PROBLEM SET \#4

1. Consider an economy in which the representative consumer lives forever. There is a good in each period that can be consumed or saved as capital as well as labor. The consumer's utility function is

$$
(1 / \rho) \sum_{t=0}^{\infty} \beta^{t}\left(c_{t}^{\rho}-1\right)
$$

Here $0<\beta<1$ and $-\infty<\rho<1, \rho \neq 0$. The consumer is endowed with 1 unit of labor in every period and \bar{k}_{0} units of capital in period 0 . Feasible allocations satisfy

$$
\begin{gathered}
c_{t}+k_{t+1}-(1-\delta) k_{t} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} \\
c_{t}, k_{t} \geq 0 .
\end{gathered}
$$

Here $\theta>0,0<\alpha<1$, and $0 \leq \delta \leq 1$.
a) Use l'Hôpital's Rule to calculate the utility function in the limit where $\rho \rightarrow 0$.
b) Formulate the problem of maximizing the representative consumer's utility subject to feasibility conditions as a dynamic programming problem. Write down the appropriate Bellman's equation.
c) Let $K=[0, \tilde{k}]$. Explain how you can use the feasibility conditions to choose \tilde{k} to be the maximum sustainable capital stock. Let $C(K)$ be the space of continuous bounded functions on K. Endow $C(K)$ with the topology induced by the sup norm

$$
d(V, W)=\sup _{k \in K}|V(k)-W(k)| \text { for all } V, W \in C(K) .
$$

Define a contraction mapping $T: C(K) \rightarrow C(K)$.
d) State Blackwell's sufficient conditions for T to be a contraction. (You do not need to prove that these conditions are sufficient for T to be a contraction.)
e) Using Bellman's equation from part a, set up the mapping that defines the value function iteration algorithm:

$$
V_{n+1}=T\left(V_{n}\right),
$$

where $T: C(K) \rightarrow C(K)$. (You do not need to prove that $T(V) \in C(K)$ if $V \in C(K)$.) Using Blackwell's sufficient conditions, prove that T is a contraction.
f) Specify an economic environment for which the solution to the social planner's problem in part a is a Pareto efficient allocation/production plan. Define a sequential markets equilibrium for this environment. Explain how you could use the value function
iteration algorithm $V_{n+1}=T\left(V_{n}\right)$ to calculate the unique sequential markets equilibrium. (You do not have to prove that this equilibrium is unique.)
2. Consider the optimal growth problem

$$
\begin{gathered}
\max \sum_{t=0}^{\infty}(0.6)^{t} \log c_{t} \\
\text { s.t. } c_{t}+k_{t+1} \leq 10 k_{t}^{0.4} \\
c_{t}, k_{t} \geq 0 \\
k_{0}=\bar{k}_{0} .
\end{gathered}
$$

a) Write down the Euler conditions and the transversality condition for this problem. Calculate the steady state values of c and k.
b) Write down the functional equation that defines the value function for this problem. Guess that the value function has the form $a_{0}+a_{1} \log k$. Calculate the value function and the policy function. Verify that the policy function generates a path for capital that satisfies the Euler conditions and transversality condition in part a.
3. Let capital take values for the discrete grid $(2,4,6,8,10)$. Make the original guess $V_{0}(k)=0$ for all k, and perform the first three steps of the value function iteration

$$
V_{i+1}(k)=\max \log \left(10 k^{0.4}-k^{\prime}\right)+0.6 V_{i}\left(k^{\prime}\right)
$$

a) Perform the value function iterations until

$$
\max _{k}\left|V_{i+1}(k)-V_{i}(k)\right|<10^{-5} .
$$

Report the value function and the policy function that you obtain. Compare these results with what you obtained in question 4. (Hint: you probably want to use a computer.)
b) Repeat part a for the grid of capital stocks $(0.05,0.10, \ldots, 9.95,10)$. Compare your answer with those of question 4 and of part a. (Hint: you need to use a computer).
c) Repeat part b for the problem

$$
\begin{gathered}
\max \sum_{t=0}^{\infty}(0.6)^{t} \log c_{t} \\
\text { s.t. } c_{t}+k_{t+1}-0.5 k_{t} \leq 10 k_{t}^{0.4} \\
c_{t}, k_{t} \geq 0 \\
k_{0}=\bar{k}_{0} .
\end{gathered}
$$

(There is now no comparison with an analytical answer to be made, however.)

