –0.029
(0.029) (0.032) (0.031) (0.028) (0.031)

N 1809 1415 1415 1809 1415

Table 9. College on PGS of Twin and PGS of parents, IQ and
Soft Skills. Linear Model All independent variables are standardized to
mean zero and SD 1.

(1) (2) (3) (4) (5)
b/se b/se b/se b/se b/se

PGS 0.082*** 0.089*** 0.061*** 0.093*** 0.071***
(0.018) (0.020) (0.019) (0.017) (0.018)

PGS mother 0.055*** 0.046*** 0.031* 0.014 0.007
(0.016) (0.018) (0.016) (0.015) (0.016)

PGS father 0.041** 0.021 0.002 –0.010 –0.029*
(0.016) (0.018) (0.017) (0.016) (0.017)

IQ 0.099*** 0.081***
(0.013) (0.013)

Soft Skills Index 0.141*** 0.135***
(0.013) (0.012)

Education of parents 0.124*** 0.088***
(0.014) (0.015)

Family Income 0.057*** 0.039**
(0.016) (0.017)

Constant 0.485*** 0.504*** 0.500*** 0.470*** 0.487***
(0.014) (0.015) (0.014) (0.013) (0.014)

N 1809 1415 1415 1809 1415




