Great Depressions of the Twentieth Century

Timothy J. Kehoe
University of Minnesota
and Federal Reserve Bank of Minneapolis

and

Edward C. Prescott
University of Minnesota
and Federal Reserve Bank of Minneapolis

May 2004
Universitat Pompeu Fabra

tkehoe@econ.umn.edu
Real GDP per Capita in the United States

(index (1900=100)

year

Great Depressions of the Twentieth Century Project

Use growth accounting and applied dynamic equilibrium models to reexamine great depression episodes:

United Kingdom (1920s and 1930s) — Cole and Ohanian
Canada (1930s) — Amaral and MacGee
France (1930s) — Beaudry and Portier
Germany (1930s) — Fisher and Hornstein
Italy (1930s) — Perri and Quadrini
Argentina (1970s and 1980s) — Kydland and Zarazaga
Chile and Mexico (1980s) — Bergoeing, Kehoe, Kehoe, and Soto
Japan (1990s) — Hayashi and Prescott

(Review of Economic Dynamics, January 2002 revised and expanded version forthcoming as Minneapolis Fed volume)
Great Depressions Methodology

Aggregate production function:

\[Y_t = A_t K_t^\alpha L_t^{1-\alpha}. \]

When \(A_t = A_0 g^{(1-\alpha)t} \), output per capita grows at constant rate \(g - 1 \).

Measure output growth with respect to this trend.
- Trend growth represents the stock of useable production knowledge growing smoothly over time.
- This knowledge is not country specific.
- Countries grow at the same rate, $g - 1$, on different balanced growth paths.
- Levels differ across countries because institutions are different.
- Changing institutions moves the country to a different balanced growth path.
- Take $g - 1$ to be growth rate of the industrial leader – United States.

$$g = 1.02$$
Growth Accounting

\(Y_t \) : real GDP (national income accounts)
\(X_t \) : real investment (national income accounts)
\(L_t \) : hours worked (labor surveys)

Construct Capital Stocks:

\[
K_{t+1} = (1 - \delta)K_t + X_t
\]

Total factor productivity is the residual:

\[
A_t = \frac{Y_t}{K_t^\alpha L_t^{1-\alpha}}
\]

\[\delta = 0.05 \quad \alpha = 0.30\]
Decomposing Changes in GDP per Working-Age Person

\[
\log \left(\frac{Y_t}{N_t} \right) = \frac{1}{1-\alpha} \log \left(A_t \right) + \frac{\alpha}{1-\alpha} \log \left(\frac{K_t}{Y_t} \right) + \log \left(\frac{L_t}{N_t} \right)
\]

Traditional theories of depressions stress declines in the capital stock or in hours worked as the most important factors in accounting for depressions.
Lessons from Great Depressions Project

• The main determinants of depressions are not drops in the inputs of capital and labor — stressed in traditional theories of depressions — but rather drops in the efficiency with which these inputs are used, measured as total factor productivity (TFP).

• Exogenous shocks like the deteriorations in the terms of trade and the increases in foreign interest rates that buffeted Chile and Mexico in the early 1980s can cause a decline in economic activity of the usual business cycle magnitude.

• Misguided government policy can turn such a decline into a severe and prolonged drop in economic activity below trend — a great depression.
Growth Accounting for the United States 1960-2000

\[
\frac{Y_t}{N_t}
\]

\[
\frac{1}{A_t^{1-\alpha}}
\]

\[
\left(\frac{K_t}{Y_t}\right)^\frac{\alpha}{1-\alpha}
\]

\[
\frac{L_t}{N_t}
\]
Growth Accounting for Spain 1960-2000

The graph illustrates the index of growth accounting for Spain from 1960 to 2000. The indices are labeled as follows:

- \(\frac{1}{A_t^{1-\alpha}} \)
- \(\frac{Y_t}{N_t} \)
- \(\left(\frac{K_t}{Y_t} \right)^{\alpha} \)
- \(\frac{L_t}{N_t} \)

The years are marked from 1960 to 2000 on the x-axis, and the index values range from 50 to 400 on the y-axis.