Sudden Stops, Sectoral Reallocations, and Real Exchange Rates

Timothy J. Kehoe University of Minnesota Federal Reserve Bank of Minneapolis

and

Kim J. Ruhl NYU Stern School of Business

What Happens During a Sudden Stop? Mexico 1994-95

Opens to capital flows: late 1980s

- trade deficits
- real exchange rate appreciation

Sudden stop: 1994-95

- trade surplus
- real exchange rate depreciation
- reallocation from nontraded goods to traded goods
- fall in GDP, TFP

End of sudden stop

- trade deficits
- real exchange rate appreciation
- recovery of GDP, TFP

Mexico: trade balance

Mexico-U.S. real exchange rate

Value added by sector

Mexico: output and TFP

Candidate Explanations

- labor hoarding
- variable capital utilization

Growth Accounting Discipline

Measured TFP must decline!

Our model

- Small open economy
 - o multisector: traded, nontraded
 - o costly to adjust labor across sectors
- Sudden stop
 - o tradable good price increase, increase production
 - o capital and labor misallocated
- Model accounts for:
 - o real exchange rate, relative prices
 - o trade balance
- Misses:
 - o TFP, GDP

Model overview

- Growth model: small open economy
- Nontraded good, y_N , and domestic traded good, y_D o production use intermediates, capital, and labor
- Composite traded $y_{Tt} = f(y_{Dt}, m_t)$
- Frictions:
 - o costly to move labor across sectors
- Quantitative model

Consumers

$$\max \sum_{t=1980}^{\infty} \beta^{t} u_{t}(c_{Tt}, c_{Nt}, \ell_{t})$$
s.t. $p_{Tt}c_{Tt} + p_{Nt}c_{Nt} + q_{t}i_{t} + b_{t+1} = w_{t}\ell_{t} + (1+r_{t})b_{t} + r_{t}k_{t} + T_{t},$

$$k_{t+1} = k_{t}(1-\delta) + i_{t}$$
initial conditions on k_{1988} , b_{1988}

where

$$u_{t}(c_{Tt},c_{Nt},\ell_{t}) = \frac{1}{\psi} \left(\varepsilon \left(\frac{c_{Tt}}{n_{t}} \right)^{\rho} + (1-\varepsilon) \left(\frac{c_{Nt}}{n_{t}} \right)^{\rho} \right)^{\frac{\eta\psi}{\rho}} \left(\frac{\overline{\ell}_{t} - \ell_{t}}{\overline{\ell}_{t}} \right)^{(1-\eta)\psi} - 1 \right).$$

We also experiment with a quasi-linear utility function

$$u(c_{Tt},c_{Nt},\ell_t) = \frac{1}{\psi} \left(\left(\varepsilon \left(\frac{c_{Tt}}{n_t} \right)^{\rho} + (1-\varepsilon) \left(\frac{c_{Nt}}{n_t} \right)^{\rho} \right)^{\frac{1}{\rho}} - \lambda g^t \left(\frac{\ell_t}{\overline{\ell_t}} \right)^{\eta} \right)^{\psi} - 1 \right).$$

which, when $\psi = 0$, is

$$u(c_{Tt}, c_{Nt}, \ell_t) = \log \left(\left(\varepsilon \left(\frac{c_{Tt}}{n_t} \right)^{\rho} + (1 - \varepsilon) \left(\frac{c_{Nt}}{n_t} \right)^{\rho} \right)^{\frac{1}{\rho}} - \lambda g^t \left(\frac{\ell_t}{\overline{\ell_t}} \right)^{\eta} \right).$$

No income effects on labor supply.

Production functions

Domestically produced traded good

$$y_{Dt} = \min \left[z_{TDt} / a_{TD}, z_{NDt} / a_{ND}, A_D k_{Dt}^{\alpha_D} \left(g^t \ell_{Dt} \right)^{1-\alpha_D} \right] - \Theta_{Dt} \left(\ell_{Dt-1}, \ell_{Dt} \right) \ell_{Dt-1}$$
where $\Theta_{Dt} \left(\ell_{Dt-1}, \ell_{Dt} \right) = g^t \theta_D \left(\frac{\ell_{Dt} - \ell_{Dt-1}}{\ell_{Dt-1}} \right)^2$

Nontraded good

$$y_{Nt} = \min \left[z_{TNt} / a_{TN}, z_{NNt} / a_{NN}, A_N k_{Nt}^{\alpha_N} \left(g^t \ell_{Nt} \right)^{1-\alpha_N} \right] - \Theta_{Nt} \left(\ell_{Nt-1}, \ell_{Nt} \right) \ell_{Nt-1}$$

$$\text{where } \Theta_{Nt} \left(\ell_{Nt-1}, \ell_{Nt} \right) = g^t \theta_N \left(\frac{\ell_{Nt} - \ell_{Nt-1}}{\ell_{Nt-1}} \right)^2$$

Base case sets
$$\Theta_{Dt}(\ell_{Dt-1},\ell_{Dt}) = \Theta_{Nt}(\ell_{Nt-1},\ell_{Nt}) = 0$$
.

Composite traded good (Armington aggregator)

$$y_{Tt} = M \left(\mu x_{Dt}^{\zeta} + (1 - \mu) m_t^{\zeta} \right)^{\frac{1}{\zeta}}$$

Foreign demand

$$x_{Ft} = D_t \left(\left(1 + \tau_{Ft} \right) p_{Tt} \right)^{\frac{-1}{1-\zeta}}$$

Investment good

$$i_{Dt} + i_{Nt} = Gz_{TIt}^{\gamma} z_{NIt}^{1-\gamma}$$
 $k_{Dt+1} = i_{Dt} + (1-\delta)k_{Dt}$
 $k_{Nt+1} = i_{Nt} + (1-\delta)k_{Nt}$

Balance of payments

$$b_{t+1} - (1 + r_t)b_t = p_{Tt}x_{Ft} - m_t$$

Market clearing.

Exogenous processes

- Country interest rate premia, σ_t^{mex}
 - 1. with access to international capital

$$r_t^{mex} = r * + \sigma_t^{mex}$$

2. without access to international capital

 r_t^{mex} is domestically determined

- Adult equivalent populations, n_t , and working age population, $\overline{\ell}_t$
- Mexican tariff rates, τ_{Dt} , and world tariff rates, τ_{Ft}

Interest rate premia

Calibration

Rest of world is U.S.

- 72% of imports to Mexico from U.S. (1988-2000)
- 60% of foreign direct investment from U.S. (1988-2000)
- $r^* = 0.04 \Rightarrow \beta$

Elasticities

- traded versus nontraded consumption: 0.5 (Kravis, et al.)
- intertemporal elasticity: 0.5
- domestic traded versus imports: 2.0

Labor Adjustment $(\theta_D = \theta_N)$

• labor shift from sudden stop: 6.7%

Calibration continued

Set
$$\delta = 0.06$$
 so that $\delta K_{1988} / Y_{1988} = 0.11$

Normalize prices in 1988 to 1

1988 Mexican input-output matrix

- share parameters: $a_{TD}, a_{ND}, a_{TN}, a_{NN}, \alpha_D, \alpha_N, \varepsilon, \mu$
- scale parameters: A_D, A_N, M, D

Interest rate in 1988: $r_{1988}^{mex} = 0.1574$

Tax on capital income in 1989 to match 1988 investment:

$$\bullet \ \tau_{K1989} = 0.20$$

Exogenous growth:

•
$$g = 1.02$$

1988 Input-Output Matrix

		Input			Final D	emand		
Commodity	Traded	Nontraded	Total int. demand	Consumption	Investment	Exports	Total final demand	Total Demand
Traded	33.54	9.28	42.82	27.05	10.16	19.93	57.14	99.96
Nontraded	13.13	20.53	33.66	49.00	12.40	0.00	61.40	95.06
Total intermediate consumption	46.67	29.81	76.48	76.05	22.56	19.93	118.54	195.02
Employee compensation	22.11	38.74	60.85					60.85
Return to capital	10.79	26.51	37.30					37.30
Value added	32.89	65.26	98.15					98.15
Imports	18.54	0.00	18.54					18.54
Tariffs	1.85	0.00	1.85					1.85
Total Gross Output	99.96	95.06	195.02	76.05	22.56	19.93	118.54	313.56

$$a_{TN} = \frac{z_{TN1988}}{y_{N1988}} = \frac{intermediate\ input\ traded}{gross\ output\ nontraded} = \frac{9.28}{95.06} = 0.10$$

$$w_{1988} = 1 \Rightarrow \ell_{D1988} = 22.11, \ \ell_{N1989} = 38.74$$

Calibration of model

Parameter	Value	Statistic	Target	
		Consumer parameters		
b_{1988}	-8.831	Trade balance to GDP in 1988, in percent	1.390	
k_{1988}	169.817	Real interest rate in 1988, in percent	15.740	
eta	0.987	U.S. real interest rate, in percent	4.000	
${\cal E}$	0.234	Traded good share in consumption in 1988	0.356	
ho	-1.000	Elasticity of substitution: traded to nontraded	0.500	
η	0.306	Ratio of hours worked to available hours in 1988	0.267	
ψ	-1.000	Intertemporal elasticity of substitution	0.500	
δ	0.062	Depreciation to GDP in 1988, in percent	10.566	
$ au_{K1989}$	0.201	Investment in 1988	22.561	
		Producer parameters		
a_{TD}	0.422	Share of traded inputs in domestic traded in 1988	0.422	
a_{ND}	0.165	Share of nontraded inputs in domestic traded in 1988	0.165	
$a_{\scriptscriptstyle TN}$	0.098	Share of traded inputs in domestic nontraded in 1988	0.098	
a_{NN}	0.216	Share of nontraded inputs in domestic nontraded in 1988	0.216	
$A_{\!\scriptscriptstyle D}$	2.770	Traded gross output in 1988	79.564	
$A_{\!\scriptscriptstyle N}$	1.546	Nontraded gross output in 1988	95.065	
$lpha_{_D}$	0.328	Capital's share of domestic traded value added in 1988	0.328	

$lpha_{_N}$	0.406	Capital's share of nontraded value added in 1988		
γ	0.450	Share of traded inputs in investment good production in 1988	0.450	
G	1.990	Investment in 1988	22.561	
g	1.020	Growth rate of U.S. GDP per working age person, percent		
		Trade parameters		
M	1.866	Total traded goods in 1988	99.955	
μ	0.653	Ratio of imports to domestic traded good in 1988	0.233	
5	0.500	Elasticity of substitution: domestic traded to imports	2.000	
D_{1988}	21.141	Exports in 1988	19.928	
	'	Time series of parameters		
$\overline{\ell}_t$		Mexican working age population data and projections		
n_{t}				
$\sigma_{_t}$		Mexican interest premia		
$D_{_t}$		U.S. working age population data and projections		
$ au_{_t}$		Mexican tariffs on U.S. imposts		
$ au_{\mathit{Ft}}$		U.S. tariffs on Mexican imports		

Model without sudden stop

Sudden stop!

$$b_t = b_{t-1}, \ t = 1995,1996$$

- agents do not foresee sudden stop
- agents do foresee length of sudden stop
- domestic interest rate is endogenously determined
- interest payments on foreign debt made at $r_{1994}^{mex} = r * + \sigma_{1994}^{mex}$

Trade balance

Real exchange rate

Terms of trade

Output and TFP

Labor input

Value added by sector

Traded labor/total labor (detrended)

Alternative specifications

- no population growth
- no tariffs
- no interest rate premia
- exogenous TFP drop
- increase in foreign demand in 1995 to moderate deterioration in terms of trade
- labor market frictions
- variable capital utilization
- quasi-linear period utility
- perfect foresight sudden stop is not a surprise

Variable capital utilization

• law of motion

$$k_{Dt+1} = (1 - \delta(u_{Dt}))k_{Dt} + i_{Dt}$$
$$k_{Nt+1} = (1 - \delta(u_{Nt}))k_{Nt} + i_{Nt}$$

where

$$\delta(u) = \overline{\delta} + \frac{\chi}{\omega} (u^{\omega} - 1)$$

- during crisis utilization of nontradable capital falls
- standard growth accounting:

falling utilization = falling TFP

TFP drop as exogenous

• robustness check: TFP drops **DO NOT** cause sudden stops

$$y_{D\tau} = \min \left[z_{TD\tau} / a_{TD}, z_{ND\tau} / a_{ND}, A_D k_{D\tau}^{\alpha_D} \left((v_{\tau} \gamma)^{\tau} \ell_{D\tau} \right)^{1-\alpha_D} \right] - \Theta_D (\ell_{Dt-1}, \ell_{Dt}) \ell_{Dt-1}$$

$$y_{N\tau} = \min \left[z_{TN\tau} / a_{TN}, z_{NN\tau} / a_{NN}, A_N k_{N\tau}^{\alpha_N} \left((v_{\tau} \gamma)^{\tau} \ell_{N\tau} \right)^{1-\alpha_N} \right] - \Theta_N (\ell_{Nt-1}, \ell_{Nt}) \ell_{Nt-1}.$$

$$v_t = \begin{cases} 1.0 & t < 1995 \\ 0.89 & t \ge 1995 \end{cases}$$

All else same

Terms of trade

Real exchange rate

Traded labor/total labor (detrended)

Output and TFP

Mexico: trade balance

Capital utilization by sector

Output and TFP

Aggregate labor input

Kehoe and Ruhl (2008), "Are Shocks to the Terms of Trade Shocks to Productivity?"

International trade as a production technology

Inputs are exports and outputs are imports.

$$p_t M_t = X_t \implies M_t = \frac{1}{p_t} X_t$$

A deterioration in the terms of trade (an increase in p_t) acts as a productivity shock.

International trade as a production technology

Inputs are exports and outputs are imports.

$$p_t M_t = X_t \implies M_t = \frac{1}{p_t} X_t$$

A deterioration in the terms of trade (an increase in p_t) acts as a productivity shock.

Or does it?