1. (a) With an Arrow-Debreu markets structure futures markets for goods are open in period 0. Consumers trade futures contracts among themselves.

An Arrow-Debreu equilibrium is sequence of prices \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots \) and consumption levels \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots ; \ \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) such that

- Given \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots \), consumer \(i, \ i = 1, 2 \), chooses \(\hat{c}_0^i, \hat{c}_1^i, \hat{c}_2^i, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_t^i \\
\text{s.t.} \quad \sum_{t=0}^{\infty} \hat{p}_t c_t^i \leq \sum_{t=0}^{\infty} \hat{p}_t w_t^i \\
\quad c_t^i \geq 0.
\]

- \(\hat{c}_0^1 + \hat{c}_0^2 = w_0^1 + w_0^2 \), \(t = 0, 1, \ldots \)

(b) With sequential market markets structure, there are markets for goods and bonds open every period. Consumers trade goods and bonds among themselves.

A sequential markets equilibrium is sequences of interest rates \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots \), consumption levels \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots ; \ \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \), and asset holdings \(\hat{b}_1^1, \hat{b}_1^2, \hat{b}_1^3, \ldots ; \ \hat{b}_2^1, \hat{b}_2^2, \hat{b}_2^3, \ldots \) such that

- Given \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots \), the consumer \(i, \ i = 1, 2 \), chooses \(\hat{c}_0^i, \hat{c}_1^i, \hat{c}_2^i, \ldots ; \ \hat{b}_1^i, \hat{b}_2^i, \hat{b}_3^i, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_t^i \\
\text{s.t.} \quad c_t^i + b_t^i \leq w_t^i \\
\quad c_t^i + b_{t+1}^i \leq w_t^i + (1 + \hat{r}_t) b_t^i, \ t = 1, 2, \ldots \\
\quad b_t^i \geq -B \\
\quad c_t^i \geq 0.
\]

Here \(b_t^i \geq -B \), where \(B > 0 \) is chosen large enough, rules out Ponzi schemes but does not otherwise bind in equilibrium.

- \(\hat{c}_0^1 + \hat{c}_0^2 = w_0^1 + w_0^2 \), \(t = 0, 1, \ldots \)
\[\hat{h}_t^1 + \hat{h}_t^2 = 0, \quad t = 0, 1, \ldots \]

(c) **Proposition 1:** Suppose that \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_1^1, \hat{b}_2^1, \hat{b}_3^1, \ldots \) is an Arrow-Debreu equilibrium. Then \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_1^1, \hat{b}_2^1, \hat{b}_3^1, \ldots; \hat{b}_1^2, \hat{b}_2^2, \hat{b}_3^2, \ldots \) is a sequential markets equilibrium where

\[
\hat{r}_t = \frac{\hat{p}_{t-1}}{\hat{p}_t} - 1
\]
\[
\hat{h}_t^i = w_0 - \hat{c}_0^i
\]
\[
\hat{b}_t^{i+1} = w_t^i + (1 + \hat{r}_t)\hat{b}_t^i - \hat{c}_t^i, \quad t = 1, 2, \ldots
\]

Proposition 2: Suppose that \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_1^1, \hat{b}_2^1, \hat{b}_3^1, \ldots; \hat{b}_1^2, \hat{b}_2^2, \hat{b}_3^2, \ldots \) is a sequential markets equilibrium. Then \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_1^1, \hat{b}_2^1, \hat{b}_3^1, \ldots \) is an Arrow-Debreu equilibrium where

\[
\hat{p}_0 = 1
\]
\[
\hat{p}_t = \prod_{s=1}^{t} \frac{1}{(1 + \hat{r}_s)}, \quad t = 1, 2, \ldots
\]

(d) Using the two consumers’ first order conditions

\[
\frac{\beta^t}{c_i^t} = \lambda^t p_t,
\]

we can write

\[
\frac{c_i^1}{c_i^2} = \frac{\lambda^2}{\lambda^1}.
\]

In even periods,

\[
c_i^1 + c_i^2 = 5
\]
\[
c_i^1 + \frac{\lambda^1}{\lambda^2} c_i^1 = 5
\]
\[
c_i^1 = \frac{\lambda^2}{\lambda^1 + \lambda^2} 5.
\]

Similarly, in odd periods,
\[c_i^1 = \frac{\lambda^2}{\lambda^1 + \lambda^2} \cdot 3. \]

Normalizing \(p_0 = 1 \), we can use the first order condition to write

\[
p_t = \begin{cases}
\beta' & \text{if } t \text{ is even} \\
\frac{5}{3} \beta' & \text{if } t \text{ is odd}
\end{cases}
\]

which implies that

\[
p_i c_i^1 = \beta' \frac{5\lambda^2}{\lambda^1 + \lambda^2}.
\]

Consequently,

\[
\sum_{t=0}^{\infty} p_i c_i^1 = \frac{5\lambda^2}{\lambda^1 + \lambda^2} \sum_{t=0}^{\infty} \beta' = \frac{1}{1 - \beta} \frac{5\lambda^2}{\lambda^1 + \lambda^2} = \sum_{t=0}^{\infty} p_i w_i^t
\]

\[
\frac{1}{1 - \beta} \frac{5\lambda^2}{\lambda^1 + \lambda^2} = 3 \sum_{t=0}^{\infty} p_{2t} + \sum_{t=0}^{\infty} p_{2t+1}
\]

\[
\frac{1}{1 - \beta} \frac{5\lambda^2}{\lambda^1 + \lambda^2} = 3 \sum_{t=0}^{\infty} \beta^{2t} + \frac{5}{3} \beta \sum_{t=0}^{\infty} \beta^{2t}
\]

\[
\frac{1}{1 - \beta} \frac{5\lambda^2}{\lambda^1 + \lambda^2} = \frac{3 + \frac{5}{3} \beta}{1 - \beta^2}
\]

\[
\frac{\lambda^2}{\lambda^1 + \lambda^2} = \frac{3 + \frac{1}{3} \beta}{1 + \beta} = \frac{9 + 5\beta}{15(1 + \beta)},
\]

which implies that

\[
\frac{\lambda^1}{\lambda^1 + \lambda^2} = \frac{6 + 10\beta}{15(1 + \beta)}.
\]

\[
c_i^1 = \begin{cases}
\frac{9 + 5\beta}{3(1 + \beta)} & \text{if } t \text{ is even} \\
\frac{9 + 5\beta}{5(1 + \beta)} & \text{if } t \text{ is odd}
\end{cases}
\]
\[c_i^2 = \begin{cases} \frac{6+10\beta}{3(1+\beta)} & \text{if } t \text{ is even} \\
\frac{6+10\beta}{5(1+\beta)} & \text{if } t \text{ is odd} \end{cases} \]

(We can even work out \(\lambda^1 \) and \(\lambda^2 \), although the question does not require this and it would be a waste of precious time to do so during the exam.

\[
\lambda^1 = \frac{1}{c_0^1} = \frac{3(1+\beta)}{9+5\beta}
\]

\[
\lambda^2 = \frac{1}{c_0^2} = \frac{3(1+\beta)}{6+10\beta}.
\]

Check:

\[
\frac{\lambda^1}{\lambda^1 + \lambda^2} = \frac{\frac{3(1+\beta)}{9+5\beta}}{\frac{3(1+\beta)}{9+5\beta} + \frac{3(1+\beta)}{6+10\beta}} = \frac{\frac{1}{9+5\beta}}{\frac{1}{9+5\beta} + \frac{1}{6+10\beta}} = \frac{6+10\beta}{6+10\beta + 9+5\beta} = \frac{6+10\beta}{15(1+\beta)}.
\]

To calculate the sequential markets equilibrium, we just use the formulas from proposition 1 in part c. For example,

\[
r_i = \frac{\hat{p}_{t-1}}{\hat{p}_t} - 1 = \begin{cases} \frac{3}{5\beta} - 1 & \text{if } t \text{ is odd} \\
\frac{5}{3\beta} - 1 & \text{if } t \text{ is even} \end{cases}.
\]

Notice that, in \(t = 0 \),

\[
\hat{b}_1^t = 3 \frac{9+5\beta}{3(1+\beta)} = \frac{4\beta}{3(1+\beta)}.
\]

That is, in even periods, consumer 1 lends \(\frac{4\beta}{3(1+\beta)} \) to consumer 2, who pays back \(\frac{4}{5(1+\beta)} \) in odd periods.

(e) A Pareto efficient allocation is an allocation \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) that is feasible,

\[
\hat{c}_i^1 + \hat{c}_i^2 \leq w_i^1 + w_i^2, \quad t = 0, 1, \ldots
\]
and is such that there is no other feasible allocation \(\tilde{c}_0^1, \tilde{c}_1^1, \tilde{c}_2^1, \ldots; \tilde{c}_0^2, \tilde{c}_1^2, \tilde{c}_2^2, \ldots \) that is also feasible,

\[
\tilde{c}_t^1 + \tilde{c}_t^2 \leq w_t^1 + w_t^2, \quad t = 0, 1, \ldots,
\]

and satisfies

\[
\sum_{i=0}^{\infty} \beta^i \log \tilde{c}_i^i \geq \sum_{i=0}^{\infty} \beta^i \log \hat{c}_i^i, \quad i = 1, 2,
\]

with at least one of the two inequalities being strict.

Proposition 3. Suppose that \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is an Arrow-Debreu equilibrium. Then \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is a Pareto efficient allocation.

Proof. Suppose not, that there is an allocation \(\tilde{c}_0^1, \tilde{c}_1^1, \tilde{c}_2^1, \ldots; \tilde{c}_0^2, \tilde{c}_1^2, \tilde{c}_2^2, \ldots \) that is feasible and Pareto superior. \(\sum_{i=0}^{\infty} \beta^i \log \tilde{c}_i^i > \sum_{i=0}^{\infty} \beta^i \log \hat{c}_i^i \) implies that

\[
\sum_{i=0}^{\infty} \hat{p}_i \tilde{c}_i^i > \sum_{i=0}^{\infty} \hat{p}_i w_i^i
\]

because, otherwise, \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots \) would not be utility maximizing.

\[
\sum_{i=0}^{\infty} \beta^i \log \tilde{c}_i^i \geq \sum_{i=0}^{\infty} \beta^i \log \hat{c}_i^i
\]

implies that

\[
\sum_{i=0}^{\infty} \hat{p}_i \tilde{c}_i^i \geq \sum_{i=0}^{\infty} \hat{p}_i w_i^i.
\]

Otherwise, we could set \(\hat{c}_0^i = \tilde{c}_0^i + (\sum_{i=0}^{\infty} \hat{p}_i w_i^i - \sum_{i=0}^{\infty} \hat{p}_i \tilde{c}_i^i)/\hat{p}_0 \) and \(\hat{c}_t = \tilde{c}_t, \quad t = 1, 2, \ldots \) and obtain a consumption plan \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots \) that satisfies the budget constraint and yields strictly higher utility than \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots \). Adding the inequalities for the two consumers together yields

\[
\sum_{i=0}^{\infty} \hat{p}_i (\tilde{c}_i^1 + \tilde{c}_i^2) > \sum_{i=0}^{\infty} \hat{p}_i (w_i^1 + w_i^2).
\]

Notice that \(\sum_{i=0}^{\infty} \hat{p}_i w_i^i < \infty, \quad i = 1, 2, \ldots \), for utility maximization to make sense, so that this last inequality makes sense. (This is, we are not saying \(\infty > \infty \), which is nonsense.) Since utility is strictly increasing, prices \(\hat{p}_i \) are strictly positive. Multiply the condition that \(\tilde{c}_0^1, \tilde{c}_1^1, \tilde{c}_2^1, \ldots; \tilde{c}_0^2, \tilde{c}_1^2, \tilde{c}_2^2, \ldots \) be feasible in period \(t \) by \(\hat{p}_t \) and adding up \(t = 0, 1, \ldots \), we obtain
\[\sum_{t=0}^{\infty} \hat{p}_t (c_t^1 + c_t^2) \leq \sum_{t=0}^{\infty} \hat{p}_t (w_t^1 + w_t^2), \]

which is a contradiction. \[\blacksquare \]

Proposition 4. Suppose that \(\hat{r}_1, \hat{r}_2, \hat{r}_3, \ldots; \hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots; \hat{b}_1, \hat{b}_2, \hat{b}_3, \ldots; \)
\(\hat{b}_1^2, \hat{b}_2^2, \hat{b}_3^2, \ldots \) is a sequential markets equilibrium. Then \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is a Pareto efficient allocation.

Proof: Proposition 2 implies that \(\hat{c}_0^1, \hat{c}_1^1, \hat{c}_2^1, \ldots; \hat{c}_0^2, \hat{c}_1^2, \hat{c}_2^2, \ldots \) is the equilibrium allocation of an Arrow-Debreu equilibrium. Proposition 3 implies that it is Pareto efficient. \[\blacksquare \]

We could also answer this question using first order conditions from the consumers’ problems and first order conditions from the Pareto problem.

2. (a) With an Arrow-Debreu markets structure futures markets for goods are open in period 1. Consumers trade futures contracts among themselves.

An **Arrow-Debreu equilibrium** is a sequence of prices \(\hat{p}_1, \hat{p}_2, \ldots \) and an allocation \(\hat{c}_0^0, (\hat{c}_1^1, \hat{c}_2^1), (\hat{c}_2^2, \hat{c}_3^2), \ldots \) such that

- Given \(\hat{p}_1 \), consumer 0 chooses \(\hat{c}_1^0 \) to solve
 \[
 \max \log c_1^0 \\
 \text{s.t } \hat{p}_1 c_1^0 \leq \hat{p}_1 w_2 + m \\
 c_1^0 \geq 0.
 \]

- Given \(\hat{p}_t, \hat{p}_{t+1} \), consumer \(t, \ t = 1, 2, \ldots \), chooses \((\hat{c}_t^t, \hat{c}_{t+1}^t) \) to solve
 \[
 \max \log c_t^t + \log c_{t+1}^t \\
 \text{s.t } \hat{p}_t c_t^t + \hat{p}_{t+1} c_{t+1}^t \leq \hat{p}_t w_2 + \hat{p}_{t+1} w_2 \\
 c_t^t, c_{t+1}^t \geq 0.
 \]

- \(\hat{c}_t^t + \hat{c}_{t+1}^t = w_2 + w_1, \ t = 1, 2, \ldots \)

(b) With sequential market markets structure, there are markets for goods and assets open every period. The consumers in generations \(t - 1 \) and \(t \) trade goods and assets among themselves.

An **sequential markets equilibrium** is a sequence of interest rates \(\hat{r}_2, \hat{r}_3, \ldots \), an allocation \(\hat{c}_0^0, (\hat{c}_1^1, \hat{c}_2^1), (\hat{c}_2^2, \hat{c}_3^2), \ldots \), and asset holdings \(\hat{b}_1, \hat{b}_2, \hat{b}_3, \ldots \) such that
• Consumer 0 chooses c^0_i to solve
\[
\begin{align*}
\max & \quad \log c^0_i \\
\text{s.t.} & \quad c^0_i \leq w_2 + m \\
& \quad c^0_i \geq 0.
\end{align*}
\]

• Given \hat{r}_{t+1}, consumer t, $t = 1, 2, \ldots$, chooses $(\hat{c}^t_i, \hat{c}^{t+1}_i)$ and b_{t+1}^i to solve
\[
\begin{align*}
\max & \quad \log c^t_i + \log c^{t+1}_i \\
\text{s.t.} & \quad c^t_i + b_{t+1}^i \leq w_i \\
& \quad c^{t+1}_i \leq w_2 + (1 + \hat{r}_{t+1})b_{t+1}^i \\
& \quad c^t_i, c^{t+1}_i \geq 0.
\end{align*}
\]

• $\hat{c}^{t-1}_i + \hat{c}^t_i = w_2 + w_i$, $t = 1, 2, \ldots$.

• $\hat{b}^1_t = m$, $\hat{b}_{t+1}^t = \left[\prod_{r=2}^t (1 + \hat{r}_r) \right] m$, $t = 2, 3, \ldots$.

(c) Since there is no fiat money, there is only one good per period, there is only one consumer type in each generation, and consumers live for only two periods, the equilibrium allocation is autarky:
\[
\begin{align*}
\hat{c}^0_i &= w_2 \\
(\hat{c}^t_i, \hat{c}^{t+1}_i) &= (w_i, w_2)
\end{align*}
\]

The first order conditions from the consumers’ problems in the Arrow-Debreu equilibrium imply that
\[
\frac{\hat{c}^{t+1}_i}{\hat{c}^t_i} = \frac{\hat{p}_t}{\hat{p}_{t+1}}.
\]

Normalizing $\hat{p}_t = 1$, we obtain $\hat{p}_t = (w_i / w_2)^{-1}$. Similarly, the first order conditions from the consumers’ problems in the sequential markets equilibrium, imply that
\[
1 + \hat{r}_{t+1} = \frac{\hat{c}^{t+1}_i}{\hat{c}^t_i} = \frac{w_2}{w_i}
\]

or $\hat{r}_t = w_2 / w_i - 1$. Since the equilibrium allocation is autarky, $\hat{b}^t_{t+1} = 0$.

(d) An allocation $\hat{c}^0_i, (\hat{c}^1_i, \hat{c}^2_i), (\hat{c}^2_i, \hat{c}^3_i)$, \ldots is feasible if
\[
\hat{c}^{t-1}_i + \hat{c}^t_i \leq w_2 + w_i, \quad t = 1, 2, \ldots.
\]

An allocation is Pareto efficient if it is feasible and there exists no other allocation $\overline{c}^0_i, (\overline{c}^1_i, \overline{c}^2_i), (\overline{c}^2_i, \overline{c}^3_i), \ldots$ that is also feasible and satisfies
\[
\log \bar{c}_1^0 \geq \log \hat{c}_1^0 \\
\log \bar{c}_t^t + \log \bar{c}_{t+1}^t \geq \log \hat{c}_t^t + \log \hat{c}_{t+1}^t, \ t = 1, 2, \ldots
\]

with at least one inequality strict.

If \(w_2 < w_1 \), the equilibrium allocation is not Pareto efficient. To see this, we consider the alternative allocation

\[
\bar{c}_1^0 = \frac{w_1 + w_2}{2} \\
(\bar{c}_t^t, \bar{c}_{t+1}^t) = \left(\frac{w_1 + w_2}{2}, \frac{w_1 + w_2}{2} \right).
\]

Notice that, since

\[
\hat{c}_t^t + \hat{c}_{t+1}^t = w_2 + w_1, \ t = 1, 2, \ldots,
\]

this alternative allocation is feasible. Since

\[
\bar{c}_1^0 = \frac{w_1 + w_2}{2} > w_2 = \hat{c}_1^0, \\
\log \bar{c}_1^0 > \log \hat{c}_1^0.
\]

Notice that

\[
\bar{c}_t^t \bar{c}_{t+1}^t = \left(\frac{w_1 + w_2}{2} \right) \left(\frac{w_1 + w_2}{2} \right) = \frac{w_1^2 + w_2^2}{4} + \frac{w_1 w_2}{2}
\]

while

\[
\hat{c}_t^t \hat{c}_{t+1}^t = w_1 w_2.
\]

Consequently,

\[
\bar{c}_t^t \bar{c}_{t+1}^t - \hat{c}_t^t \hat{c}_{t+1}^t = \frac{w_1^2 + w_2^2}{4} - \frac{w_1 w_2}{2} = \left(\frac{w_1 - w_2}{2} \right)^2 > 0,
\]

which implies that

\[
\log \bar{c}_t^t + \log \bar{c}_{t+1}^t > \log \hat{c}_t^t + \log \hat{c}_{t+1}^t.
\]
A sequential markets equilibrium is a sequence of interest rates \(\hat{r}_2, \hat{r}_3, \ldots \), an allocation \(c_i^0, (c_i^1, c_i^2), (c_i^2, c_i^3), \ldots \), asset holdings \(\hat{b}_2^t, \hat{b}_3^t, \ldots \), and storage holdings \(\hat{x}_2^t, \hat{x}_3^t, \ldots \) such that

- Consumer 0 chooses \(\hat{c}_i^0 \) to solve

\[
\begin{align*}
\max \ & \log c_i^0 \\
\text{s.t.} \ & c_i^0 \leq w_2 + m + \theta x_i^0 \\
\ & c_i^0 \geq 0.
\end{align*}
\]

Here \(x_i^0 \) are the initial storage holdings brought into period 1 of generation 0.

- Given \(\hat{r}_t \), consumer \(t, t = 1, 2, \ldots \), chooses \((\hat{c}_t^t, \hat{c}_{t+1}^t) \) and \(\hat{b}_{t+1}^t \) to solve

\[
\begin{align*}
\max \ & \log c_t^t + \log c_{t+1}^t \\
\text{s.t.} \ & c_t^t + b_{t+1}^t + x_{t+1}^t \leq w_t \\
\ & c_{t+1}^t \leq w_2 + (1 + \hat{r}_t) b_{t+1}^t + \theta x_{t+1}^t \\
\ & c_t^t, c_{t+1}^t, x_{t+1}^t \geq 0.
\end{align*}
\]

- \(\hat{c}_{t-1}^t + \hat{c}_t^t + \hat{x}_{t+1}^t = w_2 + w_t + \theta \hat{x}_{t-1}^t \), \(t = 1, 2, \ldots \)

- \(\hat{b}_2^t = m, \hat{b}_{t+1}^t = \left[\prod_{r=2}^{t} (1 + \hat{r}_r) \right] m, t = 2, 3, \ldots \)

3. (a) The Euler conditions are

\[
\beta' \frac{1}{c_t} - p_t = 0 \\
- p_{t-1} + p_t \alpha \theta k_{t-1}^{a-1} = 0,
\]

which can be combined with the feasibility constraint into

\[
- \frac{1}{\theta k_{t-1}^a - k_t} + \beta \alpha \theta k_{t-1}^{a-1} = 0.
\]

The transversality condition is

\[
\lim_{t \to \infty} p_t k_{t+1}^a = \lim_{t \to \infty} \frac{\beta' k_{t+1}^a}{\theta k_t^a - k_{t+1}^a} = 0.
\]

(b) We guess that

\[
k_t = A \theta k_{t-1}^a
\]
\[k_{t+1} = A \theta k_t^a = A^{1+\alpha} \theta^{1+\alpha} k_{t-1}^a. \]

If we plug these guesses into the Euler equation, we obtain

\[
-\frac{1}{\theta k_t^a - A \theta k_{t-1}^a} + \frac{\beta \alpha (A \theta k_{t-1}^a)^{\alpha-1}}{\theta (A \theta k_{t-1}^a)^\alpha - A^{1+\alpha} \theta^{1+\alpha} k_{t-1}^a} = 0
\]

\[
-\frac{1}{\theta k_t^a - A \theta k_{t-1}^a} + \frac{A^{\alpha-1} \beta \alpha K_{t-1}^{a-2}}{A^a \theta^{1+\alpha} k_{t-1}^a - A^{1+\alpha} \theta^{1+\alpha} K_{t-1}^a} = 0
\]

\[
-\frac{1}{\theta k_t^a - A \theta k_{t-1}^a} + \frac{A^{-1} \beta \alpha}{\theta k_{t-1}^a - A \theta k_t^a} = 0
\]

\[A = \alpha \beta, \]

which implies

\[k_{t+1} = \alpha \beta \theta k_t^a. \]

(c) Suppose that there is a representative consumer with the utility function and the endowment \(k_0 \) of capital in period 0 and the endowment 1 of labor in every period. The production function is

\[y_t = \theta k_t^a \ell_t^{1-\alpha}. \]

Capital depreciates completely every period.

With sequential market markets structure, there are markets for goods, capital services, labor services, and bonds open every period. Consumers sell labor services and rent capital to the firm. They buy goods from the firm, some of which they consume and some of which they save as capital. They trade bonds among themselves.

A sequential markets equilibrium is sequences of wages \(\hat{w}_0, \hat{w}_1, \ldots \), rental rates \(\hat{r}_0^k, \hat{r}_1^k, \ldots \), interest rates \(\hat{r}_0^b, \hat{r}_1^b, \ldots \), consumption levels \(\hat{c}_0, \hat{c}_1, \ldots \), labor levels \(\hat{k}_0, \hat{k}_1, \ldots \), capital stocks \(\hat{k}_0, \hat{k}_1, \ldots \), and bond holdings \(\hat{b}_0, \hat{b}_1, \ldots \), such that

- Given \(\hat{w}_0, \hat{w}_1, \ldots, \hat{r}_0^k, \hat{r}_1^k, \ldots, \hat{r}_0^b, \hat{r}_1^b, \ldots \), the consumer chooses \(\hat{c}_0, \hat{c}_1, \ldots, \hat{k}_0, \hat{k}_1, \ldots \), and \(\hat{b}_0, \hat{b}_1, \ldots \) to solve

\[
\max \sum_{t=0}^\infty \beta^t \log c_t
\]

s.t. \(c_t + k_{t+1} + b_{t+1} \leq \hat{w}_t + (1 + \hat{r}_t^b)b_t, \ t = 0, 1, \ldots \)
\[k_0 = \bar{k}_0, \ b_0 = 0 \]
\[c_t, k_t \geq 0, \ b_t \geq -B. \]

- \(\hat{w}_t = (1 - \alpha) \theta \hat{k}_t^{a} \hat{\ell}_t^{-a}, \ t = 0, 1, \ldots \)
- \(\hat{r}_t^k = \alpha \theta \hat{k}_t^{a-1} \hat{\ell}_t^{-a}, \ t = 0, 1, \ldots \)
- \(\hat{c}_t + \hat{k}_{t+1} = \theta \hat{k}_t^a, \ t = 0, 1, \ldots \)
- \(\hat{\ell}_t = 1, \ t = 0, 1, \ldots \)
- \(\hat{b}_t = 0, \ t = 0, 1, \ldots \)

[An alternative would be to specify an Arrow-Debreu equilibrium:

With Arrow-Debreu markets, there are futures markets of goods, capital, labor services, and capital services, open in period 0. Consumers buy goods from firms. Who makes the capital accumulation decision can be modeled different ways. We could have consumers buy and sell future claims to capital and sell claims to capital services to firms, or we could have consumers sell their initial capital to firms and have firms buy and sell future claims to capital and sell claims to capital services to other firms.

An Arrow-Debreu equilibrium is sequences of prices of goods \(\hat{p}_0, \hat{p}_1, \ldots \), wage rates \(\hat{w}_0, \hat{w}_1, \ldots \), rental rates \(\hat{r}_0, \hat{r}_1, \ldots \), consumption levels \(\hat{c}_0, \hat{c}_1, \ldots \), and capital stocks \(\hat{k}_0, \hat{k}_1, \ldots \) such that

- Given \(\hat{p}_0, \hat{p}_1, \ldots, \hat{w}_0, \hat{w}_1, \ldots, \) and \(\hat{r}_0 \), the consumer chooses \(\hat{c}_0, \hat{c}_1, \ldots \) to solve

\[
\max \sum_{t=0}^{\infty} \beta^t \log c_t
\]
\[
\text{s.t. } \sum_{t=0}^{\infty} (\hat{p}_t c_t + \hat{p}_t k_{t+1}) \leq \sum_{t=0}^{\infty} (\hat{w}_t + \hat{r}_t k_t)
\]
\[
c_t, k_t \geq 0, \ k_0 = \bar{k}_0.
\]

- \(\hat{w}_t = \hat{p}_t (1 - \alpha) \theta \hat{k}_t^a \hat{\ell}_t^{-a}, \ t = 0, 1, \ldots \)
- \(\hat{r}_t = \hat{p}_t \alpha \theta \hat{k}_t^{a-1} \hat{\ell}_t^{-a}, \ t = 0, 1, \ldots \)
- \(\hat{c}_t + \hat{k}_{t+1} = \theta \hat{k}_t^a, \ t = 0, 1, \ldots \) \]