MACROECONOMIC THEORY

ECON 8105

T. J. KEHOE
 FALL 2021

MIDTERM EXAMINATION

Answer two of the following three questions.

1. Consider an economy with two infinitely lived consumers. There is one good in each period. Consumer $i, i=1,2$, has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i} .
$$

Here $\beta, 0<\beta<1$, is the common discount factor. Each of the consumers is endowed with a sequence of goods:

$$
\begin{aligned}
\left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right) & =(2,1,2,1, \ldots) \\
\left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right) & =(1,4,1,4, \ldots) .
\end{aligned}
$$

There is no production or storage.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Carefully state a proposition or propositions that establish the essential equivalence of the equilibrium concept in part a with that in part b . Be sure to specify the relationships between the objects in the Arrow-Debreu equilibrium and those in the sequential markets equilibrium.
(d) Calculate the Arrow-Debreu equilibrium for this economy. (This equilibrium is unique, but you do not have to prove this fact.) Use this answer and the answer to part c to calculate the sequential markets equilibrium.
(e) Suppose now that there is a production technology that transforms labor and capital into output that can be consumed or saved as capital:

$$
y_{t}=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha},
$$

where $\theta>0$ and $1>\alpha>0$. Capital depreciates at the rate $\delta, 1>\delta>0$, every period. The consumers' endowments of labor are

$$
\begin{aligned}
& \left(\bar{\ell}_{0}^{1}, \bar{\ell}_{1}^{1}, \bar{\ell}_{1}^{1}, \bar{\ell}_{3}^{1}, \ldots\right)=(2,1,2,1, \ldots) \\
& \left(\bar{\ell}_{0}^{2}, \bar{\ell}_{1}^{2}, \bar{\ell}_{2}^{2}, \bar{\ell}_{3}^{2}, \ldots\right)=(1,4,1,4, \ldots)
\end{aligned}
$$

Their endowments of capital in period 0 are $\bar{k}_{0}^{i}>0, i=1,2$. Define a sequential markets equilibrium for this economy.
2. Consider an overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=c_{t}^{t}+\log c_{t+1}^{t}
$$

and endowments $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$. (Notice that the utility function is not $\log c_{t}^{t}+\log c_{t+1}^{t}$.) Suppose that the representative consumer in the initial old generation has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\log c_{1}^{0}
$$

and endowment $w_{1}^{0}=w_{2}$ of the good in period 1 and endowment m of fiat money.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Suppose that $m=0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.
(d) Define a Pareto efficient allocation. Suppose that $w_{2}>1$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.
(e) Suppose now that there are two types of consumers of equal measure in each generation. The representative consumer of type 1 born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u_{1}\left(c_{t}^{1 t}, c_{t+1}^{1 t}\right)=c_{t}^{1 t}+\log c_{t+1}^{1 t}
$$

while the representative consumer of type 2 has the utility function

$$
u_{2}\left(c_{t}^{2 t}, c_{t+1}^{2 t}\right)=\log c_{t}^{2 t}+c_{t+1}^{2 t} .
$$

The endowments of these consumers are $\left(w_{t}^{i t}, w_{t+1}^{i t}\right)=\left(w_{1}^{i}, w_{2}^{i}\right), i=1,2$. The representative consumers of type 1 and 2 who live only in period 1 have utility functions $\log c_{1}^{10}$ and c_{1}^{20}, endowments $w_{1}^{10}=w_{2}^{1}$ and $w_{1}^{20}=w_{2}^{2}$ of the good in period 1 , and endowments m^{1} and m^{2} of fiat money. Define an Arrow-Debreu equilibrium for this economy. Define a sequential markets equilibrium.
3. Consider an economy in which the social planner solves the problem

$$
\begin{gathered}
\max \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \\
\text { s.t. } c_{t}+k_{t+1} k_{t} \leq \theta k_{t}^{\alpha} \\
c_{t}, k_{t} \geq 0 \\
k_{0} \leq \bar{k}_{0} .
\end{gathered}
$$

where $1>\beta>0,1>\delta>0, \theta>0,1>\alpha>0$.
(a) Write down the Euler conditions and the transversality condition for this problem.
(b) Write down Bellman's equation that defines the value function for the social planner's problem expressed as a dynamic programming problem. Explain how you would derive the policy function $k^{\prime}=g(k)$ from this value function. Guess that the value function has the form

$$
V(k)=a_{0}+a_{1} \log k
$$

for some yet-to-be-determined constants a_{0} and a_{1}. Solve for the policy function $k^{\prime}=g(k)$.
(c) Verify that the sequence of capital stocks $\hat{k}_{t+1}=g\left(\hat{k}_{t}\right)$, where $\hat{k}_{0}=\bar{k}_{0}$, and the associated sequence of consumption levels

$$
\hat{c}_{t}=\theta \hat{k}_{t}^{\alpha}-g\left(\hat{k}_{t}\right)
$$

satisfy the Euler conditions and the transversality condition in part a.
(d) Specify an economic environment (preferences, technology, endowments, and market structure) for which the allocation in part c is an equilibrium allocation. Define an equilibrium and explain how to use the policy function $k^{\prime}=g(k)$ to calculate this equilbrium.

