1. Consider an economy like that in question 3 on problem set #4 in which the equilibrium allocation is the solution to the optimal growth problem

\[
\begin{align*}
\max & \ E \sum_{t=0}^{\infty} \beta^t \left[\theta \log C_t + (1 - \theta) \log (N_t \bar{h} - L_t) \right] \\
\text{s.t.} & \quad C_t + K_{t+1} - (1 - \delta)K_t \leq e^{\zeta} \left(\gamma^{1-\alpha} \right)^{\frac{1}{\gamma}} A_0 K_t^{\alpha} L_t^{1-\alpha} \\
& \quad C_t, K_t \geq 0 \\
& \quad K_0 = \bar{K}_0 \\
& \quad N_t = \eta N_0.
\end{align*}
\]

Here \(z_t \) is a random variable that takes on two values \(\bar{z}_t = -\zeta, \bar{z}_2 = \zeta \), and whose evolution is governed by the stationary, first order Markov chain with transition matrix \(\Pi = \begin{bmatrix} 1 - \pi & \pi \\ \pi & 1 - \pi \end{bmatrix} \).

Assume, for the sake of specificity, that, at \(t = 0 \), \(z_0 = \bar{z}_1 = -\zeta \).

(a) Define an Arrow-Debreu equilibrium for this economy.

(b) Define a sequential markets equilibrium for this economy.

Redefine variables \(C_t \) and \(K_t \) by dividing by the number of effective working age persons \(\bar{N}_t = \gamma^t N_t = (\gamma \eta)^t N_0 \). Divide \(L_t \) by \(N_t \):

\[
\begin{align*}
c_t &= C_t / \bar{N}_t = \gamma^{\bar{N}_t} (C_t / N_t) \\
k_t &= K_t / \bar{N}_t = \gamma^{\bar{N}_t} (K_t / N_t) \\
\ell_t &= L_t / \bar{N}_t.
\end{align*}
\]

Consider the social planner’s problem

\[
\begin{align*}
\max & \ E \sum_{t=0}^{\infty} \beta^t \left[\theta \log c_t + (1 - \theta) \log (\bar{h} - \ell_t) \right] \\
\text{s.t.} & \quad c_t + \gamma \eta k_{t+1} - (1 - \delta)k_t \leq e^{\zeta} A_0 k_t^{\alpha} \ell_t^{1-\alpha} \\
& \quad c_t, k_t \geq 0, \bar{h} \geq \ell_t \geq 0 \\
& \quad k_0 = \bar{K}_0 / N_0,
\end{align*}
\]

with the associated Bellman’s equation.
\[V(k, z) = \max \theta \log c + (1- \theta) \log(h - \ell) + \beta EV(k', z') \]
\[\text{s. t. } c + \gamma \eta k' - (1- \delta) k \leq e^z A_0 k^\alpha \ell^{1-\alpha} \]
\[c, k' \geq 0, \quad h \geq \ell \geq 0 \]
\[k, z \text{ given.} \]

c) Suppose that you have solved this dynamic programming problem and have found the policy functions \(k' = g(k, z), c = c(k, z), \text{ and } \ell = \ell(k, z) \). Explain how you can use these policy functions to calculate the Arrow-Debreu equilibrium. Explain how you can use these policy functions to calculate the sequential markets equilibrium.

2. Consider an economy like that in question 1 in which the equilibrium allocation is the solution to the optimal growth problem with the Bellman’s equation
\[V(k, z) = \max \theta \log c + (1- \theta) \log(h - \ell) + \beta EV(k', z') \]
\[\text{s. t. } c + \gamma \eta k' - (1- \delta) k \leq e^z A_0 k^\alpha \ell^{1-\alpha} \]
\[c, k' \geq 0, \quad h \geq \ell \geq 0 \]
\[k, z \text{ given.} \]

That is, \(\delta = 1 \). Guess that the value function \(V(k, z) \) has the form
\[V_i(k) = V(k, z_i) = a_{0i} + a_{1i} \log k, \quad i = 1, 2 \]

for the yet-to-be-determined coefficients \(a_{01}, a_{11}, a_{02}, a_{12} \).

a) Solve for the value functions \(V_i(k) \), \(i = 1, 2 \).

b) Solve for the policy functions \(k' = g_i(k), \quad c = c_i(k), \text{ and } \ell = \ell_i(k) \).

3. Consider the problem faced by an unemployed worker searching for a job. Every period that the worker searches, she receives a job offer with the wage \(w \) drawn independently from the time invariant probability distribution \(F(v) = \text{prob}(w \leq v), \quad v \in [0, B], \quad B > 0 \). After receiving the wage offer \(w \) the worker faces the choice (1) to accept it or (2) to reject it, receive unemployment benefit \(b \), and search again next period. That is,
\[y_i = \begin{cases} w & \text{if job offer has been accepted} \\ b & \text{if searching} \end{cases} \]

The worker solves
\[\max E \sum_{t=0}^{\infty} \beta^t y_t \]
where \(1 > \beta > 0 \). Once a job offer has been accepted, there are no fires or quits.

a) Formulate the worker’s problem as a dynamic programming problem by writing down Bellman’s equation.
b) Using Bellman’s equation from part a, characterize the value function $V(w)$ in a graph and argue that the worker’s problem reduces to determining a reservation wage \bar{w} such that she accepts any wage offer $w \geq \bar{w}$ and rejects any wage offer $w < \bar{w}$.

c) Consider two economies with different unemployment benefits b_1 and b_2 but otherwise identical. Let \bar{w}_1 and \bar{w}_2 be the reservation wages in these two economies. Suppose that $b_2 > b_1$. Prove that $\bar{w}_2 > \bar{w}_1$. Provide some intuition for this result.

d) Consider two economies with different wage distributions F_1 and F_2 but otherwise identical. Let \bar{w}_1 and \bar{w}_2 be the reservation wages in these two economies. Define a mean preserving spread. Suppose that F_2 is a mean preserving spread of F_1. Prove that $\bar{w}_2 > \bar{w}_1$. Provide some intuition for this result.