1. Consider an economy where the consumers have Dixit-Stiglitz utility functions and solve the problem

$$\max (1-\alpha)\log c_0 + (\alpha/\rho)\log \int_0^m c(z)^\rho dz$$
s.t.
$$p_0c_0 + \int_0^m p(z)c(z)dz = w\overline{\ell} + \pi$$

$$c(z) \ge 0.$$

Here π are profits of the firms, which are owned by the consumers.

a) Suppose that the producer of good z takes the prices p(z'), for $z' \neq z$, as given. Suppose too that this producer has the production function

$$y(z) = \max \left[x(z) \left(\ell(z) - f \right), 0 \right].$$

Solve the firm's profit maximization problem to derive an optimal pricing rule.

b) Suppose that there is a measure μ of potential firms. Firm productivities are distributed on the interval $x \ge 1$ according to the Pareto distribution with distribution function

$$F(x) = 1 - x^{-\gamma}.$$

Define an equilibrium for this economy.

- c) Characterize the equilibrium of this economy in two different cases: In the first, μ is so small that all firms make nonnegative profits. In the second, μ is large enough so that there is a cutoff level of productivity $\overline{x} > 1$ such that all firms with productivity $x(z) \ge \overline{x}$ produce and earn nonnegative profits but no firm with productivity $x(z) < \overline{x}$ finds it profitable to produce. Find the relation between m and μ and \overline{x} .
- d) Suppose that $\alpha=0.5$, $\rho=0.5$, $\overline{\ell}=30$, $\mu=10$, $\gamma=4$, and f=2. Calculate the equilibrium of this economy.
- 2. Consider a world with two countries like that in question 1 that engage in free trade. Each country i, i = 1, 2, has a population of $\overline{\ell}_i$ and a measure of potential firms of μ_i . Firms' productivities are again distributed according to the Pareto distribution, $F(x) = 1 x^{-\gamma}$. A firm in country i faces a fixed cost of exporting to country j, $j \neq i$, of f_e where $f_e > f_d = f$ and an iceberg transportation cost of $\tau_i^j 1 = \tau 1 \ge 0$, $j \ne i$.

- a) Define an equilibrium for this economy.
- b) Explain the different cases for cutoff productivity levels in the equilibrium of the economy with trade. Suppose that the two countries are symmetric in the sense that $\overline{\ell}_1 = \overline{\ell}_2 = \overline{\ell}$ and $\mu_1 = \mu_2 = \mu$. Suppose too that μ is large enough so that not all firms can earn nonnegative profits in equilibrium. Characterize the equilibrium of this economy in the case where there are two cutoff levels, \overline{x}_d and \overline{x}_d , where $\overline{x}_e > \overline{x}_d > 1$. Firms with $x(z) \ge \overline{x}_e$ produce for both the domestic and the export market; firms with $\overline{x}_e > x(z) \ge \overline{x}_d$ produce only for the domestic market, and firms with $\overline{x}_d > x(z)$ do not produce.
- c) Suppose that $\alpha=0.5$, $\rho=0.5$, $\overline{\ell}_1=\overline{\ell}_2=\overline{\ell}=40$, $\mu_1=\mu_2=\mu=10$, $\gamma=4$, $f_d=2$, $f_e=3$, and $\tau_2^1=\tau_1^2=\tau=1.2$. Calculate the equilibrium of this economy.
- d) Suppose now that a free trade agreement sets $\tau_2^1 = \tau_1^2 = \tau = 1$. Recalculate the equilibrium in part c.
- e) Suppose now that a different reform sets $f_e = 2$. Again recalculate the equilibrium in part b. Contrast the results with those in parts c and d. What sort of reform can lower f_e ?