PROBLEM SET \#1

1. Consider an economy two infinitely lived consumers, each of whom has the same utility function,

$$
u\left(c_{0}^{i}, c_{1}^{i}, \ldots\right)=\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i},
$$

where $0<\beta<1$. Suppose that consumer 1 has the endowments

$$
\left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=(5,1,5,1, \ldots)
$$

and consumer 2 has the endowments

$$
\left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=(1,5,1,5, \ldots)
$$

a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium.
b) Define a Pareto efficient allocation for this economy. Calculate a Pareto efficient allocation by maximizing a weighted sum of utilities, $\alpha_{1} u_{1}+\alpha_{2} u_{2}$.
c) Define an Arrow-Debreu equilibrium with transfers. Find the transfer payments necessary to implement the Pareto efficient allocation in part b as equilibrium with transfers. Demonstrate that the transfer payments are homogeneous of degree one in (α_{1}, α_{2}) and sum to 0 .
d) Find the transfer payments necessary to implement the allocation $\left(c_{t}^{1}, c_{t}^{2}\right)=(3,3)$ as an equilibrium with transfers.
e) Calculate the (unique) Arrow-Debreu equilibrium of this economy.
f) Define a sequential markets equilibrium. Calculate the unique sequential markets equilibrium of the economy.
g) Redo the calculations in part e for the economy in which

$$
\begin{aligned}
& \left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=(5,1,5,1, \ldots) \\
& \left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=(3,3,3,3, \ldots) .
\end{aligned}
$$

2. Consider a simple overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=c_{t}^{t}+\left[\left(c_{t+1}^{t}\right)^{b}-1\right] / b
$$

where $b<1$. Suppose that his endowment is $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$.
a) What is the utility function in the case where $b=0$? [Hint: use l'Hôpital's rule.]
b) Write down the utility maximization problem in an environment with Arrow-Debreu markets. Derive the excess demand functions $y\left(p_{t}, p_{t+1}\right)$ and $z\left(p_{t}, p_{t+1}\right)$. Demonstrate that they are homogeneous of degree zero and that they satisfy Walras's law.
c) Suppose that the representative consumer in the first generation has the utility function $u^{0}\left(c_{1}^{0}\right)=\left[\left(c_{1}^{0}\right)^{b}-1\right] / b$. This consumer is endowed with $w_{1}^{0}=w_{2}$ of the good in period 1 as well as m units of fiat money, where m can be positive, negative, or 0 . Explain the role of m. Define an Arrow-Debreu equilibrium of this model. Write down the equilibrium conditions using the excess demand functions.
d) Find an expression for the offer curve for this model. (Hint: you have to solve for y as a function of z.)
e) Suppose that $w_{1}=2$ and $w_{2}=0.75$. Draw the offer curve for the three cases $b=0.5$, $b=0$, and $b=-1$.
f) Define a sequential market equilibrium for this economy. Suppose that you have calculated the Arrow-Debreu equilibrium in part d. Explain how you can use the ArrowDebreu equilibrium to calculate the sequential market equilibrium.

