1. Consider an economy two infinitely lived consumers, each of whom has the same utility function,

\[u(c_0^i, c_1^i, \ldots) = \sum_{t=0}^{\infty} \beta^t \log c_t^i \]

where \(0 < \beta < 1 \). Suppose that consumer 1 has the endowments

\[(w_0^1, w_1^1, w_2^1, w_3^1, \ldots) = (4, 2, 4, 2, \ldots) \]

and consumer 2 has the endowments

\[(w_0^2, w_1^2, w_2^2, w_3^2, \ldots) = (2, 4, 2, 4, \ldots) \]

a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium.

b) Define a Pareto efficient allocation for this economy. Calculate a Pareto efficient allocation by maximizing a weighted sum of utilities, \(\alpha_1 u_1 + \alpha_2 u_2 \).

c) Define an Arrow-Debreu equilibrium with transfers. Find the transfer payments necessary to implement the Pareto efficient allocation in part b as equilibrium with transfers. Demonstrate that the transfer payments are homogeneous of degree one in \((\alpha_1, \alpha_2) \) and sum to 0.

d) Find the transfer payments necessary to implement the allocation \((c_1^1, c_1^2) = (3, 3) \) as an equilibrium with transfers.

e) Calculate the (unique) Arrow-Debreu equilibrium of this economy.

f) Define a sequential markets equilibrium. Calculate the unique sequential markets equilibrium of the economy.

2. Consider a simple overlapping generations economy in which the consumer born in period \(t, t = 1, 2, \ldots \), has the utility function
where \(b < 1 \). Suppose that his endowment is \((w', w'_{t+1}) = (w_1, w_2)\).

a) What is the utility function in the case where \(b = 0 \)? [Hint: use l’Hôpital’s rule.]

b) Write down the utility maximization problem in an environment with Arrow-Debreu markets. Derive the excess demand functions \(y(p_t, p_{t+1}) \) and \(y(p_t, p_{t+1}) \). Demonstrate that they are homogeneous of degree zero and that they satisfy Walras’s law.

c) Suppose that the first generation has an excess demand function of the form

\[
z_0(p_t, m) = \frac{m}{p_t}.
\]

Explain the role of \(m \). Define an Arrow-Debreu equilibrium of this model. Write down the equilibrium conditions using the excess demand functions.

d) Find an expression for the offer curve for this model. (Hint: you have to solve for \(y \) as a function of \(z \).)

e) Suppose that \(w_1 = 1 \) and \(w_2 = 0.25 \). Draw the offer curve for the three cases \(b = 0.5 \), \(b = 0 \), and \(b = -1 \).

3. Consider an overlapping generations economy in which the representative consumer in generation \(t \), \(t = 1, 2, \ldots \), has preferences over the consumption of the single good in each of the two periods of her life given by the utility function

\[
u(c'_t, c'_{t+1}) = \log c'_t + \log c'_{t+1}.
\]

This consumer is endowed with quantities of labor \((\ell'_t, \ell'_{t+1}) = (\ell_1, \ell_2)\). In addition there is a generation 0 who representative consumer lives only in period 1 and has the utility function

\[
u^0(c^0_t) = \log c^0_t,
\]

and the endowment of \(\ell_2 \) units of labor and \(k_1 \) units of capital in period 1. In addition, this consumer has an endowment of fiat money \(m \), which can be positive, negative or zero.

The production function is
\[f(k_t, \ell_t) = \theta k_t^\alpha \ell_t^{1-\alpha}, \]

and capital depreciates at the rate \(\delta \) per period, \(0 \leq \delta \leq 1 \).

a) Define a sequential market equilibrium for this economy.

b) Define an Arrow-Debreu equilibrium for this economy. State and prove two theorems that establish the equivalence between a sequential market equilibrium and an Arrow-Debreu equilibrium.

c) Reduce the equilibrium conditions to a second-order difference equation in \(k_t \), that is, an equation in \(k_{t+1}, k_t, k_{t-1} \) that includes no other endogenous variables.

d) Suppose that \(m = 0 \). Reduce the equilibrium conditions to a first-order difference equation in \(k_t \). (Hint: in this case you know that the savings of generation \(t \) in period \(t \) in the sequential market equilibrium must equal \(k_{t+1} \).)

4. Suppose that \(\theta = 100, \alpha = 0.4, \delta = 0.8, \ell_1 = 1 \), and \(\ell_2 = 0 \) in question 3.

a) Define a steady state for this economy. Calculate the two steady states.

b) Suppose that \(\bar{k}_1 = 10 \) and \(m = 0 \). Use your answer to question 3d to calculate the equilibrium in the first 10 periods both by hand and on the computer.

c) Suppose now that \(\ell_2 = 0.5 \). Repeat parts a and b, doing your calculations on the computer.

d) Suppose now that \(\ell_2 = 2 \). Repeat parts a and b, doing your calculations on the computer.