Great Depressions of the Twentieth Century Project

Timothy J. Kehoe and Edward C. Prescott

www.greatdepressionsbook.com

Great Depressions of the Twentieth Century, July 2007.
15 studies by 26 researchers using the same methodology

Great depressions

1930s
United States, United Kingdom, Canada, France, Germany

Recent

Not-quite-great depressions
Italy (1930s), Finland (1990s), Japan (1990s)
Kehoe and Prescott define a great depression to be a large negative deviation from balanced growth.

They set the growth rate in the balanced growth path to be 2 percent per year, the growth rate of output per working-age person in the United States during the twentieth century.
Trend growth:

\[\hat{y}_t^i = \gamma^t \hat{y}_0, \quad \gamma = 1.02 \]

Great depression:

\[D = [t_0, t_1] \] such that

1. There is some \(t \) in \(D \) in such that

\[\left[y_t^i / \left(\gamma^{t-t_0} \hat{y}_{t_0}^i \right) \right] - 1 \leq -0.20. \]

2. There is some \(t \leq t_0 + 10 \) such that

\[\left[y_t^i / \left(\gamma^{t-t_0} y_{t_0}^i \right) \right] - 1 \leq -0.15. \]

3. There are no \(t_1, t_2 \) in \(D \), \(t_2 \geq t_1 + 10 \), such that

\[\left[y_{t_2}^i / \left(\gamma^{t_2-t_1} y_{t_1}^i \right) \right] - 1 \geq 0. \]
Great depressions in the 1930s:
Detrended output per person

Index (1928 = 100)

France
Germany
United States
Canada

1928 1930 1932 1934 1936 1938
Great depressions in the 1980s:
Detrended output per working-age person

Index (1980 = 100)
Great depressions methodology

Crucial elements: Growth accounting and dynamic general equilibrium model

Growth accounting decomposes changes in output per working-age person into three factors:

- a productivity factor
- a capital factor
- an hours-worked factor
Great depressions methodology

Crucial elements: Growth accounting and dynamic general equilibrium model

Growth accounting decomposes changes in output per working-age person into three factors:

- a productivity factor
- a capital factor
- an hours-worked factor

Keynesian analysis stresses declines in inputs of capital and labor as the causes of depressions.
Balanced growth path

In the dynamic general equilibrium model, if the productivity factor grows at a constant rate, then

the capital factor and the hours-worked factor stay constant and

growth in output is due to growth in the productivity factor.

Twentieth century U.S. macro data are very close to a balanced growth path, with the exception of the Great Depression and the subsequent World War II build-up.
Balanced growth path

\[\frac{Y_t}{N_t} = A_t^{1-\alpha} \left(\frac{K_t}{Y_t} \right)^{\frac{\alpha}{1-\alpha}} \left(\frac{L_t}{N_t} \right) \]

When \(A_{t+1} = g^{1-\alpha} A_t \)

- \(\frac{K_t}{Y_t} \) and \(\frac{L_t}{N_t} \) are constant

- \(\frac{Y_t}{N_t} \) grows at rate \(g - 1 \), assume \(g - 1 = 0.02 \) as in U.S.
Growth Accounting for the United States 1970-2009

- Output
- Productivity
- Hours worked
- Capital

Index (1970 = 100)
We use a dynamic general equilibrium model to model the responses of households and firms — in terms of capital accumulation and hours worked — to changes in productivity and changes in government policy.

We take the path of the productivity factor as exogenous.

Comparing the results of the model with the data, we can identify features of the depression that need further analysis.

Example: The Great Depression in the United States.
Growth accounting for the United States

![Graph showing economic indicators from 1929 to 1939.](image-url)
Growth accounting for the United States

index (1929=100)

productivity
Growth accounting for the United States

Index (1929=100)

Years: 1929 to 1939

Capital
Conclusions

A simple dynamic general equilibrium model that takes movements in the productivity factor as exogenous can explain most of the 1929-1933 downturn in the United States.

The model over predicts the increase in hours worked during the 1933-1939 recovery.

Need for Further Study

The decline in productivity 1929-1933

The failure of hours worked to recover 1933-1939
Lessons from Great Depressions Project

- The main determinants of depressions are not drops in the inputs of capital and labor — stressed in traditional theories of depressions — but rather drops in the efficiency with which these inputs are used, measured as total factor productivity (TFP).

- Exogenous shocks like the deteriorations in the terms of trade and the increases in foreign interest rates that buffeted Chile and Mexico in the early 1980s can cause a decline in economic activity of the usual business cycle magnitude.

- Misguided government policy can turn such a decline into a severe and prolonged drop in economic activity below trend — a great depression.
A Decade Lost and Found: Mexico and Chile in the 1980s

Raphael Bergoeing, Patrick J. Kehoe, Timothy J. Kehoe, and Raimundo Soto

Similar crises in 1981-1983
 • more severe in Chile than in Mexico

Different recoveries
 • much faster in Chile than in Mexico

Why different pattern?
Real GDP per working-age (15-64) person detrended by 2 percent per year

index (1980=100)

year

Chile

Mexico
Growth accounting and applied dynamic general equilibrium model

Two numerical experiments with model:

Base case model: takes series for productivity factor as given.

Model with tax reform: takes series for productivity factor as given and imposes tax reform that lowers tax on capital income in 1988 in both countries.
Applied dynamic general equilibrium model

The representative consumer maximizes

$$\sum_{t=1980}^{\infty} \beta^t \left[\gamma \log C_t + (1-\gamma) \log (hN_t - L_t) \right]$$

subject to

$$C_t + K_{t+1} - K_t = w_t L_t + (1 - \tau_t)(r_t - \delta)K_t + T_t$$

where $$T_t = \tau_t (r_t - \delta)K_t$$ is a lump-sum transfer.

Feasibility:

$$C_t + K_{t+1} - (1 - \delta)K_t = A_t K_t^\alpha L_t^{1-\alpha}.$$
Calibration

First order conditions:

\[\frac{1}{C_{t-1}} = \frac{\beta}{C_t} \left[1 + (1 - \tau_t)(r_t - \delta) \right] \]

\[\frac{1 - \gamma}{hN_t - L_t} = \frac{\gamma w_t}{C_t} . \]

Look at 1960-1980 data

\[\beta = 0.98, \ \tau = 1 - \frac{C_t - \beta C_{t-1}}{(r_t - \delta)C_{t-1}} \Rightarrow \tau = 0.45 \text{ in Mexico, } \tau = 0.56 \text{ in Chile;} \]

\[\gamma = \frac{C_t}{C_t + w_t(hN_t - L_t)} \Rightarrow \gamma = 0.30 \text{ in Mexico, } \gamma = 0.28 \text{ in Chile}. \]
Numerical experiments

Base case:

\[\tau_t = 0.45 \text{ in Mexico, } \tau_t = 0.56 \text{ in Chile, 1980-2000.} \]

Tax reform:

\[\tau_t = 0.45 \text{ in Mexico, } \tau_t = 0.56 \text{ in Chile, 1980-1988; } \]

\[\tau_t = 0.12 \text{ in Mexico, } \tau_t = 0.12 \text{ in Chile, 1988-2000.} \]
Detrended real GDP per working-age person and productivity factor

Chile output
Chile productivity
Mexico output
Mexico productivity

Index (1980=100)
Detrended real GDP per working-age person: base case model

Chile data
Chile model
Mexico data
Mexico model
Detrended real GDP per working-age person: model with tax reform

Chile model

Chile data

Mexico model

Mexico data
What do we learn from growth accounting and numerical experiments?

Nearly all of the differences in the recoveries in Mexico and Chile result from different paths of productivity.

Tax reforms are important in explaining some features of the recoveries, but not the differences.

Implications for studying structural reforms story:

- Only reforms that are promising as explanations are those that show up primarily as differences in productivity, not those that show up as differences in factor inputs.

- Timing of reforms is crucial if they are to drive the differences in economic performance.
Fiscal reforms

Chile:
- tax reforms 1975, 1984
- social security reform 1980
- fiscal surpluses

Mexico:
- fiscal deficits

Important, but not for explaining the differences!
Trade reforms

Chile: by 1979
- all quantitative restrictions eliminated
- uniform tariff of 10 percent
- tariff hikes during crisis — tariff back below 10 percent in 1991

Mexico: in 1985
- 100 percent of domestic production protected by import licenses
- nontariff barriers and dual exchange rates

Massive trade reforms in Mexico 1987-1994, culminating in NAFTA

Timing seems wrong!
Privatization

Chile

- major privatizations 1974-1979

Mexico

- major nationalization 1982
 - expropriated banks’ holdings of private companies
 - government controlled 60-80 percent of GDP

- major privatizations after 1989

Timing seems wrong?
Banking

Chile: 1982 and after

- took over failed banks
- market-determined interest rates
- lowered reserve requirements.

Mexico: 1982 and after

- nationalized all banks
- government set low deposit rates
- 75 percent of loans either to government or directed by government.
Private credit as a percent of GDP
Bankruptcy laws

Chile had reformed the administration of its bankruptcy procedures in 1978. In 1982 it reformed its bankruptcy laws to look much like those in the United States.

Mexico reformed its bankruptcy procedures in a similar way only in 2000. (Maybe not so similarly!)
Business bankruptcies in Chile
Studying the experience of countries that have experienced great depressions during the twentieth century teaches us that massive public interventions in the economy to maintain employment and investment during a financial crisis can, if they distort incentives enough, lead to a great depression.
U.S. Real GDP

index (peak = 100)

quarter following peak

2007 IV

1981 III

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Comparison of the 2007–2009 U.S. recession
with the 1981–1983 U.S. recession

The recovery during the 2007–2010 recession has been slower, and there is still a danger that the current recession could turn into a “double-dip” recession.
What about growth accounting?
Growth Accounting, 1981-1983 Recession

The diagram illustrates the changes in productivity, capital, output, and hours worked following the peak of the recession. The x-axis represents the quarters following the peak, and the y-axis shows the index (1981 III = 100). The graph shows a decline in productivity and output, followed by a recovery. Capital and hours worked show a more stable trend.
Growth Accounting, 2007-2009 Recession

The graph illustrates the performance of output, productivity, capital, and hours worked over the quarters following the peak (2007 IV = 100) during the recession. The x-axis represents the quarter following the peak, while the y-axis shows the index value from 88 to 108. The graph shows a decline in output and hours worked, an increase in productivity, and a steady state for capital.
What about growth accounting?

The 1981-1983 recession(s) is an example of the standard “real business cycle” downturn, where the driving force is a drop in productivity. The current recession is different. This warrants further research.
What did we economists do wrong?

If the risk of a fall in housing prices had been understood and priced correctly, higher interest rates on lending for construction projects and mortgages would have corrected the problem.

The lack of understanding of systemic risk on the part of banks, regulators, and bond ratings agencies calls for reform and, perhaps, new regulations.
What did we economists do wrong?

If the risk of a fall in housing prices had been understood and priced correctly, higher interest rates on lending for construction projects and mortgages would have corrected the problem.

The lack of understanding of systemic risk on the part of banks, regulators, and bond ratings agencies calls for reform and, perhaps, new regulations.

Mistakes like this happen. We cannot be constantly over regulating our economy to prevent the previous crisis from occurring again.
What did we economists do right?

Kareken-Wallace and Stern-Feldman: Efficiently allocating risk requires that any insurance should be accompanied by regulation. Any institution that is too big to fail needs to be regulated.

Kehoe-Prescott (and others!): We need to study crises of the past to be prepared to deal with them in the future.
Those who try to justify the sorts of Keynesian policies implemented by the Mexican government in the 1980s often quote Keynes’s dictum from *A Tract on Monetary Reform*:

“The long run is a misleading guide to current affairs. In the long run we are all dead.”
Studying past great depressions turns this dictum on its head:

“If we do not consider the consequences of policy for productivity, in the long run we could all be in a great depression.”