How and Why Does Trade Grow?

Timothy J. Kehoe
University of Minnesota and Federal Reserve Bank of Minneapolis

www.econ.umn.edu/~tkehoe
Outline:

1. Much of the growth of trade after a trade liberalization experience is growth on the extensive margin. Models need to allow for corner solutions or fixed costs.

2. Fixed costs seem better than Ricardian corner solutions for reconciling time series data on real exchange rate fluctuations with data on trade growth after liberalization experiences.

3. Models of trade with heterogeneous firms typically impose fixed costs on firms that decide to export. The focus is on the decision to export. The theory and the data indicate that there is a lot of room for focusing on the decision to import.
4. Models with uniform fixed cost across firms with heterogeneous productivity have implications that are sharply at odds with micro data. A model with increasing costs of accessing a fraction of a market has many of features of models with fixed costs without these undesirable properties.
1. Much of the growth of trade after a trade liberalization experience is growth on the extensive margin. Models need to allow for corner solutions or fixed costs.

How Does Trade Grow?

- **Intensive Margin:** growth in goods already traded
- **Extensive Margin:** trade in goods not traded before
The Extensive Margin

- The Extensive Margin has recently gained attention

- Models
 - Ruhl (2004)

- Empirically
What Happens to the Extensive Margin?

- During trade liberalization?
 - Large changes in the extensive margin

- Over the business cycle?
 - Little change in extensive margin
Evidence from Trade Agreements

• Events
 ○ Greece’s Accession to the European Econ. Community - 1981
 ○ Portugal’s Accession to the European Community - 1986
 ○ Spain’s Accession to the European Community - 1986
 ○ U.S.-Canada Free Trade Agreement - 1989
 ○ North American Free Trade Agreement - 1994

• Data
 • Four-digit SITC bilateral trade data (OECD)
 ○ 789 codes in revision 2

• Indirect Evidence
Measure One

1. Rank codes from lowest value of exports to highest value of exports based on average of first 3 years

2. Form sets of codes by cumulating exports: the first 736.6 codes make up 10 percent of exports; the next 28.8 codes make up 10 percent of exports; and so on.

3. Calculate each set’s share of export value at the end of the sample period.
Composition of Exports: Mexico to Canada
Measure Two

1. Order codes as before.

2. Cumulate exports as before.

3. Follow the evolution of the first (least-traded) set’s share of total exports before, during, and after the liberalization.
Exports: Mexico to Canada

Fraction of Total Export Value

A Serious Problem in the Data

- Prior to 1988, data was collected by the individual nations according to their respective classification, and was then converted into STIC.R2. For example, the United States collected data on imports and exports under the Tariff Schedule of the United States Annotated (TSUSA) system and the “Schedule B,” respectively. Canada also used a national classification system. Most European countries used the Customs Cooperation Council Nomenclature (CCCN) or a derivation of it.

- In 1988 and 1989 most countries switched to the Harmonized System for reporting imports and exports.

- Although efforts have been made to make data collected after the switch to the Harmonized System compatible with data from before the switch, it appears that there are serious inconsistencies, especially in data from countries that did not employ the CCCN before the switch.
Trade Liberalization and the Extensive Margin

<table>
<thead>
<tr>
<th>Period</th>
<th>Trade Flow</th>
<th>Share of Export Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-1999</td>
<td>Mexico - U.S.</td>
<td>0.153</td>
</tr>
<tr>
<td>1989-1999</td>
<td>U.S. – Mexico</td>
<td>0.118</td>
</tr>
<tr>
<td>1989-1999</td>
<td>Mexico - Canada</td>
<td>0.231</td>
</tr>
<tr>
<td>1989-1999</td>
<td>Canada - Mexico</td>
<td>0.307</td>
</tr>
<tr>
<td>1989-1999</td>
<td>Canada - U.S.</td>
<td>0.162</td>
</tr>
<tr>
<td>1989-1999</td>
<td>U.S. – Canada</td>
<td>0.130</td>
</tr>
<tr>
<td>1978-1986</td>
<td>Greece to the EEC</td>
<td>0.371</td>
</tr>
<tr>
<td>1982-1987</td>
<td>Spain to the EC</td>
<td>0.128</td>
</tr>
<tr>
<td>1982-1987</td>
<td>Portugal to the EC</td>
<td>0.147</td>
</tr>
</tbody>
</table>
Business Cycles and the Extensive Margin

- Over same period, consider countries with stable policy
 - U.S. – Japan
 - U.S. – U.K.
 - U.S. – Germany
Exports: Germany and the United States

Fraction of Total Export Value

German Exports to U.S.

U.S. Exports to Germany
Business Cycles and the Extensive Margin

<table>
<thead>
<tr>
<th>Period</th>
<th>Trade Flow</th>
<th>Share of Export Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-1999</td>
<td>U.S. - U.K.</td>
<td>0.096</td>
</tr>
<tr>
<td>1989-1999</td>
<td>U.K. - U.S.</td>
<td>0.128</td>
</tr>
<tr>
<td>1989-1999</td>
<td>U.S. - Japan</td>
<td>0.130</td>
</tr>
<tr>
<td>1989-1999</td>
<td>Japan - U.S.</td>
<td>0.103</td>
</tr>
<tr>
<td>1989-1999</td>
<td>U.S. - Germany</td>
<td>0.104</td>
</tr>
<tr>
<td>1989-1999</td>
<td>Germany - U.S.</td>
<td>0.103</td>
</tr>
</tbody>
</table>
Lessons from data

Trade liberalization increases trade on the extensive margin, business cycle fluctuations do not.

Structural changes may increase trade on the extensive margin.

A country increasing its exports on the extensive margin because of trade liberalization may increase its exports on the extensive margin to other countries.
Composition of Exports: Chile to the United States

fraction of 1984 export value

cumulative fraction of 1974 export value

780.6
6.4
0.2
0.2
0.2
0.3
0.3
0.3
0.3
Exports: Chile to the United States

Fraction of Total Export Value

Year

Composition of Exports: United States to Chile

The chart represents the composition of exports from the United States to Chile. The x-axis shows the cumulative fraction of the 1974 export value, while the y-axis shows the fraction of the 1984 export value.

The chart indicates that a significant portion of the 1974 export value was already captured by the cumulative fraction of 0.1, with values of 70.5%. As the cumulative fraction increases, the remaining fraction of the 1984 export value decreases, with smaller contributions from 0.2 to 1.0.

Key numerical data points:
- Cumulative fraction of 0.1: 70.5%
- Cumulative fraction of 0.2: 33.1%
- Cumulative fraction of 0.3: 23.1%
- Cumulative fraction of 0.4: 14%
- Cumulative fraction of 0.5: 5.3%
- Cumulative fraction of 0.6: 2.2%
- Cumulative fraction of 0.7: 3.1%
- Cumulative fraction of 0.8: 1.5%
- Cumulative fraction of 0.9: 0.8%
- Cumulative fraction of 1.0: 0.6%
Exports: United States to Chile

Fraction of Total Export Value

Year

Exports: China to the United States

Fraction of Total Export Value

Year

Composition of Exports: Canada to the United Kingdom

The diagram shows the composition of exports from Canada to the United Kingdom, illustrating the cumulative fraction of 1989 export value as a fraction of the 2004 export value. The x-axis represents the cumulative fraction of 1989 export value, while the y-axis shows the fraction of the 2004 export value.
Composition of Exports: United Kingdom to Canada

Cumulative fraction of 1989 export value

Fraction of 2004 export value

627.4 76.1 39.2 22.2 41.6 7.6 2 0.3 0.3 0.3

Cumulative fraction of 1989 export value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2. Fixed costs seem better than Ricardian corner solutions for reconciling time series data on real exchange rate fluctuations with data on trade growth after liberalization experiences.

The “Armington” Elasticity

- Elasticity of substitution between domestic and foreign goods
- Crucial elasticity in international economic models

- International Real Business Cycle (IRBC) models:
 - Terms of trade volatility
 - Net exports and terms of trade co-movements

- Applied General Equilibrium (AGE) Trade models:
 - Trade response to tariff changes
The Elasticity Puzzle

• Time series (Business Cycles):
 ○ Estimates are low
 ○ Relative prices volatile
 ○ Quantities less volatile

• Panel studies (Trade agreement):
 ○ Estimates are high
 ○ Small change in tariffs (prices)
 ○ Large change in quantities
Time Series Estimates: Low Elasticity (1.5)

<table>
<thead>
<tr>
<th>Study</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinert and Roland Holst (1992)</td>
<td>[0.1, 3.5]</td>
</tr>
<tr>
<td>Reinert and Shiells (1993)</td>
<td>[0.1, 1.5]</td>
</tr>
<tr>
<td>Gallaway et al. (2003)</td>
<td>[0.2, 4.9]</td>
</tr>
</tbody>
</table>

Trade Liberalization Estimates: High Elasticity (9.0)

<table>
<thead>
<tr>
<th>Study</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clausing (2001)</td>
<td>[8.9, 11.0]</td>
</tr>
<tr>
<td>Head and Reis (2001)</td>
<td>[7.9, 11.4]</td>
</tr>
<tr>
<td>Romalis (2002)</td>
<td>[4.0, 13.0]</td>
</tr>
</tbody>
</table>
Why do the Estimates Differ?

• Time series – no liberalization:
 ○ Change in trade volume from goods already traded
 ○ Change mostly on the intensive margin

• Trade liberalization:
 ○ Change in intensive margin plus
 ○ New types of goods being traded
 ○ Change on the extensive margin
Modeling the Extensive Margin

- Model: extensive margin from export entry costs

- Empirical evidence of entry costs
 - Roberts and Tybout (1997)
 - Bernard and Wagner (2001)
 - Bernard and Jensen (2003)
The Effects of Entry Costs

• Business cycle shocks:
 ○ Small extensive margin effect

• Trade liberalization:
 ○ Big extensive margin effect

• Asymmetry creates different empirical elasticities
Model Overview

• Two countries: \{h, f\}, with labor \(L\)

• Infinitely lived consumers

• No international borrowing/lending

• Continuum of traded goods plants in each country
 ○ Differentiated goods
 ○ Monopolistic competitors
 ○ Heterogeneous productivity

• Export entry costs
 ○ Differs across plants: second source of heterogeneity

• Non-traded good, competitive market: \(A\)

• Tariff on traded goods (iceberg): \(\tau\)
Uncertainty

- At date t, H possible events, $\eta_t = 1, \ldots, H$
- Each event is associated with a vector of productivity shocks:

\[
\mathbf{z}_t = \begin{bmatrix} z_h(\eta_t) \, z_f(\eta_t) \end{bmatrix}
\]

- First-order Markov process with transition matrix Λ

\[
\lambda_{\eta \eta'} = \text{pr}(\eta_{t+1} = \eta' | \eta_t = \eta)
\]
Traded Good Plants

- Traded good technology:
 \[y(\phi, \kappa) = z\phi l \]

- Plant heterogeneity \((\phi, \kappa)\)
 - constant, idiosyncratic productivity: \(\phi\)
 - export entry cost: \(\kappa\)
 - plant of type \((\phi, \kappa)\)

- \(\nu\) plants born each period with distribution \(F(\phi, \kappa)\)

- Fraction \(\delta\) of plants exogenously die each period
Timing

$\mu_{hx}(\phi, \kappa)$: plants of type (ϕ, κ) who paid entry cost

$\mu_{hd}(\phi, \kappa)$: plants of type (ϕ, κ) who have not paid entry cost

$\mu = (\mu_{hd}, \mu_{hx}, \mu_{fd}, \mu_{fx})$
Consumers

$$\max_{q, c_h^t, c_f^t} \gamma \log(C) + (1 - \gamma) \log(A)$$

s.t.

$$C = \left[\int_{t \in I^h_f(\mu)} c^h_i(\mu)^\rho dt + \int_{t \in I^h_f(\mu)} c^f_i(\mu)^\rho dt \right]^{1/\rho}$$

$$\int_{t \in I^h_f(\mu)} p^h_i(\mu)c^h_i(\mu) dt + \int_{t \in I^h_f(\mu)} (1 + \tau)p^f_i(\mu)c^f_i(\mu) dt + p_{hA}A = L + \Pi_h$$
Non-traded Good

\[\max p_{hA}(\eta, \mu) A - l \]
\[\text{s.t. } A = z_h(\eta) l \]

Normalize \(w_h = 1 \), implying \(p_{hA}(\eta, \mu) = z_h(\eta) \)
Traded Goods: Static Profit Maximization

\[
\pi_d\left(p^h, l; \phi, \kappa, \eta, \mu \right) = \max_{p^h, l} \quad p^h \left(\eta \right) \phi l - l
\]

s.t. \quad z\left(\eta \right) \phi l = \tilde{c}^h\left(p^h; \eta, \mu \right)

\[
\pi_x\left(p^f, l; \phi, \kappa, \eta, \mu \right) = \max_{p^f, l} \quad p^f \left(\eta \right) \phi l - l
\]

s.t. \quad z\left(\eta \right) \phi l = \tilde{c}^f\left(p^f; \eta, \mu \right)

Pricing rules:

\[
p^h(\phi, \kappa, \eta, \mu) = p^f(\phi, \kappa, \eta, \mu) = \frac{1}{\rho \phi z(\eta)}
\]
Dynamic Choice: Export or Sell Domestically

- Exporter’s Value Function:

\[V_x(\phi, \kappa, \eta, \mu) = d(\eta, \mu) \left(\pi_d(\phi, \kappa, \eta, \mu) + \pi_x(\phi, \kappa, \eta, \mu) \right) + (1 - \delta) \beta \sum_{\eta'} V_x(\phi, \kappa, \eta', \mu') \lambda_{\eta\eta'} \]

subject to \(\mu' = M(\eta, \mu) \)

- \(d(\eta, \mu) \) = multiplier on budget constraint
• Non-exporter’s Value Function:

\[V_d(\phi, \kappa, \eta, \mu) = \max \left\{ \pi_d(\phi, \kappa, \eta, \mu) d(\eta, \mu) + \beta (1 - \delta) \sum_{\eta'} V_d(\phi, \kappa, \eta', \mu') \lambda_{\eta\eta'}, \right. \]

\[\left. \left[\pi_d(\phi, \kappa, \eta, \mu) - \kappa \right] d(\eta, \mu) + \beta (1 - \delta) \sum_{\eta'} V_x(\phi, \kappa, \eta', \mu') \lambda_{\eta\eta'} \right\} \]

s.t. \(\mu' = M(\eta, \mu) \)
Equilibrium

- Cutoff level of productivity for each value of the entry cost
- For a plant of type \((\phi, \kappa)\)

 If \(\phi \geq \hat{\phi}_\kappa(\eta, \mu)\) export and sell domestically

 If \(\phi < \hat{\phi}_\kappa(\eta, \mu)\) only sell domestically

- In Equilibrium

 - “Low” productivity/“high” entry cost plants sell domestic

 - “High” productivity/“low” entry cost plants also export

 - Similar to Melitz (2003)
Determining Cutoffs

• For the cutoff plant:
 - entry cost = discounted, expected value of exporting

• \(\hat{\phi}_\kappa (\eta, \mu) \) is the level of productivity, \(\phi \), that solves:

\[
d (\eta, \mu) \kappa = (1 - \delta) \beta \left[\sum_{\eta'} V_x (\phi, \kappa, \eta', \mu') \lambda_{\eta \eta'} - \sum_{\eta'} V_d (\phi, \kappa, \eta', \mu') \lambda_{\eta \eta'} \right]
\]

\underbrace{\text{entry cost}} \quad \underbrace{\text{expected value of exporting}}
Finding the Cutoff Producer

Value of Exporting:
Steady State

Entry Cost

Non-Exporters

Exporters

Firm Productivity (ϕ)
Choosing Parameters

• Set $\sigma = \frac{1}{1-\rho} = 2$ and $\tau = 0.15$

• Calibrate to the United States (1987) and a symmetric partner.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Annual real interest rate (4%)</td>
</tr>
<tr>
<td>γ</td>
<td>Share of manufactures in GDP (18%)</td>
</tr>
<tr>
<td>δ</td>
<td>Annual loss of jobs from plant deaths as percentage of employment (Davis et. al., 1996) (6%)</td>
</tr>
</tbody>
</table>
Other Parameters

- Distribution over new plants:

\[F_\kappa(\phi) = \frac{1}{\phi^{\theta_\phi}} \quad F_\phi(\kappa) = \frac{1}{(\bar{\kappa} - \kappa)^{\theta_\kappa}} \]

- \(\bar{\kappa}, \phi, \nu, \theta_\phi, \theta_\kappa \) jointly determine:
 - Average plant size (12 employees)
 - Standard deviation of plant sizes (892)
 - Average exporting plant size (15 employees)
 - Standard deviation of exporting plant sizes (912)
 - Fraction of production that is exported (9%)
Productivity Process

- Two shocks, low and high:

 \[z_i = 1 - \varepsilon \]

 \[z_i = 1 + \varepsilon \]

- Countries have symmetric processes with Markov Matrix

 \[\Lambda_i = \begin{bmatrix} \overline{\lambda} & 1 - \overline{\lambda} \\ 1 - \overline{\lambda} & \overline{\lambda} \end{bmatrix} \]

- \(\varepsilon \): standard deviation of the U.S. Solow Residuals (1.0%)
- \(\overline{\lambda} \): autocorrelation of the U.S. Solow Residuals (0.90)
How does Trade Liberalization Differ from Business Cycles?

- Trade liberalization
 - Permanent changes
 - Large magnitudes

- Business cycles
 - Persistent, but not permanent changes
 - Small magnitudes
Developing Intuition: Persistent vs. Permanent Shocks

- 1% positive productivity shock in foreign country
 - Shock is persistent – autocorrelation of 0.90

- 1% decrease in tariffs
 - Change in tariffs is permanent
Response to 1% Productivity Shock
Autocorrelation = 0.90

Value of Exporting: 1% Productivity Shock
Value of Exporting: Steady State

Costs and Benefits

Firm Productivity (ϕ)

Entry Cost

$\hat{\phi}_{bc}$ $\hat{\phi}_{ss}$
Response to a 1% Foreign Productivity Shock

Increase in imports on intensive margin = 1.89%
Increase in imports on extensive margin = 0.16%
Total increase in imports = 2.05%
Change in consumption of home goods = -0.10%

\[
\frac{\% \text{ Change Imports/Dom. Cons.}}{\% \text{ Change Price}} = \frac{2.17}{0.99} = 2.19
\]
Response to 1% Permanent Decrease in Tariffs

Value of Exporting: 1% Decrease in Tariffs

Value of Exporting: 1% Productivity Shock

Value of Exporting: Steady State

Entry Cost

Firm Productivity ϕ

Costs and Benefits

ϕ_{tar} ϕ_{bc} ϕ_{ss}
Response to a 1% Tariff Reduction

Increase in imports on intensive margin = 1.42%
Increase in imports on extensive margin = 3.04%
Total increase in imports = 4.46%
Change in consumption of home goods = -0.33%

\[
\frac{\text{% Change Imports/Dom. Cons.}}{\text{% Change Tariff}} = \frac{4.81}{1.00} = 4.81
\]
Quantitative Results

- Two experiments

- Trade liberalization
 - Eliminate 15% tariff
 - Compute elasticity across tariff regimes

- Time series regressions
 - Use model to generate simulated data
 - Estimate elasticity as in the literature
Trade Liberalization Elasticity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Entry Costs (% change)</th>
<th>No Entry Costs (% change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>87.1</td>
<td>30.5</td>
</tr>
<tr>
<td>Imports/Dom. Cons.</td>
<td>93.0</td>
<td>32.2</td>
</tr>
<tr>
<td>Exporting Plants</td>
<td>37.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Implied Elasticity</td>
<td>6.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Elasticity in the Time Series

- Simulate: produce price/quantity time series

- Regress:

\[\log \left(\frac{C_{f,t}}{C_{h,t}} \right) = \alpha + \sigma \log \left(\frac{p_{h,t}}{p_{f,t}} \right) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>-0.015</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(6.36e-04)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>1.39</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>R- squared</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Conclusion

- Gap between dynamic macro models and trade models
 - Partially closes the gap
 - Modeling firm behavior as motivated by the data
 - Step towards better modeling of trade policy

- Single model can account for the elasticity puzzle
 - Time series elasticity of 1.4
 - Trade liberalization elasticity of 6.2
3. Models of trade with heterogeneous firms imposed fixed costs on firms that decide to export. The focus is on the decision to export. The theory and the data indicate that there is a lot of room for focusing on the decision to import.

Motivation

Dynamics of international trade flows

Long-run: Large, gradual changes
 (tariff reform)

Short-run: Small changes
 (fluctuations in relative prices)

Standard Theory: does not capture difference
 Constant elasticity of substitution between imports and domestic goods
Question

What accounts for slow-moving dynamics of international trade flows?

This Paper’s Answer

Trade in intermediate inputs
Costly, irreversible importing decision at producer-level
Previous Literature’s Answers

Lags or costs of adjustment: contracting / distribution
Parameterize to generate slow-moving dynamics

This paper’s contribution:
Model mechanism based on micro-level evidence

Quantitative test of theory:
Endogenous aggregate dynamics in line with data

Significance of Results

Effects of trade reform
1. Timing and magnitude of trade growth
2. Welfare gains
Data: Aggregate Dynamics

Armington (1969) elasticity: elasticity of substitution between aggregate imported and domestic goods

Low estimates from time-series data (< 2)

High estimates from trade liberalization (> 6)
Data: Aggregate Dynamics
Gradual increase in trade after liberalization
NAFTA (Jan 1, 1994)
Data: Plant-level

Cross-section
Not all plants use imported intermediate inputs
Importing plants larger than non-importing plants

Panel
Reallocation between importers / non-importers is significant
Data: Plant-level Cross-section

<table>
<thead>
<tr>
<th></th>
<th>% use imports</th>
<th>Avg. size ratio to non-importers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>average 1979-86</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>US</td>
<td>1992</td>
<td>23.8</td>
</tr>
<tr>
<td>(Kurz, 2006)</td>
<td></td>
<td>2.3</td>
</tr>
</tbody>
</table>
Data: Plant-level Dynamics

Decompose changes in aggregate trade volumes

e.g., increase in aggregate imported/total inputs due to:

1. Importers increase ratio \((Within)\) +
2. Importers expand, non-importers shrink \((Between)\) +
3. Interaction between the two \((Cross)\) +
4. Non-importers switch to importing \((Switch)\) +
5. Higher proportion of new entrants are importers \((Entry)\)

Baily, Hulten, Campbell (1992): productivity growth
Data: Plant-level Dynamics

Imported / Total Intermediate Inputs: Chile, 1979-1986

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>Fraction of Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg of 1-year changes</td>
<td>-18%</td>
<td>Within: 79, Between: 26, Cross: -10, Switch: 3, Entry: 2</td>
</tr>
<tr>
<td>7-year change</td>
<td>-77%</td>
<td>Within: 74, Between: 42, Cross: -30, Switch: 5, Entry: 10</td>
</tr>
</tbody>
</table>
Model

Heterogeneous Plants

- Produce using intermediate inputs
- Importing costly, irreversible
- Trade growth through *Between* and *Entry* margins

2-country, 2-good real business cycle model

- Technology shocks: short-run changes
- Tariff reduction: long-run changes
Time and Uncertainty

Dates $t = 0,1,2,...$

Event at date t: s_t. State at date t: $s^t = (s_0, s_1, \ldots, s_t)$.

$$\Pr(s_t \mid s^{t-1}) = \phi(s_t \mid s_{t-1})$$

$$\tilde{\phi}(s^t) = \phi(s_t \mid s_{t-1})\phi(s_{t-1} \mid s_{t-2})\cdots\phi(s_1 \mid s_0)$$

Commodities and prices are functions $x(s^t) \rightarrow x_t$

Technology shocks $A(s^t), A^*(s^t)$
Representative Consumer

Preferences:

\[E \sum_{t=0}^{\infty} \beta^t U(C_t, 1 - N_t) = \sum_{t=0}^{\infty} \sum_{s'} \beta^t \tilde{\phi}(s') U(C(s'), 1 - N(s')) \]

Budget constraint:

\[C_t + \sum_{s_{t+1}} Q(s^t, s_{t+1}) B(s^t, s_{t+1}) \leq w_t N_t + B(s^t) + \Pi_t + T_t \]

Consumer owns plants
Plants

Heterogeneous in inherent efficiency z.
Aggregate technology shocks A_i

Within each country, produce homogeneous output
Perfectly competitive, decreasing returns to scale technologies

Two types of decisions
1. Existing plants: static profit maximization
2. New plants: technology choice (import or not)
Plant technologies

Non-importing

\[f_d(n, d; z) = z^{1-\alpha-\theta} d^\alpha n^\theta \]

Importing

\[f_m(n, d, m; z) = z^{1-\alpha-\theta} \left(\gamma \min \left\{ \frac{d}{\omega}, \frac{m}{1-\omega} \right\} \right)^\alpha n^\theta \]

\[\alpha + \theta < 1, \quad \omega < 1, \]

\(\gamma \) : efficiency gain from importing
Static profit maximization

Non-importing plant with efficiency \(z \) operating at date \(t \)

\[
\pi_{dt}(z) = \max_{n,d} A_t f_d(n,d;z) - w_t n - d
\]

Importing plant

\[
\pi_{mt}(z) = \max_{n,d,m} A_t f_m(n,d,m;z) - w_t n - d - (1 + \tau) p_t m
\]

No dependence on date of entry
Plant technologies, costs

Non-importing

\[f_d(n, d; z) = z^{1-\alpha-\theta} d^\alpha n^\theta \]

Price of intermediate input: 1

Importing

\[f_m(n, d, m; z) = z^{1-\alpha-\theta} \left(\gamma \min \left\{ \frac{d}{\omega}, \frac{m}{1-\omega} \right\} \right)^\alpha n^\theta \]

Price of composite intermediate input: \(\frac{1}{\gamma} (\omega + (1+\tau)p, (1-\omega)) \)
Plant technologies, costs

Importing technology is more cost-efficient if

\[\gamma > \omega + (1 + \tau) p_t (1 - \omega) \]

Depends on equilibrium price \(p_t \)

Estimate \(\gamma \) from plant data

Check that inequality holds along equilibrium path
Dynamic problem: Timing

Plant pays cost κ_e to get a draw of z from distribution g

Decide whether to start producing or exit

Pay sunk investment
κ_c to use non-importing technology, or
κ_m to use importing technology
$\kappa_m > \kappa_c$

Face static profit maximization problem each period

Probability δ of exit after production each period
Timing: Plant Entering at date t

Pay $\kappa_m \rightarrow \pi_{mt+1}(z) \rightarrow \pi_{mt+2}(z) \rightarrow \ldots$

Exit w/p δ

Pay $\kappa_c \rightarrow \pi_{dt+1}(z) \rightarrow \pi_{dt+2}(z) \rightarrow \ldots$

Exit w/p δ

Pay κ_e, Learn z
Dynamic Problem: Plant entering at date t

Present values of static profits:

$$V_{dt}(z) = E_t \sum_{k=1}^{\infty} (1 - \delta)^{k-1} P_{t,t+k} \pi_{dt+k}(z)$$

$$V_{mt}(z) = E_t \sum_{k=1}^{\infty} (1 - \delta)^{k-1} P_{t,t+k} \pi_{mt+k}(z)$$

with $P_{t,t+k} = \beta^k \frac{U_{Ct+k}}{U_{Ct}}$ (consumer owns plants)
Technology Choice

\[V_t(z) = \max \left\{ 0, -\kappa_c + V_{dt}(z), -\kappa_m + V_{mt}(z) \right\} \]

Produce using non-importing technology if

\[-\kappa_c + V_{dt}(z) > \max \left\{ 0, -\kappa_m + V_{mt}(z) \right\} \]

Produce using importing technology if

\[-\kappa_m + V_{mt}(z) > \max \left\{ 0, -\kappa_c + V_{dt}(z) \right\} \]

Otherwise exit
Technology Choice

$V_{dt}(z)$ and $V_{mt}(z) - V_{dt}(z)$ increasing in z

Cutoffs \hat{z}_{dt} and \hat{z}_{mt},

\[
V_{dt}(\hat{z}_{dt}) = \kappa_c \\
V_{mt}(\hat{z}_{mt}) - V_{dt}(\hat{z}_{mt}) = \kappa_m
\]

Use importing technology if $z \in [\hat{z}_{mt}, \infty)$

Use non-importing technology if $z \in [\hat{z}_{dt}, \hat{z}_{mt})$

Otherwise exit
Technology Choice: cutoffs

\[g(z) \]

density

efficiency, \(z \)

Exit

Non-importing

Importing

\[z_L \]

\[\hat{z}_d \]

\[\hat{z}_m \]
Equilibrium Conditions: Plant Dynamics

\(\mu_{dt}(z) \): Mass of non-importing plants, efficiency \(z \) at date \(t \).

\(X_t \): Mass of entrants at date \(t \) (start producing at date \(t + 1 \))

Dynamics of distribution:

\[
\mu_{dt+1}(z) = \begin{cases}
(1 - \delta) \mu_{dt}(z) + X_t g(z) & \text{if } z \in [\hat{z}_{dt}, \hat{z}_{mt}] \\
(1 - \delta) \mu_{dt}(z) & \text{otherwise}
\end{cases}
\]
Equilibrium Conditions: Plant Dynamics

$\mu_{mt}(z)$: Mass of importing plants, efficiency z at date t.

X_t: Mass of entrants at date t (start producing at date $t + 1$)

Dynamics of distribution:

$$
\mu_{mt+1}(z) = \begin{cases}
(1 - \delta)\mu_{mt}(z) + X_t g(z) & \text{if } z > \hat{z}_{mt} \\
(1 - \delta)\mu_{mt}(z) & \text{otherwise}
\end{cases}
$$
Equilibrium Conditions: Feasibility

Goods

\[
C_t + X_t \left(\kappa_e + \kappa_c \int_{z_{dt}}^{z_{mt}} g(z)dz + \kappa_m \int_{z_{mt}}^{\infty} g(z)dz \right) \\
+ \int d_{dt}(z) \mu_{dt}(z)dz + \int d_{mt}(z) \mu_{mt}(z)dz + \int m_t^*(z) \mu_{mt}^*(z)dz \\
= \int y_{dt}(z) \mu_{dt}(z)dz + \int y_{mt}(z) \mu_{mt}(z)dz
\]

Labor

\[
\int n_{dt}(z) \mu_{dt}(z)dz + \int n_{mt}(z) \mu_{mt}(z)dz = N_t
\]
Equilibrium Conditions: Free Entry and Asset Market

Expected value of entry is

\[V_{et} = -\kappa_e + \int_{z_L}^{\infty} V_t(z)g(z)dz \]

Free Entry:

\[V_{et} \leq 0, \quad = \text{if } X_t > 0 \]

Asset Market Clearing:

\[B(s^t) + B^*(s^t) = 0 \]
Aggregation

To solve equilibrium conditions, need $\mu_{dt}(\bullet)$, $\mu_{mt}(\bullet)$

For example: $\int n_{dt}(z)\mu_{dt}(z)dz$

Let $Z_{dt} = \int z\mu_{dt}(z)dz$

Plants make decisions proportional to efficiency z:

$$n_{dt}(z) = \tilde{n}_{dt} \times z$$

So,

$$\int n_{dt}(z)\mu_{dt}(z)dz = \tilde{n}_{dt} Z_{dt}$$
Aggregation

Replace $\mu_{dt}(\bullet)$ with Z_{dt} as state variable:

$$
\mu_{dt+1}(z) = \begin{cases}
(1 - \delta) \mu_{dt}(z) + X_t g(z) & \text{if } z \in [\hat{z}_{dt}, \hat{z}_{mt}] \\
(1 - \delta) \mu_{dt}(z) & \text{otherwise}
\end{cases}
$$

$$
\downarrow
$$

$$
Z_{dt+1} = (1 - \delta) Z_{dt} + X_t \int_{\hat{z}_{dt}}^{\hat{z}_{mt}} g(z)dz
$$

Same with $\mu_{mt}(\bullet), \mu^*[\bullet], \mu^*_m(\bullet)$
Analysis of Model

1. Aggregate imported / domestic intermediate ratio – what determines substitutability?

 Static allocation across plants
 Investment decisions of new plants

2. Quantitative analysis

 Parameterization
 Business Cycle simulation – short-run elasticity
 Trade Reform – long-run elasticity; speed of trade growth
Import / domestic ratio

Plant level:

Non-importing plant: fixed, *zero*.

Importing plant: fixed, \(\frac{m_t(z)}{d_{mt}(z)} = \frac{1 - \omega}{\omega} \)
Import / domestic ratio

Aggregate:

\[
\frac{M_t}{D_{mt} + D_{dt}} = \frac{\tilde{m}_t Z_{mt}}{\tilde{d}_{mt} Z_{mt} + \tilde{d}_{dt} Z_{dt}} = \frac{1 - \omega}{\omega} \frac{\tilde{d}_{mt} Z_{mt}}{\tilde{d}_{mt} Z_{mt} + \tilde{d}_{dt} Z_{dt}}
\]

Increasing in:

\[
\frac{\tilde{d}_{mt}}{\tilde{d}_{dt}}: \text{non-importing / importing plant with same } z;
\]

\[
\frac{Z_{mt}}{Z_{dt}}: \text{mass of importers / non-importers (z-weighted)}
\]
Effects of increase in relative price \((1 + \tau) p_t\):

1. At date \(t\): allocation between plants,

\[
\frac{\tilde{d}_{mt}}{\tilde{d}_{dt}} = \left(\frac{\gamma}{\omega + (1 + \tau) p_t (1 - \omega)} \right)^{\alpha/(1 - \alpha - \theta)}
\]

Decreasing in \((1 + \tau) p_t\)

Importers less profitable; allocated less inputs in equilibrium
Effects of increase in relative price \((1 + \tau) p_t\) if persistent:

2. At date \(t + 1\): new plants entering at date \(t\),

\[
\frac{Z_{mt+1}}{Z_{dt+1}} = \frac{(1 - \delta)Z_{mt} + X_t \int_{z_{mt}}^{\infty} g(z)dz}{(1 - \delta)Z_{dt} + X_t \int_{z_{dt}}^{\infty} g(z)dz}
\]

Decreasing in \((1 + \tau) p_t\)

Importing less profitable; fewer new plants choose importing.

\(\hat{z}_{mt} \downarrow, \hat{z}_{dt} \uparrow\)
Dynamic effect of increase in \((1 + \tau)p_t\)

Distribution of Plants, \(t\)

![Graph showing mass of plants against efficiency \((z)\). Non-importers and importers are indicated.](image)
Dynamic effect of increase in \((1 + \tau)p_t\)

Distribution of Plants, \(t\)
Dynamic effect of increase in \((1 + \tau)p_t\)

Distribution of Plants, \(t + 1\)
Dynamic effect of increase in \((1 + \tau) p_t\)

Distribution of Plants, \(t+2\)
Dynamic effect of increase in \((1 + \tau) p_t\)

Distribution of Plants, \(t+5\)
Dynamic effect of increase in \((1 + \tau)p_t\)

Distribution of Plants, \(t+10\)
Dynamic effect of increase in $(1 + \tau)p_t$

Distribution of Plants, $t+20$
Dynamic effect of increase in \((1 + \tau)p_t\)

Distribution of Plants, \(t + 50\)
Dynamic effect of increase in \((1 + \tau) p_t\)

Distribution of Plants, \(t + \infty\)

quantitative analysis
1. Cyclical fluctuations: static reallocation dominant
 Low aggregate elasticity of substitution (~ 1.3)

2. Trade liberalization: gradual change in ratio of plants
 High aggregate elasticity of substitution (~ 7)
 Gradual increase in trade

Conclusions

Heterogeneity and irreversibility in importing at producer level

Slow-moving dynamics at aggregate level

Significant implications for welfare gains from trade reform
4. Models with uniform fixed cost across firms with heterogeneous productivity have implications that are sharply at odds with micro data. A model with increasing costs of accessing a fraction of a market has many of features of models with fixed costs without these undesirable properties.

Two Key Observations in Trade Data

Key Observation 1: Who exports and how much

(Eaton Kortum and Kramarz '05)

- Most firms do not export and
- Large fraction of firms exporting to each country sell tiny amounts there

Example

- Only 1.9% of French firms export to Portugal and
- More than 25% of French firms exporting to Portugal < 10K there
Example: 1.9% of French firms export to Portugal, mostly tiny amounts.
Two Key Observations in Trade Data

Key Observation 1: Who exports and how much

- Most firms do not export and
- Large fraction of firms exporting to each country sell tiny amounts there

Key Observation 2: Trading decisions after a trade liberalization

(Kehoe ’05, Kehoe & Ruhl ’03)

- Large increases in trade for goods with positive but little trade
Example: Large increases in goods with positive but little trade prior NAFTA
Existing Firm-Level Models of Trade

- Models such as those of Melitz ’03 and Chaney ’06 assume
 - Differentiated products
 - Heterogeneous productivity firms
 - Fixed market access cost of exporting

- Yield 2 puzzles related to 2 key observations
Two Puzzles for Theory with Fixed Costs

• **Puzzle 1: Fixed Cost model needs**
 - Large fixed cost for most firms not to export
 - Small fixed cost for small exporters

• **Puzzle 2: Fixed Cost model relies solely on Dixit-Stiglitz demand**
 - Predicts symmetric changes for all previously positively traded goods

• This paper points out the shortcomings of the Fixed Cost model
 - Proposes a **theory of marketing** that can resolve them
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td></td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td>+12.5%</td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td>+12.5%</td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Properties of marketing cost per consumer

a) Costly to reach first consumer

b) Increasing marketing cost per consumer to reach additional consumers
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td>+12.5%</td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Properties of marketing cost per consumer

a) Costly to reach first consumer

b) Increasing marketing cost per consumer to reach additional consumers

Model with a)+b) can account for observation 1, namely,

- Most firms do not export **and**
- Large fraction of firms exporting to each country sell tiny amounts there
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td>+12.5%</td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Properties of marketing cost per consumer

a) Costly to reach first consumer

b) Increasing marketing cost per consumer to reach additional consumers

c) More ads bring fewer new consumers (saturation)
A Theory of Marketing: The Basic Idea

Example: TV channel, each ad randomly reaches 50% of consumers

<table>
<thead>
<tr>
<th></th>
<th>1st ad</th>
<th>2nd ad</th>
<th>3rd ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraction reached</td>
<td>50%</td>
<td>+25%</td>
<td>+12.5%</td>
</tr>
<tr>
<td>cost per consumer</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Properties of marketing cost per consumer

a) Costly to reach first consumer
b) Increasing marketing cost per consumer to reach additional consumers
c) More ads bring fewer new consumers (saturation)

Model with c) can account for observation 2, namely,

- Large increases in trade for goods with positive but little trade
Model Environment

Builds on Melitz ’03 and Chaney ’06

- **Countries**
 - Index by i when exporting, j when importing, $i, j = 1, ..., N$
 - L_j consumers
 - Firms sell locally and/or export
Model Environment

Builds on Melitz ’03 and Chaney ’06

- **Representative Consumers**
 - Sell unit of labor, own shares of domestic firms
 - Symmetric CES Dixit-Stiglitz preferences over continuum of goods
 - Buy the goods they have access to

- **Firms**
 - Indexed by productivity ϕ (drawn from same distribution), nationality i
 - Each sells 1 good
 - Determine probability a consumer in a market has access to their good
Demand Faced by a Type ϕ Firm from Country i

- $n_{ij}(\phi)$: probability a type ϕ firm from i reaches a representative consumer in j

- Large number of consumers
 - thus firm reaches fraction $n_{ij}(\phi)$ of them

- Effective demand for firm ϕ:
 \[
 \left(\frac{n_{ij}(\phi)L_j}{\prod_{j=1}^{\sigma}}\right) \frac{P_{ij}(\phi)^{-\sigma}}{P_j^{1-\sigma}} y_j
 \]
 \[
 p_{ij}(\phi): \text{price that type } \phi \text{ firm from } i \text{ charges in } j, \quad y_j: \text{output (income) per capita}
 \]
 \[
 P_j: \text{D-S price aggregator, } \quad \sigma: \text{elasticity of substitution (}\sigma > 1\text{, demand is elastic)}
 \]
Firm’s Problem

Type ϕ firm from country i solves for each country $j = 1, ..., N$

$$\pi_{ij} = \max_{n_{ij}, p_{ij}, q_{ij}} \quad p_{ij} q_{ij} - w_i \frac{\tau_{ij} q_{ij}}{\phi} - w_i f(n_{ij}, L_j)$$

$$s.t. \quad q_{ij} = n_{ij} L_j \frac{p_{ij}^{\sigma}}{P_j^{1-\sigma}} y_j, \quad n_{ij} \in [0, 1]$$

- Uses production function $q_{ij} = \phi l_{ij}$ to produce good
- τ_{ij}: iceberg cost to ship a unit of good from i to j (in terms of labor)
- $f(n_{ij}, L_j)$: marketing to reach fraction n_{ij} of a population with size L_j
Firm’s Problem

• **Result:** Price is the usual markup over unit production cost,

\[p_{ij}(\phi) = \tilde{\sigma} \frac{\tau_{ij} w_j}{\phi}, \quad \tilde{\sigma} = \frac{\sigma}{\sigma - 1} \]

• Given price markup rule firm solves:

\[
\pi_{ij} = \max_{n_{ij}} n_{ij} L_j \phi^{\sigma - 1} \left(\frac{\tau_{ij} w_j \tilde{\sigma}}{P_j^{1-\sigma}} \right)^{1-\sigma} \frac{y_j}{\sigma} - w_j f(n_{ij}, L_j)
\]

\[
\text{Revenue per consumer (net of labor production cost)}
\]

s.t \[n_{ij} \in [0, 1]\]

• Look at marginal decision of reaching additional fractions of consumers
Marginal Revenue & Cost from Reaching Additional Consumers

Marginal cost

$\frac{\partial f}{\partial n} (0, L)$

Fraction of consumers reached

MR of access for productivity ϕ

Increasing marginal cost

Constant marginal cost

$n = 1$
The Market Access Cost Function

- Solve the differential equation

\[n'(S) = [1 - n(S)]^\beta L^{1-\alpha} \frac{1}{L}, \quad \text{s.t. } n(0) = 0 \]

- Obtain Market Access Cost function

 - Assuming that \(\frac{1}{\psi} \) is the labor required for each ad

\[
f(n, L) = \begin{cases}
\frac{L^\alpha}{\psi} \frac{1-(1-n)^{-\beta+1}}{-\beta+1} & \text{if } \beta \in [0, 1) \cup (1, +\infty) \\
-\frac{L^\alpha}{\psi} \log(1 - n) & \text{if } \beta = 1
\end{cases}
\]

where \(\alpha \in [0, 1] \)
The properties of the Market Access Cost function

\[
\beta = 1
\]

\[
\beta = 0
\]

\[
\frac{L^a}{\psi}
\]

\[
n = 1
\]

Fraction of consumers reached
The properties of the Market Access Cost function

Accessing 1st fraction of consumers costly

\[\frac{L^\alpha}{\psi} \]

Marginal cost

Fraction of consumers reached

\[\beta = 1 \]

\[\beta = 0 \]

\[n = 1 \]
The properties of the Market Access Cost function

Accessing 1st fraction of consumers costly, but accessing 1st consumer cheaper for larger L (if α < 1)

Marginal cost

\[\frac{L^\alpha}{\psi} \]

\[\beta = 1 \]

\[\beta = 0 \]

Fraction of consumers reached

n = 1
The product of the two margins: total sales per firm

Sales per firm

Productivity

\[\phi_{ij} \]

(Fixed cost)

(Endogenous cost)
Models’ predictions on which firms export

Right prediction: Some firms don’t export

Sales per firm

Productivity

(Fixed cost)

(Endogenous cost)
Models’ predictions on how much firms export.

Wrong prediction: Minimum exports to cover fixed cost.
Models’ predictions on how much firms export

Sales per firm

Productivity

(Fixed cost)

(Endogenous cost)

Right prediction:
Export tiny amounts
(few consumers)

ϕ_{ij}^*
Comparing the Calibrated Model to French Data

- Look at the sales distribution for the model with $\beta = 0, 1$

- Remember: $\beta = 1$ calibrated to match higher sales in France of French firms exporting to more countries

- $\frac{1}{\psi}, \alpha$ calibrated to match number of French exporters to each country
Calibrated Endogenous Cost model accounts for large fraction of small exporters
Observation 2: Trading Decisions After Trade Liberalization

- **Data:** Large increases in trade in least traded goods, Kehoe & Ruhl ’03

- Look at US-Mexico trade liberalization; extend Kehoe-Ruhl analysis

- **Compute growth of positively traded goods prior to NAFTA**
 1. Data: US imports from Mexico ’90-’99, 6-digit HS, ≈ 5400 goods
 2. Keep goods traded throughout ’90-’92, ≈ 2900 goods
 3. Rank goods in terms of sales ’90-’92
 4. Categorize **traded** goods in 10 bins
Large increases in trade for least traded goods

Graph showing the ratio of total imports in 1997-99 to 1990-92 for each category of US imports from Mexico for previously traded goods categorized by sales in 1990-92.
Comparing Calibrated Model to Data from NAFTA Episode

- Look at growth of trade for previously traded goods for $\beta = 0, 1$

- Use calibrated parameters, consider a firm as a good

- Change variable trade costs symmetrically across goods
 - Match increase in trade in previously traded goods
 - Fixed Cost model: 12.5% decrease in variable trade costs
 - My model: 9.5% decrease in variable trade costs (e.g. $\tau'_{ij} = 0.905 \tau_{ij}$)
Calibrated Endogenous Cost model predicts increases in trade for least traded goods

US imports from Mexico for previously traded goods categorized by sales in 1990-92

Ratio of total imports in 1997-99 to 1990-92 for each category

Endogenous cost ($\beta=1$)

Fixed cost ($\beta=0$)
New Consumers Margin and New Trade

- Recent theory emphasizes increase in trade due to many new firms (EK02, Chaney ’06 à la Melitz ’03)

- Decompose contribution of the 3 margins to total trade
 - Intensive margin growth (total growth in sales per consumer)
 - New consumers margin (total growth in extensive margin of consumers)
 - New firms margin (total growth in extensive margin of firms)
Pareto Density and Number of Firms with Productivity ϕ
Density of exports

Exports of firms with productivity φ ($n(\varphi)x(\varphi)\mu(\varphi)$)
New Consumers Margin and new trade
New Consumers Margin and new trade

Exports of firms with productivity $\varphi (n(\varphi)x(\varphi)\mu(\varphi))$

- New consumers margin
- Intensive margin growth

Productivity
New Consumers Margin and new trade

New consumers margin

Intensive margin growth

New firms margin

Exports of firms with productivity \(\phi \) and productivity- \(\mu(\phi) \)
New Consumers Margin and new trade

New consumers margin (33.3%)

Intensive margin growth (52%)

New firms margin (14.7%)
New Firms Margin and the Fixed Cost model ($\beta = 0$)

Exports of firms with productivity φ ($x(\varphi)\mu(\varphi)$)

Productivity

New firms margin

Intensive margin growth
New Firms Margin and new trade ($\beta = 0$)