FINAL EXAMINATION

Answer two of the following four questions.

1. Consider an overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+\gamma \log c_{t+1}^{t}
$$

and endowments $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$. Suppose that the representative consumer in the initial old generation has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\gamma \log c_{1}^{0}
$$

and endowment $w_{1}^{0}=w_{2}$ of the good in period 1 and endowment m of fiat money.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium.
(b) Describe a sequential market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium.
(c) Suppose that $m=0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.
(d) Define a Pareto efficient allocation. Suppose that $\gamma=2$ and $\left(w_{1}, w_{2}\right)=(4,5)$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.
(e) Suppose now that, rather than endowments of consumption goods, the consumers have endowments of labor $\left(\bar{\ell}_{t}^{t}, \bar{\ell}_{t+1}^{t}\right)=\left(\bar{\ell}_{1}, \bar{\ell}_{2}\right)$ and $\bar{\ell}_{1}^{0}=\bar{\ell}_{2}$, The representative consumer in the initial old generation has an endowment of capital \bar{k}_{1}^{0} and an endowment m of fiat money. Final output, which can be consumed or invested is produced using the production function $\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha}$, $\theta>0,0<\alpha<1$, and a fraction $\delta, 0 \leq \delta \leq 1$, of capital depreciates every period. Define a sequential markets equilibrium for this economy.
2. Consider an economy in which the representative consumer lives forever. There is a good in each period that can be consumed or saved as capital as well as labor. The consumer's utility function is

$$
\sum_{t=0}^{\infty} \beta^{t} c_{t}^{p} .
$$

Here $0<\beta<1$ and $0<\rho<1$. The consumer is endowed with 1 unit of labor in each period and with \bar{k}_{0} units of capital in period 0 . Feasible allocations satisfy

$$
\begin{gathered}
c_{t}+k_{t+1}-(1-\delta) k_{t} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} \\
c_{t}, k_{t} \geq 0
\end{gathered}
$$

Here $\theta>0,0<\alpha<1$, and $0 \leq \delta \leq 1$.
(a) Formulate the problem of maximizing the representative consumer's utility subject to feasibility conditions as a dynamic programming problem. Write down the appropriate Bellman’s equation.
(b) Let $K=[0, \tilde{k}]$. Explain how you can use the feasibility condition to choose \tilde{k} to be the maximum sustainable capital stock. Let $C(K)$ be the space of continuous bounded functions on K. Endow $C(K)$ with the topology induced by the sup norm

$$
d(V, W)=\sup _{k \in K}|V(k)-W(k)| \text { for any } V, W \in C(K) .
$$

Define a contraction mapping $T: C(K) \rightarrow C(K)$.
(c) State Blackwell’s sufficient conditions for T to be a contraction. (You do not need to prove that these conditions are sufficient for T to be a contraction.)
(d) Using the Bellman's equation from part a, define the mapping for the value function iteration algorithm,

$$
V_{n+1}=T\left(V_{n}\right),
$$

where $T: C(K) \rightarrow C(K)$; that is $V=T(V)$ is the Bellman's equation. (You do not need to prove that $T(V) \in C(K)$ for all $V \in C(K)$.) Prove that T satisfies Blackwell's sufficient conditions to be a contraction.
(e) Specify an economic environment for which the solution to the social planner's problem in part a is a Pareto efficient allocation/production plan. Define a sequential markets equilibrium for this environment. Explain how you could use the value function iteration algorithm $V_{n+1}=T\left(V_{n}\right)$ to calculate the unique sequential markets equilibrium. (You do not have to prove that this equilibrium is unique.)
3. Consider the social planner's problem of choosing sequences of c_{t}, ℓ_{t}, and k_{t} to solve

$$
\begin{gathered}
\max \sum_{t=0}^{\infty} \beta^{t}\left[\log c_{t}+\gamma \log \left(1-\ell_{t}\right)\right] \\
\text { s.t. } \quad c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} \\
c_{t}, k_{t} \geq 0,1 \geq \ell_{t} \geq 0 \\
k_{0} \leq \bar{k}_{0} .
\end{gathered}
$$

(a) Write down the Euler conditions and the transversality condition for this problem.
(b) Formulate this social planner's problem as a dynamic programming problem by writing down the relevant Bellman's equation. Guessing that the value function takes the form

$$
V(k)=a_{0}+a_{1} \log k,
$$

solve for the policy functions $c=c(k), \ell=\ell(k), k^{\prime}=k^{\prime}(k)$. (Hint: the optimal value of ℓ does not vary with k.)
(c) Verify that the solution to the social planner's generated by the policy functions in part b satisfy the Euler conditions and transversality condition in part a.
(d) Specify an economic environment for which the solution to this social planning problem is a Pareto efficient allocation. Define a sequential markets equilibrium for this economy. Explain how you can use the policy functions from part b to calculate his equilibrium.
(e) Define an Arrow-Debreu equilibrium for the economy in part d. Explain how you can use the policy functions from part b to calculate this equilibrium.
4. Consider the problem faced by an unemployed worker searching for a job. Every period that the worker searches, she receives a job offer with the wage w drawn independently from the time invariant probability distribution $F(v)=\operatorname{prob}(w \leq v), v \in[0, B], B>0$. After receiving the wage offer w the worker faces the choice (1) to accept it or (2) to reject it, receive unemployment benefit b, and search again next period. That is,

$$
y_{t}=\left\{\begin{array}{ll}
w & \text { if job offer has been accepted } \\
b & \text { if searching }
\end{array} .\right.
$$

The worker solves

$$
\max E \sum_{t=0}^{\infty} \beta^{t} y_{t}
$$

where $1>\beta>0$. Once a job offer has been accepted, there are no fires or quits.
(a) Formulate the worker's problem as a dynamic programming problem by writing down Bellman's equation.
(b) Using Bellman's equation from part a, characterize the value function $V(w)$ in a graph and argue that the worker's problem reduces to determining a reservation wage \bar{w} such that she accepts any wage offer $w \geq \bar{w}$ and rejects any wage offer $w<\bar{w}$.
(c) Consider two economies with different unemployment benefits b_{1} and b_{2} but otherwise identical. Let \bar{w}_{1} and \bar{w}_{2} be the reservation wages in these two economies. Suppose that $b_{2}>b_{1}$. Prove that $\bar{w}_{2}>\bar{w}_{1}$. Provide some intuition for this result.
(d) Consider two economies with different wage distributions F_{1} and F_{2} but otherwise identical. Define what it means for F_{2} to be a mean preserving spread of F_{1}.
(e) Suppose that F_{2} is a mean preserving spread of F_{1}. Let \bar{w}_{1} be the reservation wage in the economy with wage distribution F_{1} and \bar{w}_{2} be the reservation wage in economy with wage distribution F_{2}. Prove that $\bar{w}_{2}>\bar{w}_{1}$. Provide some intuition for this result.

