1. (a) With an Arrow-Debreu markets structure futures markets for goods are open in period 0. Consumers trade futures contracts among themselves.

An Arrow-Debreu equilibrium is sequence of prices $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$ and consumption levels $\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots ; \hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots$ such that

- Given $\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots$, consumer $i, i = 1, 2$, chooses $\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots$ to solve

 $$\max \sum_{t=0}^{\infty} \beta^t \log c^t_i$$
 $$\text{s.t. } \sum_{t=0}^{\infty} \hat{p}_t c^t_i \leq \sum_{t=0}^{\infty} \hat{p}_t w^t_i$$
 $$c^t_i \geq 0.$$

- $\hat{c}_t^0 + \hat{c}_t^2 = w^t_i + w^t_i, t = 0,1,\ldots$

(b) With sequential market markets structure, there are markets for goods and bonds open every period. Consumers trade goods and bonds among themselves.

A sequential markets equilibrium is sequences of interest rates $\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots$, consumption levels $\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots ; \hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots$, and bond holdings $\hat{b}_0, \hat{b}_1, \hat{b}_2, \ldots ; \hat{b}_0, \hat{b}_1, \hat{b}_2, \ldots$ such that

- Given $\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots$, the consumer $i, i = 1, 2$, chooses $\hat{c}_0, \hat{c}_1, \hat{c}_2, \ldots ; \hat{b}_0, \hat{b}_1, \hat{b}_2, \ldots$ to solve

 $$\max \sum_{t=0}^{\infty} \beta^t \log c^t_i$$
 $$\text{s.t. } c^t_i + b^t_{i+1} \leq w^t_i + (1+\hat{r}_t)b^t_i, t = 0,1,\ldots$$
 $$c^t_i \geq 0, b^t_i \geq -B$$
 $$b_0^i = 0.$$

Here $b^t_i \geq -B$, where $B > 0$ is chosen large enough, rules out Ponzi schemes but does not otherwise bind in equilibrium.

- $\hat{c}^t_0 + \hat{c}^t_2 = w^t_i + w^t_i, t = 0,1,\ldots$
- $\hat{b}^t_0 + \hat{b}^t_2 = 0, t = 0,1,\ldots$
(c) **Proposition 1:** Suppose that \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is an Arrow-Debreu equilibrium. Then \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_0^i, \hat{b}_1^i, \hat{b}_2^i, \ldots \) is a sequential markets equilibrium where

\[
\hat{r}_t = \frac{\hat{p}_{t-1}}{\hat{p}_t} - 1
\]

\[
\hat{b}_{t+1}^i = w_t^i + (1 + \hat{r}_t)\hat{b}_t^i - \hat{c}_t^i, \quad t = 0, 1, \ldots
\]

Proposition 2: Suppose that \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_0^i, \hat{b}_1^i, \hat{b}_2^i, \ldots \) is a sequential markets equilibrium. Then \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is an Arrow-Debreu equilibrium where

\[
\hat{p}_0 = 1
\]

\[
\hat{p}_t = \prod_{s=1}^{t} \frac{1}{(1 + \hat{r}_s)}, \quad t = 1, 2, \ldots
\]

(d) Using the two consumers’ first order conditions

\[
\frac{\beta_t}{c_i^t} = \lambda^t p_i, \quad i = 1, 2;
\]

we can write

\[
\frac{c_i^1}{c_i^2} = \frac{\lambda^2}{\lambda^1}.
\]

In even periods,

\[
c_i^1 + c_i^2 = 3
\]

\[
c_i^1 + \frac{\lambda^1}{\lambda^2} c_i^1 = 3
\]

\[
c_i^1 = \frac{\lambda^2}{\lambda^1 + \lambda^2} 3.
\]

Similarly, in odd periods,

\[
c_i^1 = \frac{\lambda^2}{\lambda^1 + \lambda^2} 5.
\]

Normalizing \(p_0 = 1 \), we can use the first order condition to write
\[p_t = \begin{cases} \beta^t & \text{if } t \text{ is even} \\ \frac{3}{5} \beta^t & \text{if } t \text{ is odd} \end{cases} \]

which implies that

\[p_t c^1_t = \beta^t \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2}, \]

Consequently,

\[
\sum_{t=0}^{\infty} p_t c^1_t = \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2} \sum_{t=0}^{\infty} \beta^t = \frac{1}{1-\beta} \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2} = \sum_{t=0}^{\infty} p_t w^1_t.
\]

\[
\frac{1}{1-\beta} \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2} = 2 \sum_{t=0}^{\infty} p_{2t} + \sum_{t=0}^{\infty} p_{2t+1}
\]

\[
\frac{1}{1-\beta} \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2} = 2 \sum_{t=0}^{\infty} \beta^{2t} + \frac{3}{5} \beta \sum_{t=0}^{\infty} \beta^{2t}
\]

\[
\frac{1}{1-\beta} \frac{3\lambda^2}{\lambda_1^2 + \lambda_2^2} = \frac{2 + \frac{3}{5} \beta}{1-\beta^2}
\]

\[
\frac{\lambda^2}{\lambda_1^2 + \lambda_2^2} = \frac{2 + \frac{1}{5} \beta}{1+\beta} = \frac{10 + 3\beta}{15(1+\beta)},
\]

which implies that

\[
\frac{\lambda^1}{\lambda_1^2 + \lambda_2^2} = \frac{1 + \frac{4}{5} \beta}{1 + \beta} = \frac{5 + 12\beta}{15(1+\beta)}.
\]

\[c^1_t = \begin{cases} \frac{10 + 3\beta}{5(1+\beta)} & \text{if } t \text{ is even} \\ \frac{10 + 3\beta}{3(1+\beta)} & \text{if } t \text{ is odd} \end{cases} \]

\[c^2_t = \begin{cases} \frac{5 + 12\beta}{5(1+\beta)} & \text{if } t \text{ is even} \\ \frac{5 + 12\beta}{3(1+\beta)} & \text{if } t \text{ is odd} \end{cases} \]

(We can even work out \(\lambda^1 \) and \(\lambda^2 \), although the question does not require this and it would be a waste of precious time to do so during the exam.)
To calculate the sequential markets equilibrium, we just use the formulas from proposition 1 in part c:

\[
\lambda^1 \lambda^2 \begin{cases} \frac{1}{10+3\beta} = \frac{5(1+\beta)}{10+3\beta} & \text{if } t \text{ is odd} \\
\frac{1}{5+12\beta} = \frac{5(1+\beta)}{5+12\beta} & \text{if } t \text{ is even}
\end{cases}
\]

Check:

\[
\lambda^1 = \frac{5(1+\beta)}{10+3\beta} = \frac{1}{10+3\beta} + \frac{1}{5+12\beta}
\]

\[
\lambda^2 = \frac{5+12\beta}{(10+3\beta)(5+12\beta)} + \frac{10+3\beta}{(10+3\beta)(5+12\beta)} = \frac{5+12\beta}{15(1+\beta)}
\]

In even periods, consumer 1 lends \(\frac{7\beta}{5(1+\beta)} \) to consumer 2. Consumer 2 pays back \(\frac{7}{3(1+\beta)} \) to consumer 1 in odd periods.

(e) A sequential markets equilibrium is sequences of rental rates on capital \(\hat{r}^k_0, \hat{r}^k_1, \hat{r}^k_2, \ldots \); wages \(\hat{w}_0, \hat{w}_1, \hat{w}_2, \ldots \); interest rates on bonds \(\hat{r}^b_0, \hat{r}^b_1, \hat{r}^b_2, \ldots \); consumption levels \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots ; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \); capital holdings \(\hat{k}_0^1, \hat{k}_1^1, \hat{k}_2^1, \ldots ; \hat{k}_0^2, \hat{k}_1^2, \hat{k}_2^2, \ldots \); bond holdings \(\hat{b}_0^1, \hat{b}_1^1, \hat{b}_2^1, \ldots ; \hat{b}_0^2, \hat{b}_1^2, \hat{b}_2^2, \ldots \); and production plans \((\hat{y}_0, \hat{k}_0, \hat{\ell}_0), (\hat{y}_1, \hat{k}_1, \hat{\ell}_1), (\hat{y}_2, \hat{k}_2, \hat{\ell}_2), \ldots \) such that
Given \(\tilde{p}_k^i, \tilde{r}_k^i, \tilde{r}^k, \ldots, \tilde{w}_0, \tilde{w}_1, \tilde{w}_2, \ldots, \tilde{r}_0^b, \tilde{r}_1^b, \tilde{r}^b, \ldots \), consumer \(i, i = 1, 2, \ldots, \) chooses \(\tilde{c}_0^i, \tilde{c}_1^i, \tilde{c}_2^i, \ldots, \tilde{k}_0^i, \tilde{k}_1^i, \tilde{k}_2^i, \ldots, \tilde{b}_0^i, \tilde{b}_1^i, \tilde{b}_2^i, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_i^t \\
\text{s.t.} \ c_i^t + k_{t+1}^i + b_{t+1}^i \leq \tilde{w}_t^i \tilde{e}_t^i + (1 + \tilde{r}_t^k - \delta) k_i^t + (1 + \tilde{r}_t^b) b_i^t, \ t = 0, 1, \ldots
\]

\[
c_i^t \geq 0, \ k_i^t \geq 0, \ b_i^t \geq -B
\]

\[
k_0^i = \tilde{k}_0^i, \ b_0^i = 0.
\]

Given \(\tilde{p}_0^k, \tilde{r}_0^k, \tilde{r}_0^k, \ldots, \tilde{w}_0, \tilde{w}_1, \tilde{w}_2, \ldots \), firms choose \((\tilde{y}_0, \tilde{k}_0, \tilde{\ell}_0),(\tilde{y}_1, \tilde{k}_1, \tilde{\ell}_1),(\tilde{y}_2, \tilde{k}_2, \tilde{\ell}_2), \ldots \) to minimize costs, and \(\tilde{r}_0^k, \tilde{r}_1^k, \tilde{r}_2^k, \ldots, \tilde{w}_0, \tilde{w}_1, \tilde{w}_2, \ldots \) are such that firms earn 0 profits:

\[
\tilde{r}_t^k = \alpha \partial t^{\alpha - 1} \tilde{e}_t^k
\]

\[
\tilde{w}_t = (1 - \alpha) \partial t^{\alpha - 1} \tilde{e}_t
\]

\[\tilde{c}_i^t + \tilde{c}_i^2 + \tilde{k}_{t+1}^i - (1 - \delta) \tilde{k}_i = \tilde{y}_i = \partial t^{\alpha - 1} \tilde{e}_t^k, \ t = 0, 1, \ldots
\]

\[\tilde{k}_t^1 + \tilde{k}_t^2 = \tilde{k}_t, \ t = 0, 1, \ldots
\]

\[\tilde{e}_t^1 + \tilde{e}_t^2 = \tilde{\ell}_t, \ t = 0, 1, \ldots
\]

\[\tilde{b}_t^1 + \tilde{b}_t^2 = 0, \ t = 0, 1, \ldots
\]

2. (a) With an Arrow-Debreu markets structure futures markets for goods are open in period 1. Consumers trade futures contracts among themselves.

An **Arrow-Debreu equilibrium** is a sequence of prices \(\hat{p}_1, \hat{p}_2, \ldots \) and an allocation \(\hat{c}_0^1, (\hat{c}_1^1, \hat{c}_1^2), (\hat{c}_2^1, \hat{c}_2^2), \ldots \) such that

- Given \(\hat{p}_1 \), consumer 0 chooses \(\hat{c}_1^0 \) to solve

\[
\max \ \log c_1^0 \\
\text{s.t.} \ \hat{p}_1 c_1^0 \leq \hat{p}_1 w_2 + m \\
\hat{c}_1^0 \geq 0
\]

- Given \(\hat{p}_1, \hat{p}_{t+1} \), consumer \(t, t = 1, 2, \ldots \), chooses \((\hat{c}_t^t, \hat{c}_{t+1}^t) \) to solve

\[
\max \ c_t^t + \log \hat{c}_{t+1} \\
\text{s.t.} \ \hat{p}_1 c_t^t + \hat{p}_{t+1} c_{t+1}^t \leq \hat{p}_1 w_t + \hat{p}_{t+1} w_2 \\
\hat{c}_t^t, \hat{c}_{t+1}^t \geq 0
\]

\[
\hat{c}_{t-1}^t + \hat{c}_t^t = w_2 + w_t, \ t = 1, 2, \ldots
\]
(b) With sequential market markets structure, there are markets for goods and assets open every period. The consumers in generations $t-1$ and t trade goods and assets among themselves.

A **sequential markets equilibrium** is a sequence of interest rates $\hat{r}_2, \hat{r}_3, \ldots$, an allocation $(\hat{c}_1^0, (\hat{c}_1^1, \hat{c}_2^1), (\hat{c}_2^2, \hat{c}_3^2), \ldots)$, and asset holdings $\hat{s}_2, \hat{s}_3, \ldots$ such that

- Consumer 0 chooses \hat{c}_1^0 to solve

$$\max \log \hat{c}_1^0$$

s.t. $\hat{c}_1^0 \leq w_2 + m$

$$\hat{c}_1^0 \geq 0.$$

- Given \hat{r}_{t+1}, consumer t, $t = 1, 2, \ldots$, chooses $(\hat{c}_t', \hat{c}_{t+1}')$ and \hat{s}_{t+1}' to solve

$$\max \quad c_t' + \log \hat{c}_{t+1}'$$

s.t. $c_t' + \hat{s}_{t+1}' \leq w_1$

$$c_{t+1}' \leq w_2 + (1 + \hat{r}_{t+1})\hat{s}_{t+1}'$$

$$c_t', c_{t+1}' \geq 0.$$

- $\hat{c}_{t-1}' + \hat{c}_t' = w_2 + w_1$, $t = 1, 2, \ldots$

- $\hat{s}_2 = m$, $\hat{s}_{t+1}' = \left[\prod_{r=2}^t (1 + \hat{r}_r)\right]m$, $t = 2, 3, \ldots$

(c) Since there is no fiat money, there is only one good per period, there is only one consumer type in each generation, and consumers live for only two periods, the equilibrium allocation is autarky:

$$\hat{c}_1^0 = w_2$$

$$(\hat{c}_t', \hat{c}_{t+1}') = (w_1, w_2)$$

The first order conditions from the consumers’ problems in the Arrow-Debreu equilibrium imply that

$$\hat{c}_{t+1}' = \frac{\hat{p}_t}{\hat{p}_{t+1}}.$$

Normalizing $\hat{p}_t = 1$, we obtain $\hat{p}_t = w_2^{-t}$. Similarly, the first order conditions from the consumers' problems in the sequential markets equilibrium, imply that

$$1 + \hat{r}_{t+1} = \hat{c}_{t+1}' = w_2$$

or $\hat{r}_t = w_2 - 1$. Since the equilibrium allocation is autarky, $\hat{s}_{t+1}' = 0$.

(d) An allocation \(\tilde{c}_1^0, (\tilde{c}_1^1, \tilde{c}_2^1), (\tilde{c}_2^2, \tilde{c}_3^2), \ldots \) is feasible if
\[
\tilde{c}_i^{t-1} + \tilde{c}_i^t \leq w_2 + w_1, \quad t = 1, 2, \ldots
\]
An allocation is Pareto efficient if it is feasible and there exists no other allocation \(\tilde{c}_1^0, (\tilde{c}_1^1, \tilde{c}_2^1), (\tilde{c}_2^2, \tilde{c}_3^2), \ldots \) that is also feasible and satisfies
\[
\log \tilde{c}_1^0 \geq \log \tilde{c}_1^0 \\
\tilde{c}_i^t + \log \tilde{c}_{t+1}^t \geq \tilde{c}_i^t + \log \tilde{c}_{t+1}^t, \quad t = 1, 2, \ldots
\]
with at least one inequality strict.

If \(w_2 > 1 \), the equilibrium allocation is Pareto efficient. Suppose not. Then there exists a feasible allocation that is Pareto superior. If
\[
\tilde{c}_i^t + \log \tilde{c}_{t+1}^t > \tilde{c}_i^t + \log \tilde{c}_{t+1}^t,
\]
then
\[
\hat{p}_t \tilde{c}_i^t + \hat{p}_{t+1} \tilde{c}_{t+1}^t > \hat{p}_t w_1 + \hat{p}_{t+1} w_2.
\]
Otherwise, \((\tilde{c}_i^t, \tilde{c}_{t+1}^t) \) would not solve the maximization problem of generation \(t \).

Similarly, \(\log \tilde{c}_1^0 > \log \tilde{c}_1^0 \) implies \(\hat{p}_t \tilde{c}_1^0 > \hat{p}_t w_2 \).

Suppose that
\[
\tilde{c}_i^t + \log \tilde{c}_{t+1}^t \geq \tilde{c}_i^t + \log \tilde{c}_{t+1}^t
\]
but that
\[
\hat{p}_t \tilde{c}_i^t + \hat{p}_{t+1} \tilde{c}_{t+1}^t < \hat{p}_t w_1 + \hat{p}_{t+1} w_2.
\]
Then let
\[
\tilde{c}_i^t = \tilde{c}_i^t + \hat{p}_t w_1 + \hat{p}_{t+1} w_2 - \hat{p}_t \tilde{c}_i^t + \hat{p}_{t+1} \tilde{c}_{t+1}^t > \tilde{c}_i^t
\]
and \(\tilde{c}_{t+1} = \tilde{c}_{t+1}^t \). Then
\[
\tilde{c}_i^t + \log \tilde{c}_{t+1}^t > \tilde{c}_i^t + \log \tilde{c}_{t+1}^t
\]
but
\[
\hat{p}_t \tilde{c}_i^t + \hat{p}_{t+1} \tilde{c}_{t+1}^t = \hat{p}_t w_1 + \hat{p}_{t+1} w_2.
\]
Once again, this would imply that \((\tilde{c}_i^t, \tilde{c}_{t+1}^t) \) would not solve the maximization problem of generation \(t \), which is impossible. Consequently,
\[
\hat{p}_t \tilde{c}_i^t + \hat{p}_{t+1} \tilde{c}_{t+1}^t \geq \hat{p}_t w_1 + \hat{p}_{t+1} w_2.
\]
Similarly, \(\log \tilde{c}_1^0 \geq \log \tilde{c}_1^0 \) implies \(\hat{p}_t \tilde{c}_1^0 \geq \hat{p}_t w_2 \).
Therefore
\[\hat{p}_t c^0_i \geq \hat{p}_j w_2 \]
\[\hat{p}_t c^t_i + \hat{p}_{t+1} c^t_{t+1} \geq \hat{p}_j w_i + \hat{p}_j w_2, \quad t = 1, 2, \ldots, \]
with at least one inequality strict. Adding these inequalities up, we obtain
\[\sum_{t=1}^{\infty} \hat{p}_t (c^t_i + c^t_{t+1}) > \sum_{t=1}^{\infty} \hat{p}_t (w_i + w_2). \]
It is here that \(\hat{p}_t = w_2^{1-t} \) plays its role in ensuring that these series converge.
\[\sum_{t=1}^{\infty} \hat{p}_t (w_i + w_2) = \sum_{t=1}^{\infty} \frac{w_i + w_2}{1 - w_2^t} < \infty \]
Multiplying the feasibility condition in period \(t \) by \(\hat{p}_t > 0 \) and adding up yields
\[\sum_{t=1}^{\infty} \hat{p}_t (c^t_i + c^t_{t+1}) \leq \sum_{t=1}^{\infty} \hat{p}_t (w_i + w_2) < \infty, \]
which is a contradiction.

(e) **A sequential markets equilibrium** is a sequence of interest rates \(\hat{r}_t, \hat{r}_2, \ldots \), an allocation \(c^0_{10}, c^0_{11}, (c^0_{12}, c^{21}_{11}), (c^0_{21}, c^{21}_{22}), (c^0_{22}, c^{22}_{21}) \), \ldots \), and asset holdings \(\hat{s}^0_{11}, \hat{s}^0_{12}, \hat{s}^0_{21}, \hat{s}^0_{22} \) \ldots \) such
- Consumer \(i0 \) chooses \(c^0_i, i = 1, 2 \), to solve
 \[\max u_{i0}(c^0_i) \]
 \[\text{s.t. } c^0_i \leq w_i^j + m^j \]
 \[c^0_i \geq 0. \]
- Given \(\hat{r}_t \), consumer \(it \), \(i = 1, 2 \), \(t = 1, 2, \ldots \), chooses \((c^u_i, c^{u+1}_i) \) and \(\hat{s}^u_i \) to solve
 \[\max u_{it}(c^u_i, c^{u+1}_i) \]
 \[\text{s.t. } c^u_i + s^u_i \leq w_i^j \]
 \[c^{u+1}_i \leq w_i^j + (1 + \hat{r}_t) s^u_i \]
 \[c^u_i, c^{u+1}_i \geq 0. \]
- \(c^u_t - c^u_{t-1} + c^{2u}_t + c^{2u}_{t+1} = w_t^1 + w^2_t + w^1_t + w^2_t, \quad t = 1, 2, \ldots. \)
- \(\hat{s}^1_i + \hat{s}^2_i = m^1 + m^2 \)
- \(\hat{s}^t_i + \hat{s}^{2t}_i = \left[\prod_{r=1}^{t-1} (1 + \hat{r}_r) \right] (m^1 + m^2), \quad t = 2, 3, \ldots. \)
3. (a) The Euler conditions are

\[\beta' \frac{1}{c_i} - p_i = 0 \]

\[-p_{i-1} + p_i(\theta + 1 - \delta) = 0, \]

which can be combined with the feasibility constraint into

\[-\frac{1}{(\theta + 1 - \delta)k_{i-1} - k_i} + \frac{\beta(\theta + 1 - \delta)}{(\theta + 1 - \delta)k_i - k_{i+1}} = 0. \]

The transversality condition is

\[\lim_{t \to \infty} p_i k_{i+1} = \lim_{t \to \infty} \frac{\beta' k_{i+1}}{(\theta + 1 - \delta)k_i - k_{i+1}} = 0. \]

(b) Bellman’s equation is

\[V(k) = \max_c \log c + \beta V(k') \]

s.t. \(c + k' - (1 - \delta)k \leq \theta k \)

\[c, k' \geq 0 \]

\[k \text{ given.} \]

We guess

\[a_0 + a_1 \log k = \max_c \log c + \beta(a_0 + a_1 \log k') \]

s.t. \(c + k' - (1 - \delta)k \leq \theta k \)

and solve

\[\frac{1}{c} = p \]

\[\frac{\beta a_i}{k'} = p \]

\[\frac{\beta a_i}{k'} = \frac{1}{(\theta + 1 - \delta)k - k'} \]

\[\beta a_i (\theta + 1 - \delta)k - \beta a_i k' = k' \]

\[k' = \frac{\beta a_i}{1 + \beta a_i} (\theta + 1 - \delta)k \]

\[c = \frac{1}{1 + \beta a_i} (\theta + 1 - \delta)k. \]

These imply that

\[a_0 + a_1 \log k = \log \left(\frac{1}{1 + \beta a_i} (\theta + 1 - \delta)k \right) + \beta a_0 + \beta a_i \log \left(\frac{\beta a_i}{1 + \beta a_i} (\theta + 1 - \delta)k \right). \]
Collecting all the terms on the right-hand side that involve $\log k$, we can solve for a_i:

$$
a_i = 1 + \beta a_i,
$$

$$
a_i = \frac{1}{1 - \beta},
$$

which implies that

$$
c = (1 - \beta)(\theta + 1 - \delta)k , \quad k' = \beta(\theta + 1 - \delta)k.
$$

Notice that, if

$$
\beta(\theta + 1 - \delta) > 1,
$$

then the economy grows without bound.

[We could also solve for a_0:

$$
a_0 = \frac{1}{1 - \beta} \left[\log \left(\frac{\theta + 1 - \delta}{1 + \beta a_i} \right) + \beta a_i \log \left(\frac{\beta a_i(\theta + 1 - \delta)}{1 + \beta a_i} \right) \right],
$$

$$
a_0 = \frac{1}{1 - \beta} \left[\log \left((1 - \beta)(\theta + 1 - \delta) \right) + \frac{\beta}{1 - \beta} \log \left(\beta(\theta + 1 - \delta) \right) \right],
$$

but this is tedious, and, besides, the question does not ask us to do it.]

(c) Let

$$
k_i = k , \quad k_{t+1} = \beta(\theta + 1 - \delta)k , \quad k_{t+1} = \beta^2(\theta + 1 - \delta)^2 k.
$$

The Euler equation is

$$
- \frac{1}{(\theta + 1 - \delta)k - k_{t+1}} + \frac{\beta(\theta + 1 - \delta)}{(\theta + 1 - \delta)k - k_{t+2}} = 0
$$

$$
- \frac{1}{(\theta + 1 - \delta)k - \beta(\theta + 1 - \delta)k} + \frac{\beta(\theta + 1 - \delta)^2 k - \beta^2(\theta + 1 - \delta)^2 k}{(1 - \beta)(\theta + 1 - \delta)k} = 0.
$$

The transversality condition is

$$
\lim_{t \to \infty} \frac{\beta^i k_{t+1}}{(\theta + 1 - \delta)k - k_{t+1}} = \lim_{t \to \infty} \frac{\beta^{i+1}(\theta + 1 - \delta)k}{(\theta + 1 - \delta)k - \beta(\theta + 1 - \delta)k} = \lim_{t \to \infty} \frac{\beta^{i+1}}{1 - \beta} = 0.
$$

(d) With sequential market markets structure, there are markets for goods, capital services, and bonds open every period (but not a market for labor services). Consumers rent capital to the firm. They buy goods from the firm, some of which they consume and some of which they save as capital. They trade bonds among themselves.
A sequential markets equilibrium is sequences of rental rates \(\hat{r}^k_0, \hat{r}^k_1, \ldots \), interest rates \(\hat{r}^b_0, \hat{r}^b_1, \ldots \), consumption levels \(\hat{c}_0, \hat{c}_1, \ldots \), capital stocks \(\hat{k}_0, \hat{k}_1, \ldots \), and bond holdings \(\hat{b}_0, \hat{b}_1, \ldots \), such that

- Given \(\hat{r}^k_0, \hat{r}^k_1, \ldots, \hat{r}^b_0, \hat{r}^b_1, \ldots \), the consumer chooses \(\hat{c}_0, \hat{c}_1, \ldots, \hat{k}_0, \hat{k}_1, \ldots \), and \(\hat{b}_0, \hat{b}_1, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_t \\
\text{s.t. } c_t + k_{t+1} - (1 - \delta) k_t + b_{t+1} \leq \hat{r}^k_t k_t + (1 + \hat{r}^b_t) b_t, \ t = 0,1, \ldots \\
\hat{k}_0 = \bar{k}, \ b_0 = 0 \\
\hat{c}_t, k_t \geq 0, \ b_t \geq -B.
\]

- \(\hat{r}^k_t = \theta, \ t = 0,1, \ldots \)
- \(\hat{c}_t + \hat{k}_{t+1} - (1 - \delta) \hat{k}_t = \theta \hat{k}_t, \ t = 0,1, \ldots \)
- \(\hat{b}_t = 0, \ t = 0,1, \ldots \)

[An alternative would be to specify an Arrow-Debreu equilibrium:

With Arrow-Debreu markets, there are futures markets of goods, capital, and capital services, open in period 0 (but not markets for labor services). Consumers buy goods from firms. Who makes the capital accumulation decision can be modeled different ways. We could have consumers buy and sell future claims to capital and sell claims to capital services to firms, or we could have consumers sell their initial capital to firms and have firms buy and sell future claims to capital and sell claims to capital services to other firms.

An Arrow-Debreu equilibrium is sequences of prices of goods \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots \), rental rates \(\hat{r}_0, \hat{r}_1, \hat{r}_2, \ldots \), consumption levels \(\hat{c}_0, \hat{c}_1, \ldots \), and capital stocks \(\hat{k}_0, \hat{k}_1, \ldots \) such that

- Given \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots \), and \(\hat{r}_0 \), the consumer chooses \(\hat{c}_0, \hat{c}_1, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_t \\
\text{s.t. } \sum_{t=0}^{\infty} \hat{p}_t c_t \leq (\hat{r}_0 + 1 - \delta) \bar{k} \\
\hat{c}_t \geq 0.
\]

- \(\hat{r}_t = \hat{p}_t \theta, \ t = 0,1, \ldots \)
- \(\hat{r}_{t+1} + \hat{p}_t (1 - \delta) - \hat{p}_t = 0, \ t = 0,1, \ldots \)
- \(\hat{c}_t + \hat{k}_{t+1} - (1 - \delta) \hat{k}_t = \theta \hat{k}_t, \ t = 0,1, \ldots \)