Answer **two** of the following four questions.

1. Consider an overlapping generations economy in which the representative consumer born in period t, $t = 1, 2, \ldots$, has the utility function over consumption of the single good in periods t and $t + 1$

 \[u(c'_t, c'_{t+1}) = \log c'_t + \gamma \log c'_{t+1} \]

 and endowments $(w'_t, w'_{t+1}) = (w_t, w_{t+1})$. Suppose that the representative consumer in the initial old generation has the utility function

 \[u^0(c^0_t) = \gamma \log c^0_t \]

 and endowment $w^0_t = w_2$ of the good in period 1 and endowment m of fiat money.

 (a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium.

 (b) Describe a sequential market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium.

 (c) Suppose that $m = 0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.

 (d) Define a Pareto efficient allocation. Suppose that $\gamma = 2$ and $(w_t, w_{t+1}) = (4, 5)$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.

 (e) Suppose now that, rather than endowments of consumption goods, the consumers have endowments of labor $(\ell'_t, \ell'_{t+1}) = (\bar{\ell}_t, \bar{\ell}_2)$ and $\ell^0_t = \bar{\ell}_2$. The representative consumer in the initial old generation has an endowment of capital \bar{k}^0_1 and an endowment m of fiat money. Final output, which can be consumed or invested is produced using the production function

 \[\theta k_t^\alpha \ell_t^{1-\alpha}, \]

 $\theta > 0$, $0 < \alpha < 1$, and a fraction δ, $0 \leq \delta \leq 1$, of capital depreciates every period. Define a sequential markets equilibrium for this economy.
2. Consider an economy in which the representative consumer lives forever. There is a good in each period that can be consumed or saved as capital as well as labor. The consumer’s utility function is
\[\sum_{t=0}^{\infty} \beta^t c_t^\rho. \]
Here \(0 < \beta < 1 \) and \(0 < \rho < 1 \). The consumer is endowed with 1 unit of labor in each period and with \(\bar{k}_0 \) units of capital in period 0. Feasible allocations satisfy
\[c_t + k_{t+1} - (1-\delta)k_t \leq \theta k_t^\alpha k_{t+1}^{-\alpha} \]
\[c_t, k_t \geq 0. \]
Here \(\theta > 0, \ 0 < \alpha < 1, \) and \(0 \leq \delta \leq 1. \)

(a) Formulate the problem of maximizing the representative consumer’s utility subject to feasibility conditions as a dynamic programming problem. Write down the appropriate Bellman’s equation.

(b) Let \(K = [0, \bar{k}] \). Explain how you can use the feasibility condition to choose \(\bar{k} \) to be the maximum sustainable capital stock. Let \(C(K) \) be the space of continuous bounded functions on \(K \). Endow \(C(K) \) with the topology induced by the sup norm
\[d(V,W) = \sup_{k \in K} |V(k) - W(k)| \text{ for any } V,W \in C(K). \]
Define a contraction mapping \(T : C(K) \to C(K) \).

(c) State Blackwell’s sufficient conditions for \(T \) to be a contraction. (You do not need to prove that these conditions are sufficient for \(T \) to be a contraction.)

(d) Using the Bellman’s equation from part a, define the mapping for the value function iteration algorithm,
\[V_{n+1} = T(V_n), \]
where \(T : C(K) \to C(K) ; \) that is \(V = T(V) \) is the Bellman’s equation. (You do not need to prove that \(T(V) \in C(K) \) for all \(V \in C(K) \).) Prove that \(T \) satisfies Blackwell’s sufficient conditions to be a contraction.

(e) Specify an economic environment for which the solution to the social planner’s problem in part a is a Pareto efficient allocation/production plan. Define a sequential markets equilibrium for this environment. Explain how you could use the value function iteration algorithm \(V_{n+1} = T(V_n) \) to calculate the unique sequential markets equilibrium. (You do not have to prove that this equilibrium is unique.)
3. Consider the social planner’s problem of choosing sequences of c_t, ℓ_t, and k_t to solve

$$\max \sum_{t=0}^{\infty} \beta^t \left[\log c_t + \gamma \log (1 - \ell_t) \right]$$

subject to:

$$c_t + k_{t+1} \leq \theta k_t^{\gamma} \ell_t^{1-\gamma}$$

$$c_t, k_t \geq 0, 1 \geq \ell_t \geq 0$$

$$k_0 \leq \bar{k}_0.$$

(a) Write down the Euler conditions and the transversality condition for this problem.

(b) Formulate this social planner’s problem as a dynamic programming problem by writing down the relevant Bellman’s equation. Guessing that the value function takes the form

$$V(k) = a_0 + a_1 \log k,$$

solve for the policy functions $c = c(k)$, $\ell = \ell(k)$, $k' = k'(k)$. (Hint: the optimal value of ℓ does not vary with k.)

(c) Verify that the solution to the social planner’s generated by the policy functions in part b satisfy the Euler conditions and transversality condition in part a.

(d) Specify an economic environment for which the solution to this social planning problem is a Pareto efficient allocation. Define a sequential markets equilibrium for this economy. Explain how you can use the policy functions from part b to calculate his equilibrium.

(e) Define an Arrow-Debreu equilibrium for the economy in part d. Explain how you can use the policy functions from part b to calculate this equilibrium.
4. Consider the problem faced by an unemployed worker searching for a job. Every period that the worker searches, she receives a job offer with the wage \(w \) drawn independently from the time invariant probability distribution \(F(v) = \text{prob}(w \leq v), \ v \in [0, B], \ B > 0 \). After receiving the wage offer \(w \) the worker faces the choice (1) to accept it or (2) to reject it, receive unemployment benefit \(b \), and search again next period. That is,

\[
y_t = \begin{cases}
 w & \text{if job offer has been accepted} \\
 b & \text{if searching}
\end{cases}
\]

The worker solves

\[
\max \ E \sum_{t=0}^{\infty} \beta^t y_t,
\]

where \(1 > \beta > 0 \). Once a job offer has been accepted, there are no fires or quits.

(a) Formulate the worker’s problem as a dynamic programming problem by writing down Bellman’s equation.

(b) Using Bellman’s equation from part a, characterize the value function \(V(w) \) in a graph and argue that the worker’s problem reduces to determining a reservation wage \(\bar{w} \) such that she accepts any wage offer \(w \geq \bar{w} \) and rejects any wage offer \(w < \bar{w} \).

(c) Consider two economies with different unemployment benefits \(b_1 \) and \(b_2 \) but otherwise identical. Let \(\bar{w}_1 \) and \(\bar{w}_2 \) be the reservation wages in these two economies. Suppose that \(b_2 > b_1 \). Prove that \(\bar{w}_2 > \bar{w}_1 \). Provide some intuition for this result.

(d) Consider two economies with different wage distributions \(F_1 \) and \(F_2 \) but otherwise identical. Define what it means for \(F_2 \) to be a mean preserving spread of \(F_1 \).

(e) Suppose that \(F_2 \) is a mean preserving spread of \(F_1 \). Let \(\bar{w}_1 \) be the reservation wage in the economy with wage distribution \(F_1 \) and \(\bar{w}_2 \) be the reservation wage in economy with wage distribution \(F_2 \). Prove that \(\bar{w}_2 > \bar{w}_1 \). Provide some intuition for this result.